JPH06137193A - Air-fuel ratio control device for internal combustion engine - Google Patents

Air-fuel ratio control device for internal combustion engine

Info

Publication number
JPH06137193A
JPH06137193A JP4285923A JP28592392A JPH06137193A JP H06137193 A JPH06137193 A JP H06137193A JP 4285923 A JP4285923 A JP 4285923A JP 28592392 A JP28592392 A JP 28592392A JP H06137193 A JPH06137193 A JP H06137193A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
internal combustion
combustion engine
voltage value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4285923A
Other languages
Japanese (ja)
Inventor
Hisashi Kadowaki
寿 門脇
Takashi Arimura
孝士 有村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4285923A priority Critical patent/JPH06137193A/en
Publication of JPH06137193A publication Critical patent/JPH06137193A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To spread an applicable range relating to feedback control by improving detecting sensitivity in the vicinity of theoretical air-fuel ratio, so that air-fuel ratio can be surely controlled to a window of the theoretical air-fuel ratio and further the actual air-fuel ratio itself can be detected also in the vicinity of the theoretical air-fuel ratio. CONSTITUTION:Resistors R1, R2 are connected between output terminals 32a, 32b of a switching circuit 31, to make a resistance value switchable in accordance with opening/closing a switch S1, and since it is opened when the target air-fuel ratio is the theoretical air-fuel ratio, the resistance value acting between the output terminals 32a, 32b is increased to increase a gain of fluctuation of an output voltage value V relating to a fluctuation of air-fuel ratio, so that the air-fuel ratio can be detected by very high sensitivity. Since the output voltage value V in proportion to concentration of oxygen in exhaust gas is obtained, PID control, modern control, etc., can be executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の空燃比制御
装置に関するものであり、特に、内燃機関が所定の運転
領域にあるときに、空燃比を理論空燃比よりリーン側に
制御して運転させる空燃比制御装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control system for an internal combustion engine, and more particularly to controlling the air-fuel ratio to a lean side of the theoretical air-fuel ratio when the internal combustion engine is in a predetermined operating range. The present invention relates to an air-fuel ratio control device to be operated.

【0002】[0002]

【従来の技術】近年、燃費向上やエミッション低減を目
的として、内燃機関の空燃比を理論空燃比よりリーン側
に制御する所謂リーン制御を採用した空燃比制御装置が
実施されている。このような空燃比制御では、内燃機関
の運転領域に応じて、通常の空燃比制御とリーン制御と
を選択的に実行している。周知のように、通常の空燃比
制御時には、内燃機関の運転領域に応じて燃料噴射量を
設定し、また、リーン制御時には、内燃機関の運転領域
毎にマップ化された定数(<1.0)を燃料噴射量に乗
算して、空燃比をリーン側に補正する。そして、この処
理に並行して、内燃機関の排気通路に設けたリーンセン
サからの排気ガス中の酸素濃度に比例する出力電圧値
と、目標空燃比(通常の空燃比制御時には理論空燃比、
リーン制御時にはよりリーン側の空燃比)に対応する電
圧値とを比較して、前記した燃料噴射量をフィードバッ
ク制御している。
2. Description of the Related Art In recent years, for the purpose of improving fuel efficiency and reducing emissions, an air-fuel ratio control device has been implemented which employs so-called lean control for controlling the air-fuel ratio of an internal combustion engine to be leaner than the stoichiometric air-fuel ratio. In such air-fuel ratio control, normal air-fuel ratio control and lean control are selectively executed according to the operating region of the internal combustion engine. As is well known, during normal air-fuel ratio control, the fuel injection amount is set according to the operating region of the internal combustion engine, and during lean control, a constant (<1.0 is mapped to each operating region of the internal combustion engine. ) Is multiplied by the fuel injection amount to correct the air-fuel ratio to the lean side. Then, in parallel with this processing, the output voltage value proportional to the oxygen concentration in the exhaust gas from the lean sensor provided in the exhaust passage of the internal combustion engine, and the target air-fuel ratio (theoretical air-fuel ratio during normal air-fuel ratio control,
During lean control, a voltage value corresponding to the leaner air-fuel ratio) is compared to perform feedback control of the fuel injection amount.

【0003】なお、このような空燃比フィードバックに
使用されるリーンセンサとしては、ジルコニア等の酸素
イオン導電性固体電界質を用いたものが公知である。こ
のリーンセンサは、ジルコニア板の一側面に陰極をなす
薄膜をコーティングするとともに、他側面に陽極をなす
薄膜をコーティングして構成されており、陰極を排気通
路内に露出させて内燃機関に装着される。陰極及び陽極
間に電圧が印加されたときのリーンセンサは、陰極に接
触した排気ガス中の酸素濃度に比例した電流を出力し、
従来の一般的な空燃比制御装置では、この出力電流を目
標空燃比の電圧値と比較すべく、単一の抵抗によって電
圧値に変換していた。
As a lean sensor used for such air-fuel ratio feedback, a sensor using an oxygen ion conductive solid electrolyte such as zirconia is known. This lean sensor is constructed by coating one side of a zirconia plate with a thin film forming a cathode and coating the other side of the zirconia plate with a thin film forming an anode.The lean sensor is mounted in an internal combustion engine with the cathode exposed in the exhaust passage. It When a voltage is applied between the cathode and the anode, the lean sensor outputs a current proportional to the oxygen concentration in the exhaust gas in contact with the cathode,
In a conventional general air-fuel ratio control device, this output current is converted into a voltage value by a single resistor so as to be compared with the voltage value of the target air-fuel ratio.

【0004】ところで、リーンセンサに要求される空燃
比の検出領域は、理論空燃比の14.7付近からリーン
側の22付近までの広範囲にわたっている。したがっ
て、全ての領域に適応できるように抵抗値を設定した場
合には、例えば、図4に破線で示す検出特性のように、
空燃比の変動に対する出力電圧値の変動のゲインが全域
にわたって低くなる。しかしながら、通常の空燃比制御
では、空燃比を理論空燃比付近の狭い領域(ウインド)
に制御する必要があるため、空燃比の検出に特に高い感
度が要求され、前記したゲインの低い出力電圧値ではこ
の要求を満たすことができなかった。
By the way, the detection range of the air-fuel ratio required for the lean sensor covers a wide range from around 14.7 of the theoretical air-fuel ratio to around 22 on the lean side. Therefore, when the resistance value is set so as to be applicable to all the regions, for example, like the detection characteristic shown by the broken line in FIG.
The gain of the fluctuation of the output voltage value with respect to the fluctuation of the air-fuel ratio becomes low over the entire region. However, in normal air-fuel ratio control, the air-fuel ratio is set in a narrow region (window) near the theoretical air-fuel ratio.
Therefore, it is necessary to control the air-fuel ratio to a high level, so that a particularly high sensitivity is required for the detection of the air-fuel ratio, and this requirement cannot be satisfied with the above-mentioned low-gain output voltage value.

【0005】そこで、理論空燃比付近の検出感度を向上
させた空燃比制御装置として、例えば、特公平4−11
81号公報に記載のものが提案されている。
Therefore, as an air-fuel ratio control device with improved detection sensitivity near the stoichiometric air-fuel ratio, for example, Japanese Patent Publication No. 4-11.
The one described in Japanese Patent No. 81 has been proposed.

【0006】図7はこの従来の空燃比制御装置における
リーンセンサの周辺の模式的な回路構成を示す回路図で
ある。
FIG. 7 is a circuit diagram showing a schematic circuit configuration around a lean sensor in this conventional air-fuel ratio control device.

【0007】図に示すように、リーンセンサ51の一端
には一方の出力端子52aが接続され、リーンセンサ5
1の他端にはスイッチS2の可動接点aが接続されてい
る。可動接点aは一対の固定接点b,cに選択的に切換
可能となっており、その一方の固定接点bは電源53を
介して他方の出力端子52bに接続され、他方の固定接
点cは電源53を迂回して他方の出力端子52bに接続
されている。また、出力端子52a,52b間にはリー
ンセンサ51の出力電流を電圧値に変換する抵抗R3が
接続され、その出力電圧値Vが空燃比制御装置に入力さ
れる。
As shown in the figure, one output terminal 52a is connected to one end of the lean sensor 51, and the lean sensor 5
The movable contact a of the switch S2 is connected to the other end of the switch 1. The movable contact a can be selectively switched to a pair of fixed contacts b and c, one fixed contact b is connected to the other output terminal 52b via a power source 53, and the other fixed contact c is a power source. It bypasses 53 and is connected to the other output terminal 52b. A resistor R3 that converts the output current of the lean sensor 51 into a voltage value is connected between the output terminals 52a and 52b, and the output voltage value V is input to the air-fuel ratio control device.

【0008】そして、リーン制御時においては、スイッ
チS2の可動接点aが空燃比制御装置により固定接点b
側に切り換えられる。したがって、リーンセンサ51の
両端に電源53の電圧が印加されて、排気ガス中の酸素
濃度に比例した電流が出力され、出力端子52a,52
b間には抵抗R3により出力電流に応じた電圧値Vが発
生し、その出力電圧値Vに基づいて燃料噴射量をフィー
ドバック制御することが可能となる。つまり、このリー
ン制御時のリーンセンサ51は、前記した空燃比制御装
置のリーンセンサと同様の機能を奏するものであり、所
謂限界電流方式の原理で空燃比を検出する。
During lean control, the movable contact a of the switch S2 is fixed to the fixed contact b by the air-fuel ratio controller.
Switched to the side. Therefore, the voltage of the power source 53 is applied to both ends of the lean sensor 51, a current proportional to the oxygen concentration in the exhaust gas is output, and the output terminals 52a and 52 are output.
A voltage value V corresponding to the output current is generated between b and the resistor R3, and the fuel injection amount can be feedback-controlled based on the output voltage value V. That is, the lean sensor 51 at the time of lean control has the same function as the lean sensor of the air-fuel ratio control device described above, and detects the air-fuel ratio by the so-called limiting current method principle.

【0009】また、通常の空燃比制御時においては、ス
イッチS2の可動接点aが空燃比制御装置により固定接
点c側に切り換えられる。したがって、リーンセンサ5
1は電源53の電圧を印加されずに、陰極に接触した排
気ガス中の酸素濃度と、陽極に接触した大気中の酸素濃
度との濃度差により起電力を生じ、出力端子52a,5
2b間には、排気ガスの空燃比が理論空燃比よりリッチ
かリーンかに応じたハイまたはローの電圧値Vが発生す
る。よって、その出力電圧値Vに基づいて燃料噴射量を
フィードバック制御することが可能となる。つまり、こ
の通常の空燃比制御時のリーンセンサ51は、一般的な
2 センサと同様の機能を奏するものであり、所謂酸素
濃淡電池の原理により、理論空燃比を基準とする空燃比
のリッチまたはリーンを検出する。そして、このように
リーンセンサ51の出力電圧値Vが理論空燃比を境界と
して大幅に変化するため、通常の空燃比制御時に要求さ
れる高感度の空燃比検出を実現して、空燃比を理論空燃
比のウインドに制御することが可能となる。
During normal air-fuel ratio control, the movable contact a of the switch S2 is switched to the fixed contact c side by the air-fuel ratio control device. Therefore, the lean sensor 5
No. 1 does not apply the voltage of the power source 53, and an electromotive force is generated due to the concentration difference between the oxygen concentration in the exhaust gas contacting the cathode and the oxygen concentration in the atmosphere contacting the anode, and the output terminals 52a, 5
Between 2b, a high or low voltage value V is generated depending on whether the air-fuel ratio of the exhaust gas is richer or leaner than the stoichiometric air-fuel ratio. Therefore, the fuel injection amount can be feedback-controlled based on the output voltage value V. In other words, the lean sensor 51 at the time of this normal air-fuel ratio control has the same function as that of a general O 2 sensor, and is rich in the air-fuel ratio based on the theoretical air-fuel ratio due to the so-called oxygen concentration battery principle. Or detect lean. In this way, the output voltage value V of the lean sensor 51 greatly changes at the stoichiometric air-fuel ratio as a boundary, so that highly sensitive air-fuel ratio detection required during normal air-fuel ratio control is realized and the air-fuel ratio is theoretically calculated. It becomes possible to control to the air-fuel ratio window.

【0010】[0010]

【発明が解決しようとする課題】従来の公報に記載の空
燃比制御装置は、上記のように通常の空燃比制御時のリ
ーンセンサ51に一般的なO2 センサと同様の機能を発
揮させて、理論空燃比を基準とする排気ガスの空燃比の
リッチまたはリーンに応じた電圧値Vを出力させてい
る。つまり、実際の空燃比自体を検出できないため、例
えば、PID制御や現代制御等のように、実空燃比と目
標空燃比との偏差を用いた高応答のフィードバック制御
を積極的に実行することができなかった。
In the air-fuel ratio control device described in the prior art publication, as described above, the lean sensor 51 during the normal air-fuel ratio control is made to exhibit the same function as a general O 2 sensor. , The voltage value V corresponding to the rich or lean of the air-fuel ratio of the exhaust gas based on the stoichiometric air-fuel ratio is output. That is, since the actual air-fuel ratio itself cannot be detected, it is possible to positively execute high-response feedback control using the deviation between the actual air-fuel ratio and the target air-fuel ratio, such as PID control and modern control. could not.

【0011】そこで、本発明は、理論空燃比付近の検出
感度を向上させて、空燃比を理論空燃比のウインドに確
実に制御可能とした上で、リーン側の空燃比のみならず
理論空燃比付近においても実際の空燃比自体を検出可能
として、フィードバック制御に対する適用範囲を拡大す
ることができる内燃機関の空燃比制御装置の提供を課題
とするものである。
Therefore, the present invention improves the detection sensitivity near the stoichiometric air-fuel ratio so that the air-fuel ratio can be reliably controlled to the stoichiometric air-fuel ratio window, and the stoichiometric air-fuel ratio as well as the lean side air-fuel ratio can be controlled. An object of the present invention is to provide an air-fuel ratio control device for an internal combustion engine, which can detect the actual air-fuel ratio itself even in the vicinity and can expand the range of application for feedback control.

【0012】[0012]

【課題を解決するための手段】本発明にかかる内燃機関
の空燃比制御装置は、図1に示すように、内燃機関M1
の排気通路に設けられて、排気ガス中の酸素濃度に略比
例した電流を出力する空燃比検出手段M2と、前記空燃
比検出手段M2の出力電流を電圧値に変換すべく空燃比
検出手段M2の出力端に接続されるとともに、抵抗値を
変更可能な可変抵抗手段M3と、前記内燃機関M1の運
転領域に応じて、理論空燃比からリーン側の空燃比にわ
たって目標空燃比を設定する目標空燃比設定手段M4
と、前記目標空燃比設定手段M4にて設定された目標空
燃比がリーン側の空燃比のときに、前記可変抵抗手段M
3を低抵抗値に切り換えるとともに、目標空燃比が理論
空燃比のときに、可変抵抗手段M3を高抵抗値に切り換
える出力電圧ゲイン切換手段M5と、前記空燃比検出手
段M2の出力電圧値と前記目標空燃比とに基づいて、内
燃機関M1への燃料噴射量をフィードバック制御する噴
射量フィードバック制御手段M6とを具備するものであ
る。
An air-fuel ratio control system for an internal combustion engine according to the present invention, as shown in FIG.
Of the air-fuel ratio detecting means M2 provided in the exhaust passage for outputting a current substantially proportional to the oxygen concentration in the exhaust gas, and the air-fuel ratio detecting means M2 for converting the output current of the air-fuel ratio detecting means M2 into a voltage value. Connected to the output end of the variable resistance means M3 capable of changing the resistance value, and a target air-fuel ratio for setting the target air-fuel ratio from the stoichiometric air-fuel ratio to the lean-side air-fuel ratio in accordance with the operating region of the internal combustion engine M1. Fuel ratio setting means M4
And when the target air-fuel ratio set by the target air-fuel ratio setting means M4 is the lean side air-fuel ratio, the variable resistance means M
3 is switched to a low resistance value, and when the target air-fuel ratio is the stoichiometric air-fuel ratio, the output voltage gain switching means M5 for switching the variable resistance means M3 to a high resistance value, the output voltage value of the air-fuel ratio detection means M2 and the An injection amount feedback control means M6 for feedback controlling the fuel injection amount to the internal combustion engine M1 based on the target air-fuel ratio.

【0013】[0013]

【作用】本発明においては、内燃機関M1の運転領域に
応じて、目標空燃比が目標空燃比設定手段M4により理
論空燃比からリーン側の空燃比にわたって設定され、目
標空燃比がリーン側の空燃比のときには、出力電圧ゲイ
ン切換手段M5により可変抵抗手段M3の抵抗値が低い
値に切り換えられ、また、目標空燃比が理論空燃比のと
きには、可変抵抗手段M3の抵抗値が高い値に切り換え
られる。そして、この可変抵抗手段M3により、排気ガ
ス中の酸素濃度に略比例した空燃比検出手段M2の出力
電流が電圧値に変換され、その出力電圧値と前記目標空
燃比とに基づいて、噴射量フィードバック制御手段M6
により内燃機関M1への燃料噴射量がフィードバック制
御される。
In the present invention, the target air-fuel ratio is set by the target air-fuel ratio setting means M4 from the stoichiometric air-fuel ratio to the lean side air-fuel ratio in accordance with the operating region of the internal combustion engine M1, and the target air-fuel ratio is lean side air-fuel ratio. At the fuel ratio, the output voltage gain switching means M5 switches the resistance value of the variable resistance means M3 to a low value, and when the target air-fuel ratio is the stoichiometric air-fuel ratio, the resistance value of the variable resistance means M3 is switched to a high value. . The variable resistance means M3 converts the output current of the air-fuel ratio detection means M2, which is approximately proportional to the oxygen concentration in the exhaust gas, into a voltage value, and based on the output voltage value and the target air-fuel ratio, the injection amount. Feedback control means M6
Thus, the fuel injection amount to the internal combustion engine M1 is feedback-controlled.

【0014】ここで、目標空燃比がリーン側の空燃比の
ときには、可変抵抗手段M3の抵抗値が低いことから、
空燃比の変動に対する出力電圧値の変動のゲインが低め
られて、リーン側の空燃比まで検出可能となる。一方、
目標空燃比が理論空燃比のときには、可変抵抗手段M3
の抵抗値が高いことから、空燃比の変動に対する出力電
圧値の変動のゲインが高められて、極めて高い感度で空
燃比を検出可能となり、かつ、排気ガス中の酸素濃度に
略比例した出力電圧値が得られるため、高応答のフィー
ドバック制御、例えば、PID制御や現代制御等を実行
することが可能である。
Here, when the target air-fuel ratio is the lean side air-fuel ratio, the resistance value of the variable resistance means M3 is low,
The gain of the fluctuation of the output voltage value with respect to the fluctuation of the air-fuel ratio is lowered, and the lean side air-fuel ratio can be detected. on the other hand,
When the target air-fuel ratio is the theoretical air-fuel ratio, the variable resistance means M3
Since the resistance value of the air-fuel ratio is high, the gain of the fluctuation of the output voltage value with respect to the fluctuation of the air-fuel ratio is increased, the air-fuel ratio can be detected with extremely high sensitivity, and the output voltage that is approximately proportional to the oxygen concentration in the exhaust gas. Since the value is obtained, it is possible to execute high-response feedback control such as PID control or modern control.

【0015】[0015]

【実施例】以下、本発明の内燃機関の空燃比制御装置を
具体化した一実施例を説明する。図2は本発明の一実施
例である内燃機関の空燃比制御装置の概略構成図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment embodying the air-fuel ratio control system for an internal combustion engine of the present invention will be described below. FIG. 2 is a schematic configuration diagram of an air-fuel ratio control device for an internal combustion engine which is an embodiment of the present invention.

【0016】図に示すように、本実施例の空燃比制御装
置が適用される内燃機関1は、車両に搭載される4サイ
クル4気筒の火花点火式内燃機関である。内燃機関1の
吸気通路2の上流側にはエアクリーナ3が設けられ、エ
アクリーナ3を経た吸入空気は、吸気通路2及び吸気バ
ルブ4を介して各気筒の燃焼室5内に供給される。吸気
通路2のエアクリーナ3の下流側には吸入空気量を検出
するエアフローメータ6が設けられ、その下流側には運
転者のアクセル操作に応じて吸入空気量を調整するスロ
ットルバルブ7が設けられている。スロットルバルブ7
の下流側には吸気圧を検出する吸気圧センサ17が設け
られ、吸気通路2の最下流側には各気筒毎に燃料噴射弁
8が設けられている。燃料噴射弁8は図示しないクラン
ク軸の回転に同期して燃料を噴射し、その燃料は吸気通
路2内を通過する吸入空気と混合されて、混合気として
燃焼室5内に導入される。
As shown in the figure, an internal combustion engine 1 to which the air-fuel ratio control system of this embodiment is applied is a 4-cycle 4-cylinder spark ignition type internal combustion engine mounted on a vehicle. An air cleaner 3 is provided on the upstream side of the intake passage 2 of the internal combustion engine 1, and intake air that has passed through the air cleaner 3 is supplied into the combustion chamber 5 of each cylinder via the intake passage 2 and the intake valve 4. An air flow meter 6 for detecting the intake air amount is provided on the downstream side of the air cleaner 3 in the intake passage 2, and a throttle valve 7 for adjusting the intake air amount according to the accelerator operation by the driver is provided on the downstream side thereof. There is. Throttle valve 7
An intake pressure sensor 17 for detecting intake pressure is provided on the downstream side, and a fuel injection valve 8 is provided on the most downstream side of the intake passage 2 for each cylinder. The fuel injection valve 8 injects fuel in synchronization with the rotation of a crank shaft (not shown), and the fuel is mixed with intake air passing through the intake passage 2 and introduced into the combustion chamber 5 as a mixture.

【0017】各気筒の燃焼室5には点火プラグ9が設け
られ、これらの点火プラグ9には、点火コイル10から
の点火電流がクランク軸の回転に同期してディストリビ
ュータ11により分配供給される。燃焼室5内に導入さ
れた混合気は点火プラグ11にて点火されて、燃焼しな
がらピストン12を押し下げてクランク軸にトルクを付
与し、その後、排気バルブ13及び排気通路14を介し
て外部に排出される。排気通路14にはリーンセンサ1
5が設置され、このリーンセンサ15は、排気ガス中の
酸素濃度に比例した電流を出力する。また、ディストリ
ビュータ11にはクランク角センサ16が設けられ、ク
ランク軸の回転に同期して30度毎にパルス信号を出力
する。
An ignition plug 9 is provided in the combustion chamber 5 of each cylinder, and an ignition current from an ignition coil 10 is distributed to the ignition plug 9 by a distributor 11 in synchronization with the rotation of a crankshaft. The air-fuel mixture introduced into the combustion chamber 5 is ignited by the ignition plug 11, and while burning, pushes down the piston 12 to apply torque to the crankshaft, and thereafter to the outside via the exhaust valve 13 and the exhaust passage 14. Is discharged. The lean sensor 1 is installed in the exhaust passage 14.
5, the lean sensor 15 outputs a current proportional to the oxygen concentration in the exhaust gas. Further, the distributor 11 is provided with a crank angle sensor 16 and outputs a pulse signal every 30 degrees in synchronization with the rotation of the crankshaft.

【0018】内燃機関1の電子制御装置21は、CPU
22、ROM23、RAM24を中心に論理演算回路を
構成し、コモンバス25を介して入出力部26と接続さ
れている。入出力部26には、前記エアフローメータ
6、燃料噴射弁8、点火コイル10、クランク角センサ
16及び吸気圧センサ17がそれぞれ接続されるととも
に、リーンセンサ15が切換回路31を介して接続さ
れ、CPU22はこの入出力部26を経て外部との入出
力を行なう。また、ROM23には内燃機関1の運転状
態を制御するための各種プログラム、例えば、燃料噴射
弁8の噴射量制御や点火プラグ9の点火時期制御等のプ
ログラムが記憶され、CPU22はそれらのプログラム
に従って処理を実行する。また、RAM24はCPU2
2が実行する処理データを一時的に記憶する。
The electronic control unit 21 of the internal combustion engine 1 is a CPU
22, a ROM 23, and a RAM 24 constitute a logical operation circuit, which is connected to an input / output unit 26 via a common bus 25. The air flow meter 6, the fuel injection valve 8, the ignition coil 10, the crank angle sensor 16 and the intake pressure sensor 17 are connected to the input / output unit 26, respectively, and the lean sensor 15 is connected via a switching circuit 31. The CPU 22 performs input / output with the outside via the input / output unit 26. Further, the ROM 23 stores various programs for controlling the operating state of the internal combustion engine 1, for example, programs for controlling the injection amount of the fuel injection valve 8 and the ignition timing control of the spark plug 9, and the CPU 22 follows these programs. Execute the process. The RAM 24 is the CPU 2
2 temporarily stores the processing data to be executed.

【0019】そして、CPU22は内燃機関1の運転領
域に応じて、通常の空燃比制御とリーン制御とを選択的
に実行する。周知のように、通常の空燃比制御時には、
内燃機関1の運転領域に応じて基本燃料噴射時間τ0 を
設定し、また、リーン制御時には、内燃機関1の運転領
域毎にマップ化された定数k(<1.0)を基本燃料噴
射時間τ0 に乗算して、空燃比をリーン側に補正する。
また、この処理に並行して、前記切換回路31を介して
リーンセンサ5からの排気ガス中の酸素濃度に比例する
出力電圧値Vと、目標空燃比(通常の空燃比制御時には
理論空燃比、リーン制御時にはよりリーン側の空燃比)
に対応する目標出力電圧値V0 とを比較して、前記した
基本燃料噴射時間τ0 をフィードバック制御する。
Then, the CPU 22 selectively executes normal air-fuel ratio control and lean control according to the operating region of the internal combustion engine 1. As is well known, during normal air-fuel ratio control,
The basic fuel injection time τ0 is set according to the operating region of the internal combustion engine 1, and during lean control, the constant k (<1.0) mapped to each operating region of the internal combustion engine 1 is used as the basic fuel injection time τ0. To correct the air-fuel ratio to the lean side.
In parallel with this processing, the output voltage value V proportional to the oxygen concentration in the exhaust gas from the lean sensor 5 and the target air-fuel ratio (theoretical air-fuel ratio during normal air-fuel ratio control, (Air-fuel ratio on the leaner side during lean control)
The target fuel injection time τ0 is feedback-controlled by comparing it with the target output voltage value V0 corresponding to.

【0020】図3は本発明の一実施例である内燃機関の
空燃比制御装置におけるリーンセンサ及び切換回路を示
す回路図である。
FIG. 3 is a circuit diagram showing a lean sensor and a switching circuit in an air-fuel ratio control system for an internal combustion engine which is an embodiment of the present invention.

【0021】次に、リーンセンサ15及び切換回路31
の構成を説明すると、図に示すように、リーンセンサ1
5の一端には一方の出力端子32aが接続され、リーン
センサ15の他端には電源33を介して他方の出力端子
32bが接続されている。両出力端子間32a,32b
には一対の抵抗R1,R2が並列に接続されるととも
に、一方の抵抗R1にはスイッチS1が直列に接続さ
れ、これらの電源33、抵抗R1,R2、スイッチS1
により前記切換回路31が構成されている。そして、両
出力端子32a,32b間の出力電圧値Vが入出力部2
6を介してCPU22に入力される。
Next, the lean sensor 15 and the switching circuit 31.
The configuration of the lean sensor 1 will be described as shown in the figure.
One output terminal 32a is connected to one end of 5, and the other output terminal 32b is connected to the other end of the lean sensor 15 via a power supply 33. Between both output terminals 32a, 32b
Is connected in parallel with a pair of resistors R1 and R2, and one resistor R1 is connected in series with a switch S1, and these power source 33, resistors R1 and R2, and switch S1 are connected.
The switching circuit 31 is constituted by the above. The output voltage value V between the output terminals 32a and 32b is the input / output unit 2
It is input to the CPU 22 via 6.

【0022】この切換回路31のスイッチS1はCPU
22により切換制御され、CPU22は、通常の空燃比
制御時には実線で示すようにスイッチS1を開き、ま
た、リーン制御時には破線で示すようにスイッチS1を
閉じる。以下、このようにスイッチS1が開かれた状態
を通常検出状態とし、スイッチS1が閉じられた状態を
リーン検出状態とする。そして、本実施例では以下に説
明するように、通常の空燃比制御及びリーン制御のいず
れの場合でも、リーンセンサ15に所謂限界電流方式の
原理で空燃比を検出させている。
The switch S1 of this switching circuit 31 is a CPU
Switching control is performed by the CPU 22, and the CPU 22 opens the switch S1 as shown by the solid line during normal air-fuel ratio control, and closes the switch S1 as shown by the broken line during lean control. Hereinafter, a state in which the switch S1 is opened in this way is referred to as a normal detection state, and a state in which the switch S1 is closed is referred to as a lean detection state. In the present embodiment, as will be described below, the lean sensor 15 is made to detect the air-fuel ratio by the so-called limiting current method principle in both normal air-fuel ratio control and lean control.

【0023】図4は本発明の一実施例である内燃機関の
空燃比制御装置における空燃比からリーンセンサの出力
電圧値を設定するためのマップを示す説明図である。
FIG. 4 is an explanatory view showing a map for setting the output voltage value of the lean sensor from the air-fuel ratio in the air-fuel ratio control system for an internal combustion engine which is an embodiment of the present invention.

【0024】前記のようにスイッチS1が開かれた通常
検出状態においては、抵抗R1のみによりリーンセンサ
15の出力電流が電圧値に変換される。このときの出力
電圧値Vは、 V=i×Ra で表すことができる。但し、iはリーンセンサの出力電
流、Ra は抵抗R1の抵抗値である。
In the normal detection state in which the switch S1 is opened as described above, the output current of the lean sensor 15 is converted into a voltage value only by the resistor R1. The output voltage value V at this time can be represented by V = i × Ra. Here, i is the output current of the lean sensor, and Ra is the resistance value of the resistor R1.

【0025】そして、このときの出力電圧値Vの特性
は、図4に実線で示すように、検出可能な空燃比の範囲
は理論空燃比付近に限られるものの、空燃比の変動に対
する出力電圧値Vの変動のゲインが高く、極めて高い感
度で空燃比を検出可能となる。なお、この図に示すマッ
プは、予めROM23に格納されており、後述するよう
にCPU22の処理に利用される。
The characteristic of the output voltage value V at this time is that the detectable range of the air-fuel ratio is limited to the vicinity of the theoretical air-fuel ratio as shown by the solid line in FIG. The gain of the fluctuation of V is high, and the air-fuel ratio can be detected with extremely high sensitivity. The map shown in this figure is stored in the ROM 23 in advance and used for the processing of the CPU 22 as described later.

【0026】また、スイッチS1が閉じられたリーン検
出状態においては、抵抗R1と抵抗R2の合成抵抗によ
りリーンセンサ15の出力電流が電圧値に変換される。
このときの出力電圧値Vは、 V=i×1/(1/Ra +1/Rb ) で表すことができる。但し、Rb は抵抗R2の抵抗値で
ある。
Further, in the lean detection state in which the switch S1 is closed, the output current of the lean sensor 15 is converted into a voltage value by the combined resistance of the resistors R1 and R2.
The output voltage value V at this time can be represented by V = i × 1 / (1 / Ra + 1 / Rb). However, Rb is the resistance value of the resistor R2.

【0027】当然のことながら、このときの抵抗R1と
抵抗R2の合成抵抗は、前記した通常検出状態のときに
用いられた抵抗R1の抵抗値より低いため、出力電圧値
Vも低下する。したがって、出力電圧値Vの特性は、図
4に破線で示すように、空燃比の変動に対する出力電圧
値Vの変動のゲインが低くなり、空燃比の検出感度は低
いものの、検出可能な空燃比の範囲が広くなり、リーン
制御に必要なリーン側の空燃比まで検出可能となる。
As a matter of course, the combined resistance of the resistors R1 and R2 at this time is lower than the resistance value of the resistor R1 used in the above-described normal detection state, so that the output voltage value V also decreases. Therefore, as shown by the broken line in FIG. 4, the characteristic of the output voltage value V is that the gain of the fluctuation of the output voltage value V with respect to the fluctuation of the air-fuel ratio becomes low, and the detection sensitivity of the air-fuel ratio is low, but the detectable air-fuel ratio is low. The range becomes wider, and it becomes possible to detect even the air-fuel ratio on the lean side, which is necessary for lean control.

【0028】次に、上記のように構成された内燃機関の
空燃比制御装置のCPU22が実行する空燃比制御を説
明する。
Next, the air-fuel ratio control executed by the CPU 22 of the air-fuel ratio control device for an internal combustion engine configured as described above will be described.

【0029】図5は本発明の一実施例である内燃機関の
空燃比制御装置のCPUが実行する空燃比制御処理を示
すフローチャート、図6は本発明の一実施例である内燃
機関の空燃比制御装置の目標空燃比を設定するためのマ
ップを示す説明図である。
FIG. 5 is a flow chart showing the air-fuel ratio control process executed by the CPU of the air-fuel ratio control apparatus for an internal combustion engine which is an embodiment of the present invention, and FIG. 6 is the air-fuel ratio of the internal combustion engine which is an embodiment of the present invention. It is explanatory drawing which shows the map for setting the target air-fuel ratio of a control apparatus.

【0030】図5に示すルーチンは、内燃機関1の回転
に同期して360度CA毎に実行される。まず、CPU
22はステップS1でクランク角センサ16からのパル
ス信号から機関回転数Ne を算出し、その機関回転数N
e と吸気圧センサ17にて検出された吸気圧Pm とから
目標空燃比を設定する。この目標空燃比の設定は、図6
に示す予めROM23に格納されたマップに従って行な
われる。図中の数値は目標空燃比を示し、図から明らか
なように、機関回転数Ne が約1000rpm 未満、及び
約4000rpm 以上の領域では目標空燃比が理論空燃比
に設定され、その間の約1000〜4000rpm の領域
では目標空燃比がリーン側の空燃比に設定される。
The routine shown in FIG. 5 is executed every 360 degrees CA in synchronization with the rotation of the internal combustion engine 1. First, the CPU
In step S1, the engine speed Ne is calculated from the pulse signal from the crank angle sensor 16 in step S1, and the engine speed N is calculated.
The target air-fuel ratio is set from e and the intake pressure Pm detected by the intake pressure sensor 17. This target air-fuel ratio is set as shown in FIG.
The map is stored in advance in the ROM 23 as shown in FIG. The numerical value in the figure shows the target air-fuel ratio, and as is clear from the figure, the target air-fuel ratio is set to the theoretical air-fuel ratio in the region where the engine speed Ne is less than about 1000 rpm and more than about 4000 rpm, and about 1000- In the 4000 rpm range, the target air-fuel ratio is set to the lean side air-fuel ratio.

【0031】次いで、CPU22はステップS2で機関
回転数Ne と吸気圧Pm とから図示しないマップに従っ
て、実際の空燃比を理論空燃比に制御するために必要な
基本燃料噴射時間τ0 を設定する。更に、ステップS3
で、前記ステップS1で設定した目標空燃比がリーン側
の空燃比であるか否かを判定し、リーン側の空燃比であ
るときには、ステップS4以降の処理でリーン制御を実
行する。まず、ステップS4で内燃機関1の運転領域毎
にマップ化された定数k(<1.0)を基本燃料噴射時
間τ0 に乗算して、空燃比をリーン側に補正する。そし
て、ステップS5で、図3に破線で示すようにスイッチ
S1を閉じてリーン検出状態に切り換え、ステップS6
で図4のマップに破線で示す特性に従って、目標空燃比
に対応する目標出力電圧値V0 を算出する。
Next, in step S2, the CPU 22 sets the basic fuel injection time τ0 required for controlling the actual air-fuel ratio to the stoichiometric air-fuel ratio according to a map (not shown) from the engine speed Ne and the intake pressure Pm. Further, step S3
Then, it is determined whether or not the target air-fuel ratio set in step S1 is the lean side air-fuel ratio. If the target air-fuel ratio is the lean side air-fuel ratio, the lean control is executed in the processing from step S4. First, in step S4, the basic fuel injection time τ0 is multiplied by a constant k (<1.0) mapped for each operating region of the internal combustion engine 1 to correct the air-fuel ratio to the lean side. Then, in step S5, as shown by the broken line in FIG. 3, the switch S1 is closed to switch to the lean detection state, and step S6
Then, the target output voltage value V0 corresponding to the target air-fuel ratio is calculated according to the characteristic indicated by the broken line in the map of FIG.

【0032】次いで、ステップS7で切換回路31の現
在の出力電圧Vと目標出力電圧値V0 との偏差(DIF
L)を求め、その偏差に応じて基本噴射時間τ0 の補正
係数を算出する。基本噴射時間の補正にはPID(比例
・積分・微分)を用いた高応答のフィードバックを行な
う。フィードバック量の算出はステップS8にてP項
(比例項)、ステップS9にてI項(積分項)、ステッ
プS10にてD項(微分項)を、出力電圧Vと目標電圧
値V0 との偏差DIFLに基づいてそれぞれ行ない、ス
テップS11にてP項・I項・D項の和をフィードバッ
ク量fとし、その後ステップS12にて基本噴射時間τ
0 にフィードバック量fを乗算して燃料噴射時間τを算
出し、一旦このルーチンを終了する。従って、このリー
ン制御時においては、図4のマップに破線で示す特性に
従って燃料噴射時間τのフィードバック制御が実行さ
れ、空燃比がリーン側の空燃比に制御される。
Then, in step S7, the deviation (DIF) between the current output voltage V of the switching circuit 31 and the target output voltage value V0 is calculated.
L) is calculated, and the correction coefficient of the basic injection time τ0 is calculated according to the deviation. High-response feedback using PID (proportional / integral / derivative) is performed to correct the basic injection time. The feedback amount is calculated by calculating the P term (proportional term) in step S8, the I term (integral term) in step S9, the D term (differential term) in step S10, and the deviation between the output voltage V and the target voltage value V0. Based on DIFL, the feedback amount f is the sum of the P, I, and D terms in step S11, and then the basic injection time τ in step S12.
The fuel injection time τ is calculated by multiplying 0 by the feedback amount f, and this routine is once ended. Therefore, during the lean control, feedback control of the fuel injection time τ is executed according to the characteristic indicated by the broken line in the map of FIG. 4, and the air-fuel ratio is controlled to the lean side air-fuel ratio.

【0033】また、前記ステップS3で目標空燃比が理
論空燃比であるときには、ステップS13以降の処理で
通常の空燃比制御を実行する。まず、ステップS13で
図3に実線で示すようにスイッチS1を開いて通常検出
状態に切り換え、ステップS14で切換回路31の現在
の出力電圧値Vと理論空燃比に対応する目標電圧値V0
である0ボルトとの偏差(DIFS)を求め、その偏差
に応じて基本噴射時間τ0 の補正係数を算出する。基本
噴射時間の補正には、PID(比例・積分・微分)を用
いた高応答のフィードバックを行なう。
Further, when the target air-fuel ratio is the stoichiometric air-fuel ratio in step S3, the normal air-fuel ratio control is executed in the processing from step S13. First, in step S13, as shown by the solid line in FIG. 3, the switch S1 is opened to switch to the normal detection state, and in step S14 the current output voltage value V of the switching circuit 31 and the target voltage value V0 corresponding to the stoichiometric air-fuel ratio.
The deviation (DIFS) from 0 volt is calculated, and the correction coefficient of the basic injection time τ0 is calculated according to the deviation. For correction of the basic injection time, high-response feedback using PID (proportional / integral / derivative) is performed.

【0034】フィードバック量の算出はステップS15
にてP項(比例項)、ステップS16にてI項(積分
項)、ステップS17にてD項(微分項)を、出力電圧
Vと目標電圧値V0 との偏差DIFSに基づいてそれぞ
れ行ない、ステップS18にてP項・I項・D項の和を
フィードバック量fとし、その後ステップS12にて基
本噴射時間τ0 にフィードバック量fを乗算して燃料噴
射時間τを算出し、一旦このルーチンを終了する。従っ
て、この通常の空燃比制御時においては、図4のマップ
に実線で示す特性に従って燃料噴射時間τのフィードバ
ック制御が実行され、空燃比が理論空燃比に制御され
る。そして、前記のように、空燃比の変動に対する出力
電圧Vの変動のゲインが高いことから、極めて高い精度
で空燃比を検出可能となる。
The feedback amount is calculated in step S15.
At step S16, the I term (integral term) at step S16, and the D term (differential term) at step S17 based on the deviation DIFS between the output voltage V and the target voltage value V0. In step S18, the sum of the P, I, and D terms is set as the feedback amount f, and then in step S12, the basic injection time τ0 is multiplied by the feedback amount f to calculate the fuel injection time τ, and this routine is once terminated. To do. Therefore, during this normal air-fuel ratio control, feedback control of the fuel injection time τ is executed according to the characteristics shown by the solid line in the map of FIG. 4, and the air-fuel ratio is controlled to the stoichiometric air-fuel ratio. Further, as described above, since the gain of the fluctuation of the output voltage V with respect to the fluctuation of the air-fuel ratio is high, the air-fuel ratio can be detected with extremely high accuracy.

【0035】また、フィードバックの方法には本実施例
で示したPID制御のみならず、現代制御理論を用いた
フィードバックも実施可能であり、また目標空燃比に対
してリッチまたはリーンを判定して燃料噴射時間τを一
律の値で増減する所謂PI制御の実行も可能である。
Further, not only the PID control shown in this embodiment but also the feedback using the modern control theory can be implemented as the feedback method, and the fuel can be determined by determining rich or lean with respect to the target air-fuel ratio. It is also possible to execute so-called PI control in which the injection time τ is increased or decreased by a uniform value.

【0036】以上のように本実施例では、内燃機関M1
として内燃機関1が機能し、空燃比検出手段M2として
リーンセンサ15が、可変抵抗手段M3として抵抗R
1、抵抗R2及びスイッチS1が機能する。また、目標
空燃比設定手段M4としてステップS1の処理を実行す
るときのCPU22が、出力電圧ゲイン切換手段M5と
してステップS5及びステップS11の処理を実行する
ときのCPU22が、噴射量フィードバック制御手段M
6としてステップS7乃至ステップS10、ステップS
12乃至ステップS14の処理を実行するときのCPU
22がそれぞれ機能する。
As described above, in this embodiment, the internal combustion engine M1
The internal combustion engine 1 functions as, the lean sensor 15 as the air-fuel ratio detection means M2, and the resistance R as the variable resistance means M3.
1, the resistor R2 and the switch S1 function. Further, the CPU 22 when executing the process of step S1 as the target air-fuel ratio setting means M4, and the CPU 22 when executing the processes of step S5 and step S11 as the output voltage gain switching means M5 are the injection amount feedback control means M.
6 as steps S7 to S10 and step S
CPU when executing the processing from 12 to step S14
22 function respectively.

【0037】このように本実施例の内燃機関の空燃比制
御装置は、内燃機関1の排気通路14に設けられて、排
気ガス中の酸素濃度に比例して出力電流を増加させるリ
ーンセンサ15と、前記リーンセンサ15の出力電流を
電圧値に変換すべく切換回路31の出力端子32a,3
2b間に接続されて、スイッチS1の開閉に応じて抵抗
値が切り換えられる抵抗R1及び抵抗R2と、前記内燃
機関1の運転領域に応じて、理論空燃比からリーン側の
空燃比にわたって目標空燃比を設定するとともに、目標
空燃比がリーン側の空燃比のときに、前記スイッチS1
を閉じて、出力端子32a,32b間に抵抗R1及び抵
抗R2の合成抵抗を作用させるとともに、目標空燃比が
理論空燃比のときに、スイッチS1を開いて、出力端子
32a,32b間に抵抗R1を作用させ、かつ、前記切
換回路31の出力端子32a,32b間の出力電圧値V
と、前記目標空燃比に対応する目標出力電圧値V0 とに
基づいて、内燃機関1への燃料噴射量をフィードバック
制御するCPU22とを具備している。
As described above, the air-fuel ratio control system for the internal combustion engine of this embodiment is provided in the exhaust passage 14 of the internal combustion engine 1 and the lean sensor 15 for increasing the output current in proportion to the oxygen concentration in the exhaust gas. , The output terminals 32a, 3 of the switching circuit 31 for converting the output current of the lean sensor 15 into a voltage value.
2b, the resistances R1 and R2, whose resistance values are switched according to the opening and closing of the switch S1, and the target air-fuel ratio from the theoretical air-fuel ratio to the lean side air-fuel ratio, depending on the operating region of the internal combustion engine 1. And when the target air-fuel ratio is the lean side air-fuel ratio, the switch S1
Is closed and the combined resistance of the resistors R1 and R2 is applied between the output terminals 32a and 32b, and when the target air-fuel ratio is the theoretical air-fuel ratio, the switch S1 is opened to connect the resistor R1 between the output terminals 32a and 32b. And the output voltage value V between the output terminals 32a and 32b of the switching circuit 31.
And a CPU 22 for feedback-controlling the fuel injection amount to the internal combustion engine 1 based on the target output voltage value V0 corresponding to the target air-fuel ratio.

【0038】したがって、目標空燃比を理論空燃比に設
定した通常の空燃比制御時においては、出力端子32
a,32b間に抵抗R1が作用して、空燃比の変動に対
する出力電圧値Vの変動のゲインが高められる。よっ
て、極めて高い感度で空燃比を検出可能となり、実際の
空燃比を理論空燃比のウインドに確実に制御することが
できる。
Therefore, during normal air-fuel ratio control in which the target air-fuel ratio is set to the stoichiometric air-fuel ratio, the output terminal 32
The resistance R1 acts between a and 32b to increase the gain of the fluctuation of the output voltage value V with respect to the fluctuation of the air-fuel ratio. Therefore, the air-fuel ratio can be detected with extremely high sensitivity, and the actual air-fuel ratio can be reliably controlled to the theoretical air-fuel ratio window.

【0039】また、排気ガス中の酸素濃度に比例した出
力電圧値Vが得られるため、出力電圧値Vと目標出力電
圧値V0 との偏差を用いた高応答のフィードバック制
御、例えば、PID制御や現代制御等を実行することが
可能であり、フィードバック制御に対する適用範囲を大
幅に拡大することができる。
Further, since the output voltage value V proportional to the oxygen concentration in the exhaust gas is obtained, high response feedback control using the deviation between the output voltage value V and the target output voltage value V0, such as PID control or It is possible to execute modern control and the like, and it is possible to greatly expand the range of application to feedback control.

【0040】[0040]

【発明の効果】以上のように、本発明の内燃機関の空燃
比制御装置によれば、目標空燃比が理論空燃比に設定さ
れているときには、可変抵抗手段の抵抗値が高いことか
ら、空燃比の変動に対する出力電圧値の変動のゲインが
高められる。したがって、極めて高い感度で空燃比を検
出可能となり、空燃比を理論空燃比のウインドに確実に
制御することができる。また、排気ガス中の酸素濃度に
略比例した出力電圧値が得られるため、高応答のフィー
ドバック制御、例えば、PID制御や現代制御等を実行
することが可能であり、フィードバック制御に対する適
用範囲を大幅に拡大することができる。
As described above, according to the air-fuel ratio control system for an internal combustion engine of the present invention, when the target air-fuel ratio is set to the stoichiometric air-fuel ratio, the resistance value of the variable resistance means is high, The gain of the fluctuation of the output voltage value with respect to the fluctuation of the fuel ratio is increased. Therefore, the air-fuel ratio can be detected with extremely high sensitivity, and the air-fuel ratio can be reliably controlled to the theoretical air-fuel ratio window. In addition, since an output voltage value that is approximately proportional to the oxygen concentration in the exhaust gas is obtained, it is possible to execute feedback control with high response, such as PID control or modern control, which greatly expands the range of application for feedback control. Can be expanded to.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は本発明の一実施例の内容を概念的に示し
たクレーム対応図である。
FIG. 1 is a claim correspondence diagram conceptually showing the content of one embodiment of the present invention.

【図2】図2は本発明の一実施例である内燃機関の空燃
比制御装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an air-fuel ratio control device for an internal combustion engine that is an embodiment of the present invention.

【図3】図3は本発明の一実施例である内燃機関の空燃
比制御装置におけるリーンセンサ及び切換回路を示す回
路図である。
FIG. 3 is a circuit diagram showing a lean sensor and a switching circuit in an air-fuel ratio control device for an internal combustion engine which is an embodiment of the present invention.

【図4】図4は本発明の一実施例である内燃機関の空燃
比制御装置における空燃比からリーンセンサの出力電圧
値を設定するためのマップを示す説明図である。
FIG. 4 is an explanatory diagram showing a map for setting the output voltage value of the lean sensor from the air-fuel ratio in the air-fuel ratio control device for an internal combustion engine which is an embodiment of the present invention.

【図5】図5は本発明の一実施例である内燃機関の空燃
比制御装置のCPUが実行する空燃比制御処理を示すフ
ローチャートである。
FIG. 5 is a flowchart showing an air-fuel ratio control process executed by a CPU of an air-fuel ratio control device for an internal combustion engine which is an embodiment of the present invention.

【図6】図6は本発明の一実施例である内燃機関の空燃
比制御装置の目標空燃比を設定するためのマップを示す
説明図である。
FIG. 6 is an explanatory diagram showing a map for setting a target air-fuel ratio of the air-fuel ratio control device for an internal combustion engine which is an embodiment of the present invention.

【図7】図7は従来の空燃比制御装置におけるリーンセ
ンサの周辺の模式的な回路構成を示す回路図である。
FIG. 7 is a circuit diagram showing a schematic circuit configuration around a lean sensor in a conventional air-fuel ratio control device.

【符号の説明】[Explanation of symbols]

M1 内燃機関 M2 空燃比検出手段 M3 可変抵抗手段 M4 目標空燃比設定手段 M5 出力電圧ゲイン切換手段 M6 噴射量フィードバック制御手段 1 内燃機関 15 リーンセンサ R1,R2 抵抗 S1 スイッチ M1 internal combustion engine M2 air-fuel ratio detection means M3 variable resistance means M4 target air-fuel ratio setting means M5 output voltage gain switching means M6 injection amount feedback control means 1 internal combustion engine 15 lean sensor R1, R2 resistance S1 switch

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に設けられて、排気
ガス中の酸素濃度に略比例した電流を出力する空燃比検
出手段と、 前記空燃比検出手段の出力電流を電圧値に変換すべく空
燃比検出手段の出力端に接続されるとともに、抵抗値を
変更可能な可変抵抗手段と、 前記内燃機関の運転領域に応じて、理論空燃比からリー
ン側の空燃比にわたって目標空燃比を設定する目標空燃
比設定手段と、 前記目標空燃比設定手段にて設定された目標空燃比がリ
ーン側の空燃比のときに、前記可変抵抗手段を低抵抗値
に切り換えるとともに、目標空燃比が理論空燃比のとき
に、可変抵抗手段を高抵抗値に切り換える出力電圧ゲイ
ン切換手段と、 前記空燃比検出手段の出力電圧値と前記目標空燃比とに
基づいて、内燃機関への燃料噴射量をフィードバック制
御する噴射量フィードバック制御手段とを具備すること
を特徴とする内燃機関の空燃比制御装置。
1. An air-fuel ratio detecting means, which is provided in an exhaust passage of an internal combustion engine and outputs a current substantially proportional to an oxygen concentration in exhaust gas, and an output current of the air-fuel ratio detecting means for converting into a voltage value. Variable resistance means connected to the output end of the air-fuel ratio detection means and capable of changing the resistance value, and a target air-fuel ratio is set from the theoretical air-fuel ratio to the lean side air-fuel ratio according to the operating region of the internal combustion engine. When the target air-fuel ratio setting means and the target air-fuel ratio set by the target air-fuel ratio setting means are lean side air-fuel ratios, the variable resistance means is switched to a low resistance value, and the target air-fuel ratio is the theoretical air-fuel ratio. At this time, based on the output voltage gain switching means for switching the variable resistance means to a high resistance value, and the output voltage value of the air-fuel ratio detecting means and the target air-fuel ratio, the fuel injection amount to the internal combustion engine is feedback-controlled. Air-fuel ratio control system for an internal combustion engine, characterized by comprising an injection amount feedback control means for.
JP4285923A 1992-10-23 1992-10-23 Air-fuel ratio control device for internal combustion engine Pending JPH06137193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285923A JPH06137193A (en) 1992-10-23 1992-10-23 Air-fuel ratio control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285923A JPH06137193A (en) 1992-10-23 1992-10-23 Air-fuel ratio control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06137193A true JPH06137193A (en) 1994-05-17

Family

ID=17697765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285923A Pending JPH06137193A (en) 1992-10-23 1992-10-23 Air-fuel ratio control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06137193A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810997A (en) * 1995-08-30 1998-09-22 Nippondenso Co., Ltd. Air-fuel ratio detection with variable detection range
JP2009069167A (en) * 2002-11-08 2009-04-02 Denso Corp Gas concentration detector
DE10352064B4 (en) * 2002-11-08 2019-10-31 Denso Corporation Gas concentration meter with high resolution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230537A (en) * 1984-05-01 1985-11-16 Nissan Motor Co Ltd Air-fuel ratio controller
JPS63168708U (en) * 1987-04-22 1988-11-02
JPS646752A (en) * 1987-06-29 1989-01-11 Mitsubishi Electric Corp Detector for oxygen concentration
JPH01152356A (en) * 1987-12-09 1989-06-14 Honda Motor Co Ltd Air-fuel ratio detector
JPH0372368U (en) * 1989-11-20 1991-07-22

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230537A (en) * 1984-05-01 1985-11-16 Nissan Motor Co Ltd Air-fuel ratio controller
JPS63168708U (en) * 1987-04-22 1988-11-02
JPS646752A (en) * 1987-06-29 1989-01-11 Mitsubishi Electric Corp Detector for oxygen concentration
JPH01152356A (en) * 1987-12-09 1989-06-14 Honda Motor Co Ltd Air-fuel ratio detector
JPH0372368U (en) * 1989-11-20 1991-07-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810997A (en) * 1995-08-30 1998-09-22 Nippondenso Co., Ltd. Air-fuel ratio detection with variable detection range
JP2009069167A (en) * 2002-11-08 2009-04-02 Denso Corp Gas concentration detector
DE10352064B4 (en) * 2002-11-08 2019-10-31 Denso Corporation Gas concentration meter with high resolution

Similar Documents

Publication Publication Date Title
JP3150429B2 (en) Lean limit detection method using ion current
JPH0697002B2 (en) Air-fuel ratio sensor pass / fail judgment device
JPS6356416B2 (en)
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
JPH0635844B2 (en) Fuel supply control method for internal combustion engine
JPH0223701B2 (en)
US5115781A (en) Air-fuel ratio controller for internal combustion engine
JPH06137193A (en) Air-fuel ratio control device for internal combustion engine
JP2757625B2 (en) Air-fuel ratio sensor deterioration determination device
JPH08261047A (en) Lean limit sensing method
JP3055378B2 (en) Control device for internal combustion engine
JP2600824B2 (en) Air-fuel ratio control device for internal combustion engine
JP3187534B2 (en) Air-fuel ratio correction method for internal combustion engine
JP3154304B2 (en) Lean limit control method using ion current
JP3273175B2 (en) Engine misfire detection device
JPH1054276A (en) Air-fuel ratio controller for internal combustion engine
JPH0777090A (en) Air-fuel ratio control device with larning function for internal combustion engine
JP2591072B2 (en) Control device for internal combustion engine
JP2932154B2 (en) Air-fuel ratio control device for internal combustion engine
JP2591761Y2 (en) Air-fuel ratio detection device for internal combustion engine
JP2855381B2 (en) Air-fuel ratio control device for internal combustion engine
JPH06159120A (en) Air-fuel ratio control device for internal combustion engine
JPS62182456A (en) Air-fuel ratio control of internal combustion engine
JPH07158479A (en) Fuel injection control device for internal combustion engine
JPS62220829A (en) Stability limit detecting device for internal combustion engine