JPS60200162A - Apparatus for measuring concentration of oxygen - Google Patents

Apparatus for measuring concentration of oxygen

Info

Publication number
JPS60200162A
JPS60200162A JP59056893A JP5689384A JPS60200162A JP S60200162 A JPS60200162 A JP S60200162A JP 59056893 A JP59056893 A JP 59056893A JP 5689384 A JP5689384 A JP 5689384A JP S60200162 A JPS60200162 A JP S60200162A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
oxygen
sensor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59056893A
Other languages
Japanese (ja)
Inventor
Takeshi Kitahara
剛 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59056893A priority Critical patent/JPS60200162A/en
Publication of JPS60200162A publication Critical patent/JPS60200162A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Abstract

PURPOSE:To continuously detect a wide range of an air/fuel ratio with high response and detection accuracy, by calculating an air/fuel ratio on the basis of the output of an oxygen concn. detection means for detecting the oxygen concn. in gas to be measured and slowly changed in its output voltage to the air/fuel ratio and that of an oxygen concn. detection means having the same detection capacity but rapidly changed in its output voltage to the air/fuel ratio. CONSTITUTION:The target voltage Va is subtracted from the output Vs1 of a first oxygen sensor 54 by a differential amplifier DF1 and the difference output DELTAV is imparted to a current supply circuit 63 and a pump current Ip is supplied to the sensor 54 so as to form Vs1=Va to determine the oxygen partial pressure of a measuring space. By detecting the pump current Ip as a voltage signal Vi through a current value detection circuit 64, an air/fuel ratio can be continuously measured. This Vi changes slowly. The output voltage Vs2 of a second sensor part 55 having a high response speed and high detection accuracy is added to Vi through a buffer amplifier 62 to obtain an output signal Vn. By this method, a wide range of an air/fuel ratio is continuously obtained with high response and detection accuracy.

Description

【発明の詳細な説明】 (技術分野) 本発明は酸素濃度測定装置、詳しくは酸素センサを用い
て被測定ガス中の酸素濃度を広範囲に精度よく検出する
酸素濃度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an oxygen concentration measuring device, and more particularly to an oxygen concentration measuring device that accurately detects the oxygen concentration in a gas to be measured over a wide range using an oxygen sensor.

(i)c末技術) 近時、エンジン吸入混合気の空燃比を精度よく目標値に
制御するために空燃比と相関関係をもつ排気中の酸素濃
度を検出し、この酸素濃度に応じて燃料供給量をフィ=
ドハノク制御しており、このような空燃比を広範囲に亘
り検出する装置が開発されている。
(i) C-end technology) Recently, in order to accurately control the air-fuel ratio of the engine intake air-fuel mixture to a target value, the oxygen concentration in the exhaust, which has a correlation with the air-fuel ratio, has been detected, and the fuel is adjusted according to this oxygen concentration. Fee = supply amount
A device has been developed that performs extensive control and detects the air-fuel ratio over a wide range.

従来のこの種の酸素センサとしては、例えば特開昭58
−153155号公報に記載されたものがあり、第1図
のように示すことがモきる。第1図において、lは酸素
センナであり、酸素センサ1は酸素濃度に応じて起電力
を発生する−・種の濃淡電池の原理を応用したものであ
る。2.3は酸素イオン伝導性の固体電解質であり、こ
れらの第1、第2固体電解質2.3は所定間隔L (例
えば、L = 0.1mm )を隔てて略平行に配設さ
れている。また、これらの第1、第2固体電解質2.3
の間には支持体4が介設されており、この支持体4は第
1、第2固体電解質2.3と共に間隙部5を画成してい
る。間隙部5に臨む第1固体電解質2の−・面には測定
電極6が設けられており、他面には測定電極6と対向す
る位置に基準電極7が設けられている。
As a conventional oxygen sensor of this kind, for example, Japanese Patent Application Laid-Open No. 58
There is one described in Japanese Patent No. 153155, and it can be shown as shown in FIG. In FIG. 1, 1 is an oxygen senna, and the oxygen sensor 1 is an oxygen sensor based on the principle of a concentration cell, which generates an electromotive force according to the oxygen concentration. 2.3 is an oxygen ion conductive solid electrolyte, and these first and second solid electrolytes 2.3 are arranged approximately in parallel with a predetermined interval L (for example, L = 0.1 mm) apart. . In addition, these first and second solid electrolytes 2.3
A support 4 is interposed between them, and this support 4 defines a gap 5 together with the first and second solid electrolytes 2.3. A measuring electrode 6 is provided on the negative surface of the first solid electrolyte 2 facing the gap 5, and a reference electrode 7 is provided on the other surface at a position facing the measuring electrode 6.

そして、これらの各電極6.7にはセンサリーl゛線8
1.9がそれぞれ接続されている。一方、間隙部5に臨
む第2固体電解質3の−・面には基準電極7と対向する
位置にカソード電極(ポンプ電極) 10が設けられて
おり、他面にはアノ−1′電極(ポンプ電極)11が設
けられている。そして、これらの各電極10.11には
ポンプリード線I2.13がそれぞれ接続されている。
Each of these electrodes 6.7 is connected to a sensory l' wire 8.
1.9 are connected to each other. On the other hand, a cathode electrode (pump electrode) 10 is provided on the - side of the second solid electrolyte 3 facing the gap 5 at a position facing the reference electrode 7, and an anode electrode (pump electrode) 10 is provided on the other side. An electrode) 11 is provided. A pump lead wire I2.13 is connected to each of these electrodes 10.11.

上記第1固体電M、質2、測定電極6および基準電極7
はセンサ部14を構成し、第2固体電解質3、カッ−ド
電極10およびアノード電極11はポンプ部15を構成
している。また、ポンプ部15の側方には絶縁性を有す
るアルミナ基板16が所定間隔を隔てて略平行に配設さ
れζおり、このアルミナ基Fj、16内には第1、第2
固体電解質2.3の活性を保つように適温に加熱するヒ
ータ17が内蔵されている。センサ17にはヒータリー
ト線17a、17+)を介し゛ζ5〜15V程度のヒー
タ電圧vhが供給されている。
The first solid state electrode M, the material 2, the measurement electrode 6 and the reference electrode 7
constitutes a sensor section 14, and the second solid electrolyte 3, quad electrode 10, and anode electrode 11 constitute a pump section 15. Further, on the side of the pump part 15, an insulating alumina substrate 16 is arranged approximately parallel to each other at a predetermined interval.
A heater 17 is built in to heat the solid electrolyte 2.3 to an appropriate temperature so as to maintain its activity. A heater voltage vh of approximately 5 to 15 V is supplied to the sensor 17 via heater lead wires 17a, 17+).

ポンプ部15のアノード電極11には後述する電流供給
手段から流し込み電流(以下、ポンプ電流1pという)
が供給されており、このポンプ電流1pは第2固体電p
H質3内をアノ 1電極11からカソード電極10に向
けて流れる。このとき、ポンプ電流1pの値に応してカ
ソード電極10からアノード電極11に向けて第2固体
電解質3内を酸素イオンが移動する。したがって、図中
矢印(GAS)で示すように被測定ガス、例えば排気を
導くと、ポンプ電流1pにより間隙部5の酸素分子がイ
オンの形で外部に排出される。この場合、間隙りが極め
て狭いため、外部から間隙部5に拡散する酸素分子の量
が制限される。このため、間隙部5の内外部において酸
素濃度差が発生し、この酸素濃度差が所定値になるとセ
ンサ部14の出力電圧VSが急変する。
A current (hereinafter referred to as pump current 1p) is applied to the anode electrode 11 of the pump section 15 from a current supply means to be described later.
is supplied, and this pump current 1p is supplied to the second solid state electrode p.
It flows within the hydrogen substance 3 from the anode 1 electrode 11 to the cathode electrode 10. At this time, oxygen ions move within the second solid electrolyte 3 from the cathode electrode 10 toward the anode electrode 11 in accordance with the value of the pump current 1p. Therefore, when gas to be measured, for example, exhaust gas, is introduced as indicated by the arrow (GAS) in the figure, oxygen molecules in the gap 5 are exhausted to the outside in the form of ions by the pump current 1p. In this case, since the gap is extremely narrow, the amount of oxygen molecules that diffuse into the gap 5 from the outside is limited. Therefore, a difference in oxygen concentration occurs between the inside and outside of the gap portion 5, and when this oxygen concentration difference reaches a predetermined value, the output voltage VS of the sensor portion 14 suddenly changes.

この出力電圧Vsの急変する空燃比(以下、切り換り空
燃比という)はポンプ電流1pの値に対応しており、ポ
ンプ電流1pの増加に伴って理論空燃比よりリーン側に
移行する。なお、上記空燃比は、詳しくは排気中の酸素
濃度に対応する吸入混合気の空燃比という表現が妥当で
あるが、説明の便宜上、以下単に空燃比という。
The air-fuel ratio at which the output voltage Vs suddenly changes (hereinafter referred to as the switching air-fuel ratio) corresponds to the value of the pump current 1p, and shifts to a leaner side than the stoichiometric air-fuel ratio as the pump current 1p increases. Note that the above air-fuel ratio is appropriately expressed as the air-fuel ratio of the intake air-fuel mixture corresponding to the oxygen concentration in the exhaust gas, but for convenience of explanation, it will be simply referred to as the air-fuel ratio hereinafter.

第2図は、」二連した酸素センサ1を用いて空燃比を制
御するものとして、本出願人が先に特許出願した「空燃
比制御装置」 (昭和59年1月50提出の特許願参照
)において空燃比を検出している部分の回路図である。
Figure 2 shows an ``air-fuel ratio control device'' for which the present applicant previously filed a patent application for controlling the air-fuel ratio using two oxygen sensors 1 (see patent application filed on January 50, 1981). ) is a circuit diagram of the part that detects the air-fuel ratio.

第2図において、酸素センサ1はり−1−線8.9.1
2.13を介して空燃比検出手段20に接続されており
、空燃比検出手段20ば電流供給手段21および電流値
検出手段22により構成されている。電流供給手段21
はオペアンプOPI、1ランジスタQ1、抵抗R1およ
び基準電源23により構成されており、センサ部出力V
sが目標電圧Vaとなるようにポンプ部15にポンプ電
流rpを供給している。ごの目標電圧Vaばセンサ部出
力Vsの急変する空燃比(ずなわら、切り換り空燃比)
におりる急変電圧の略中間値であり、基準電源23によ
り設定される。
In Figure 2, oxygen sensor 1 beam - 1 - line 8.9.1
2.13 to the air-fuel ratio detection means 20, and the air-fuel ratio detection means 20 is constituted by a current supply means 21 and a current value detection means 22. Current supply means 21
is composed of an operational amplifier OPI, one transistor Q1, a resistor R1, and a reference power supply 23, and the sensor output V
A pump current rp is supplied to the pump section 15 so that s becomes the target voltage Va. The air-fuel ratio of the target voltage Va and the sensor output Vs suddenly changes (Zunawara, switching air-fuel ratio)
This is approximately the intermediate value of the suddenly changing voltages that occur at the current level, and is set by the reference power supply 23.

ここで、目標電圧Vaが固定的であるのは、センサ部1
4自体にはポンプ電流1pが供給されず、酸センサ部1
4の内部抵抗に対してポンプ電流1pによる電圧降下分
が出力電圧VSに上乗せされないからである。これは、
例えば特開昭57−76450号公報に記載されている
ような単一体の酸素センサと異なり、酸素センサlを出
力電圧Vsのみを取り出すセンサ部14と、ポンプ電流
1pが供給されるポンプ部15と、に分割しているため
である。したがって、センサ部出力Vsの急変電圧の中
間値は切り換り空燃比の大きさに拘らず略目標電圧Va
程度となる。
Here, the target voltage Va is fixed because the sensor unit 1
4 itself is not supplied with the pump current 1p, and the acid sensor section 1
This is because the voltage drop due to the pump current 1p with respect to the internal resistance of 4 is not added to the output voltage VS. this is,
For example, unlike a single unit oxygen sensor as described in Japanese Patent Application Laid-Open No. 57-76450, the oxygen sensor l has a sensor section 14 that takes out only the output voltage Vs, and a pump section 15 that is supplied with a pump current 1p. This is because it is divided into . Therefore, the intermediate value of the suddenly changing voltage of the sensor output Vs is approximately the target voltage Va regardless of the magnitude of the switching air-fuel ratio.
It will be about.

そして、ごの切り換り空燃比はポンプ電流!pの大きさ
に応じて変化する・ ポンプ電流rpの値は電流値検出手段22により検出さ
れており、電流値検出手段22はオペアンプOP2、O
F2、抵抗R2、R3およびコンデンサC1により構成
されている。そして、電流値検出手段22はポンプ電流
ipの値を抵抗R2の両端間の電圧降下とし”ζ検出し
、現空燃比を表ず電圧信冒viを出力している。したが
って、ごのような装置によれば、被測定ガス中の酸素濃
度、すなわら空燃比を広範囲にかつ連続的に検出するこ
とができる。
And the switching air-fuel ratio is the pump current! The value of the pump current rp changes depending on the magnitude of p. The value of the pump current rp is detected by the current value detection means 22, and the current value detection means 22 is
F2, resistors R2 and R3, and capacitor C1. Then, the current value detection means 22 detects the value of the pump current ip as a voltage drop across the resistor R2, and outputs the voltage difference vi without representing the current air-fuel ratio. According to the device, the oxygen concentration in the gas to be measured, that is, the air-fuel ratio, can be detected continuously over a wide range.

しかしながら、このような従来と先願の組合せに係る酸
素濃度測定装置にあっては、酸素センサlの間隙部5へ
の酸素分子の拡散量をポンプ電流1pとして検出し空燃
比を判断する構成となっていたため広範囲の空燃比を連
続的に検出することができる反面、所定空燃比(例えば
、理論空燃比)をt、ffi度よく検出しようとする場
合には、適さない。また、上記拡散量の検出は空燃比の
急激な変化に比して比較的応答性が遅く、例えば特に応
答性の高いことが要求される三元触媒を備えたエンジン
に本装置を適用して空燃比をフィー ドハノク制御しよ
うとする場合、適応性に欠りるという問題点があった。
However, in the oxygen concentration measuring device according to the combination of the conventional technology and the prior application, the air-fuel ratio is determined by detecting the amount of diffusion of oxygen molecules into the gap 5 of the oxygen sensor l as the pump current 1p. Therefore, while it is possible to continuously detect a wide range of air-fuel ratios, it is not suitable for detecting a predetermined air-fuel ratio (for example, stoichiometric air-fuel ratio) with good accuracy. In addition, the detection of the amount of diffusion described above has a relatively slow response compared to sudden changes in the air-fuel ratio. For example, this device can be applied to an engine equipped with a three-way catalyst that requires particularly high response. When trying to control the air-fuel ratio using feed control, there was a problem in that it lacked adaptability.

(発明の目的) そこで本発明は、所定空燃比で出力電圧の急変する第2
の酸素センサを上記装置に組み合わせて空燃比を判断す
ることにより、所定空燃比におりる応答性と検出精度を
高めつつ空燃比を広範囲に亘り連続して検出することが
できる酸素濃度測定装置を提供することを目的としてい
る。
(Purpose of the Invention) Therefore, the present invention provides a secondary
By combining an oxygen sensor with the above device to determine the air-fuel ratio, we have created an oxygen concentration measuring device that can continuously detect the air-fuel ratio over a wide range while increasing the responsiveness and detection accuracy to reach a predetermined air-fuel ratio. is intended to provide.

(発明の構成) 本発明による酸素濃度測定装置は、その全体構成図を第
3図に示すように、被測定ガス中の酸素濃度を検出し空
燃比に対して出力電圧が緩やかに変化する第1酸素濃度
検出手段66と、被測定ガス中の酸素濃度を検出し所定
空燃比で出力電圧の急変する第2酸素濃度検出手段55
と、第1酸素濃度検出手段および第2酸素濃度検出手段
の出力に基づいて空燃比を算出する空燃比検出手段67
と、を備えており、所定空燃比での応答性と検出精度を
高めつつ空燃比を広範囲に亘り検出するものである。
(Structure of the Invention) The oxygen concentration measuring device according to the present invention, as shown in the overall configuration diagram in FIG. 1 oxygen concentration detection means 66, and a second oxygen concentration detection means 55 which detects the oxygen concentration in the gas to be measured and whose output voltage suddenly changes at a predetermined air-fuel ratio.
and air-fuel ratio detection means 67 that calculates the air-fuel ratio based on the outputs of the first oxygen concentration detection means and the second oxygen concentration detection means.
The air-fuel ratio is detected over a wide range while improving responsiveness and detection accuracy at a predetermined air-fuel ratio.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第4〜9図は本発明の第1実施例を示す図であり、本発
明をエンジンの排気中の酸素濃度、ずなわら空燃比を検
出する装置に適用した例である。
4 to 9 are diagrams showing a first embodiment of the present invention, which is an example in which the present invention is applied to a device for detecting the oxygen concentration in the exhaust gas of an engine, as well as the air-fuel ratio.

まず、構成を説明すると、第4図は酸素センサの分解斜
視図、第5図は酸素センサの断面図である。これらの図
において、3Iは電気絶縁性の高い平板状のアルミナ基
板であり、アルミナ基板31の」二面(図中上方の端面
)にばヒータ32を挾さんで基準ガス導入板33が積層
される。
First, to explain the configuration, FIG. 4 is an exploded perspective view of the oxygen sensor, and FIG. 5 is a sectional view of the oxygen sensor. In these figures, 3I is a flat alumina substrate with high electrical insulation, and a reference gas introduction plate 33 is laminated on two sides (upper end face in the figures) of the alumina substrate 31 with a heater 32 sandwiched between them. Ru.

基準ガス導入板33の上面には、基準ガス導入溝34が
形成されている。
A reference gas introduction groove 34 is formed on the upper surface of the reference gas introduction plate 33 .

そして、この基準ガス導入機33の上面側には平板状の
第1固体電解質35、隔壁板36および第2固体電解質
37が略平行に順次積層される。
A flat first solid electrolyte 35, a partition plate 36, and a second solid electrolyte 37 are sequentially stacked substantially parallel on the upper surface side of this reference gas introducing device 33.

第1、第2固体電解質35.37ば酸素イオン伝導性の
酸素ジルコニウム等を主成分としており、第2固体電解
′fr37には小孔37aが形成されている。また、隔
壁板36には大きな矩形の貫通孔36aが形成されζい
る。貫通孔36aに対向する第1固体電解質35の上、
下面には何れも白金を主成分とする第1測定電極38お
よび第1基/l’!電極39がそれぞれ印刷処理により
積層されており、これらの各電極38.39にはリード
線40.41がそれぞれ接続される。また、貫通孔36
aに対向する第2固体電解質37の上面には、第2測定
電極42とアノード電極(ポンプ電極)43が並設して
積層され、下面にはカッ−1°電極(ポンプ電極)44
が積層される。これらの各電極42〜44にはリード線
45〜47がそれぞれ接続されるとともに、アノ−1電
極43およびカッ−1゛電極44にば小孔37aと同一
・軸線上にそれぞれ小孔43a、44aが形成されてい
る。
The first and second solid electrolytes 35 and 37 are mainly composed of oxygen ion conductive oxygen zirconium, etc., and small holes 37a are formed in the second solid electrolytes 37. Further, a large rectangular through hole 36a is formed in the partition plate 36. On the first solid electrolyte 35 facing the through hole 36a,
On the lower surface are a first measuring electrode 38 and a first group /l'!, both of which are mainly composed of platinum. Electrodes 39 are laminated by a printing process, and lead wires 40, 41 are connected to each of these electrodes 38, 39, respectively. In addition, the through hole 36
A second measurement electrode 42 and an anode electrode (pump electrode) 43 are stacked in parallel on the upper surface of the second solid electrolyte 37 facing a, and a cup-1 degree electrode (pump electrode) 44 is arranged on the lower surface.
are stacked. Lead wires 45 to 47 are connected to these electrodes 42 to 44, respectively, and small holes 43a and 44a are formed in the anode 1 electrode 43 and the cup 1 electrode 44 on the same axis as the small hole 37a, respectively. is formed.

基準ガス導入板33と第1固体電解質35は基準ガス導
入部48を画成しており、基準ガス導入部48には矢印
(A I R)で示すように一定酸素濃度の基準ガス、
本実施例では大気が導かれる。
The reference gas introduction plate 33 and the first solid electrolyte 35 define a reference gas introduction part 48, and the reference gas introduction part 48 contains a reference gas with a constant oxygen concentration, as shown by the arrow (A I R),
In this example, atmospheric air is introduced.

また、第2固体電解質37と隔壁板36は第1測定電極
38を覆ってこの電極38の囲りに空間部(酸素層)4
9を画成しており、第2固体電解質37の図中」二方に
は符’i4 (GAs)で示すように被測定ガス、本実
施例では排気が導かれる。前記小孔43a、31a−4
4aは拡散孔50を構成しており、拡散孔50は排気中
と空間部49を連通している。隔壁板36および第2固
体電解質37は酸素層画成部材51を構成しており〜、
酸素層画成部材51ば排気中と空間部49との間におけ
る単位時間当りの酸素分子の拡散量を規制している。
Further, the second solid electrolyte 37 and the partition plate 36 cover the first measurement electrode 38 and form a space (oxygen layer) 4 around the electrode 38.
9, and a gas to be measured, in this embodiment, exhaust gas, is guided to both sides of the second solid electrolyte 37 as indicated by the symbol i4 (GAs). The small holes 43a, 31a-4
4a constitutes a diffusion hole 50, and the diffusion hole 50 communicates the inside of the exhaust gas with the space portion 49. The partition plate 36 and the second solid electrolyte 37 constitute an oxygen layer defining member 51.
The oxygen layer defining member 51 regulates the amount of oxygen molecules diffused per unit time between the exhaust gas and the space 49.

上記第1固体電解質35、第1測定電極38および第1
基準電極39は第1センザ部52を構成しており、第2
固体電解質37、アノード電極43およびカッ ド電極
44はポンプ部53を構成している。したがって、第1
センザ部52はその第1基111j電極39側が大気に
接し、第1測定電極38側が空間部49に接する(すな
わち、第1酸素層画成部材51を介し一ζ排気に接する
)こととなり、酸素濃淡電池を形成して両電極38.3
9間の酸素分圧比に応した起電力Eを発生ずる。この起
電力Eは第1センザ部52の出力Vs、として外部に携
り出される。また、ポンプ部53には後述する電流供給
手段からポンプ電流rpが供給されており、ポンプ電流
1pはポンプ電極43.44間を流れる。このとき、第
2固体電解質37中をポンプ電流1pと逆方向に酸素イ
オンが移動し、その移動量はポンプ電流Ipの値に比例
する。したがって、ポンプ部53はポンプ電流1pの値
に応じて排気と空間部49との間で酸素分子を移動させ
る(すなわち、酸素ポンプ作用を行う)。
The first solid electrolyte 35, the first measurement electrode 38 and the first
The reference electrode 39 constitutes the first sensor section 52, and the second
The solid electrolyte 37, anode electrode 43, and quad electrode 44 constitute a pump section 53. Therefore, the first
The sensor section 52 has its first group 111j electrode 39 side in contact with the atmosphere, and its first measurement electrode 38 side in contact with the space section 49 (that is, in contact with the 1ζ exhaust gas via the first oxygen layer defining member 51). Forming a concentration cell, both electrodes 38.3
An electromotive force E corresponding to an oxygen partial pressure ratio between 9 and 9 is generated. This electromotive force E is carried out to the outside as the output Vs of the first sensor section 52. Further, a pump current rp is supplied to the pump section 53 from a current supply means to be described later, and a pump current 1p flows between the pump electrodes 43 and 44. At this time, oxygen ions move in the second solid electrolyte 37 in a direction opposite to the pump current 1p, and the amount of movement is proportional to the value of the pump current Ip. Therefore, the pump section 53 moves oxygen molecules between the exhaust gas and the space section 49 according to the value of the pump current 1p (that is, performs an oxygen pumping action).

これらの第1センサ蔀52、ポンプ部53、酸素層画成
部材51および基準ガス導入板33は全体として第1酸
素センサ54を構成している。
The first sensor lip 52, the pump section 53, the oxygen layer defining member 51, and the reference gas introduction plate 33 constitute a first oxygen sensor 54 as a whole.

一方、第2固体電解質37、第2測定電極42およびカ
ソード電極44は第2センザ部55(第2酸素センサ)
を構成しており、カッ−1−′電極44は第2センサ部
55における基準電極としての機能を有しいる。したが
って、第2センサ部54はその第2測定電極42側が直
接排気に接し、カソード電極44側が空間部49に接す
る(すなわち、酸素層画成部材51を介して排気に接す
る)こととなり、第1センジ部52と同様に両電極42
.44間の酸素分圧比に応した起電力Eを発生ずる。
On the other hand, the second solid electrolyte 37, the second measurement electrode 42, and the cathode electrode 44 are connected to the second sensor section 55 (second oxygen sensor).
The cup-1-' electrode 44 has a function as a reference electrode in the second sensor section 55. Therefore, the second sensor section 54 has its second measurement electrode 42 side in direct contact with the exhaust gas, and its cathode electrode 44 side in contact with the space section 49 (that is, in contact with the exhaust gas via the oxygen layer defining member 51). Both electrodes 42 as well as the sensing part 52
.. The electromotive force E corresponding to the oxygen partial pressure ratio between 44 and 44 is generated.

そして、この起電力Eは第2センザ部64の出力Vs2
として外部に取り出される。なお、ヒータ32は第1、
第2固体電解質35.37を適温に加熱しそれらの活性
を保っている。
This electromotive force E is the output Vs2 of the second sensor section 64.
It is taken out to the outside as. Note that the heater 32 is a first
The second solid electrolytes 35 and 37 are heated to an appropriate temperature to maintain their activity.

第6図は上記第1、第21素センサ54.55を使用し
た酸素濃度測定装置の回路図である。
FIG. 6 is a circuit diagram of an oxygen concentration measuring device using the first and twenty-first elementary sensors 54 and 55.

第6図において、第1酸素センザ54はリード線40.
41.46.47を介してポンプ電流検出手段61に、
第2センザ部55はリード線45を介してバッファアン
プ62にそれぞれ接続される。ポンプ電流検出手段61
は電流供給回路63、電流値検出回路64、差動アンプ
DFI、基準電源65および抵抗R4により(構成され
る。電流供給回路63には差動アンプI) F 1から
の出力ΔVが入力されており、差動アンプl) F 1
は第1セン号部出力■S、から目標電圧Vaを減算して
差値Δ■(ΔV = K (V s 、−V a ) 
、但しKは定数)を出力する。この目標電圧Vaは第1
センサ部出力Vs、の切り換り空燃比における急変電圧
の略中間値であり、基準電源65により設定される。
In FIG. 6, the first oxygen sensor 54 is connected to the lead wire 40.
41, 46, 47 to the pump current detection means 61,
The second sensor sections 55 are connected to buffer amplifiers 62 via lead wires 45, respectively. Pump current detection means 61
is constituted by a current supply circuit 63, a current value detection circuit 64, a differential amplifier DFI, a reference power supply 65, and a resistor R4.The output ΔV from the differential amplifier I) F1 is input to the current supply circuit 63. differential amplifier l) F 1
is the first sensor output ■S, by subtracting the target voltage Va from the difference value Δ■ (ΔV = K (V s , -V a )
, where K is a constant). This target voltage Va is the first
This is approximately the intermediate value of the sudden change voltage at the switching air-fuel ratio of the sensor output Vs, and is set by the reference power source 65.

なお、目標電圧Vaば必ずしも急変電圧の略中間値に限
るものではなく、例えばその下限値近傍に設定してポン
プエネルギーを小さくするようにしてもよい。したがっ
て、差値ΔVは現空燃比と切り換り空燃比とのずれの大
きさを表しており、差値Δ■を零とするようなポンプ電
流Ipを供給すると、このポンプ電流ipは現空燃比に
対応した値となり、その値を検出するごとにより排気中
の酸素濃度に対応した現空燃比を検出することができる
。電流供給回路63は差値Δ■が零となるようにポンプ
電流1pを制御しており、電流値検出回路64はポンプ
電流1pの値を抵抗R4の両端間の電圧降[とじて検出
し電圧信号Vjを出力している。上記第1酸素センサ5
4およびポンプ電流検出手段61ば第1酸素濃度検出手
段66を構成しており1、第1酸素濃度検出手段66は
後述するように排気中の酸素濃度を検出し空燃比に対し
て出カフ1i圧Viが緩やかに変化しζいる。
Note that the target voltage Va is not necessarily limited to approximately the intermediate value of the suddenly changing voltage, and may be set, for example, near its lower limit value to reduce the pump energy. Therefore, the difference value ΔV represents the magnitude of the deviation between the current air-fuel ratio and the switching air-fuel ratio, and when a pump current Ip is supplied that makes the difference value Δ■ zero, this pump current ip The value corresponds to the fuel ratio, and each time the value is detected, the current air-fuel ratio corresponding to the oxygen concentration in the exhaust gas can be detected. The current supply circuit 63 controls the pump current 1p so that the difference value Δ■ becomes zero, and the current value detection circuit 64 detects the value of the pump current 1p by detecting the voltage drop across the resistor R4. A signal Vj is output. The first oxygen sensor 5
4 and the pump current detection means 61 constitute a first oxygen concentration detection means 66. The first oxygen concentration detection means 66 detects the oxygen concentration in the exhaust gas and determines the output cuff 1i with respect to the air-fuel ratio. The pressure Vi changes gradually.

一方、第2センサ部55は第2酸素濃度検出手段を構成
しており、第2酸素濃度検出手段は後述するように理論
空燃比でその出力電圧Vs2を急変さ・ける。そして、
本実施例では第1酸素センザ54および第2センザ部5
5が単一体の酸素ヒンザとして同一・本体内に組み込ま
れている。
On the other hand, the second sensor section 55 constitutes a second oxygen concentration detection means, and the second oxygen concentration detection means suddenly changes its output voltage Vs2 at the stoichiometric air-fuel ratio, as will be described later. and,
In this embodiment, the first oxygen sensor 54 and the second sensor section 5
5 is incorporated into the same body as a single oxygen hinge.

なお、これらの酸素センサ54.55は別体としても勿
論よい。第2センサ部55の出力Vs2はバンファアン
プ62を介して空燃比検出手段67に入力されており、
空燃比検出手段67にはさらにポンプ電流検出手段61
からの電圧信号Viが入力されている。空燃比検出手段
67はオペアンプOP4および抵抗R5〜R8により構
成される加算器であり、電圧信号■iと第2センサ部出
力Vs2とを加算して電圧信号Vn (Vn=ViLV
s2)を出力する。
Note that these oxygen sensors 54 and 55 may of course be provided separately. The output Vs2 of the second sensor section 55 is inputted to the air-fuel ratio detection means 67 via the banfa amplifier 62,
The air-fuel ratio detection means 67 further includes a pump current detection means 61.
A voltage signal Vi from is input. The air-fuel ratio detection means 67 is an adder composed of an operational amplifier OP4 and resistors R5 to R8, and adds the voltage signal ■i and the second sensor output Vs2 to obtain a voltage signal Vn (Vn=ViLV
s2) is output.

次に作用を説明する。Next, the effect will be explained.

一般に、拡散電流検出型の酸素センサは流し込み電流(
拡散電流)の酸素ポンプ作用によりセンサ部の各電極間
に所定の酸素濃度差を発生させ、そのときの流し込み電
流の値を被測定ガスの酸素濃度に一義的に対応させて、
酸素濃度を広範囲に検出するという原理に基づいている
。この場合、流し込み電流の値は所定の酸素濃度差を維
持するために必要なポンプエネルギーの大きさを表して
いる。ところで、このようなポンプエネルギーは、セン
サ部の各電極が直接被測定ガスに接している場合、実際
上かなりの大きさが必要であることから、通常、センサ
部の一方の電極側に酸素分子の拡散を制限する制限部材
(本実施例では酸素層画成部材)を設けてポンプエネル
ギーの大きさを小さくして制御性や酸素センサの耐久性
等を高めている。しかしながら、制限部材を拡散する酸
素分子量の検出は時間的な遅れを伴うため応答性に欠け
、またその検出精度も高いものとはいえない。
In general, diffusion current detection type oxygen sensors inject current (
A predetermined oxygen concentration difference is generated between each electrode of the sensor section by the oxygen pumping action of the diffusion current, and the value of the injected current at that time is made to uniquely correspond to the oxygen concentration of the gas to be measured.
It is based on the principle of detecting oxygen concentration over a wide range. In this case, the value of the injected current represents the amount of pump energy required to maintain a predetermined oxygen concentration difference. By the way, such pump energy actually requires a considerable amount of energy when each electrode of the sensor section is in direct contact with the gas to be measured, so normally oxygen molecules are placed on one electrode side of the sensor section. A limiting member (in this example, an oxygen layer defining member) is provided to limit the diffusion of oxygen, thereby reducing the amount of pump energy and improving controllability and durability of the oxygen sensor. However, detection of the molecular weight of oxygen diffusing through the restriction member is accompanied by a time delay, and therefore lacks responsiveness, and the detection accuracy cannot be said to be high.

そこで本実施例では、理論空燃比を境に出力電圧の急変
する特性を有する、いわゆる電圧検出型の酸素センサは
応答性や検出精度が高いという点に着目して、両タイプ
の酸素センサの長所を取り入れ、理論空燃比における応
答性と検出精度を高めつつ、リンチからリーンまでの広
範囲な空燃比を連続して検出している。
Therefore, in this example, we focused on the fact that so-called voltage detection type oxygen sensors, which have the characteristic of sudden changes in output voltage at the stoichiometric air-fuel ratio, have high responsiveness and detection accuracy, and focused on the advantages of both types of oxygen sensors. The system continuously detects a wide range of air-fuel ratios from lynch to lean while improving responsiveness and detection accuracy at stoichiometric air-fuel ratios.

ずなわち、Vs□−Vaとなるように第1酸素センザ5
4にポンプ電流rpを供給すると、ポンプ電流1pのr
l!素ポンプ作用により空間部49の酸素分圧が決定さ
れる。いま、排気温度が1000°にであるとき、例え
ばVa=500mVに設定し空間部49の酸素分圧(第
1測定電極3日の酸素分圧pb)を理論空燃比に対応し
た値に維持しようする場合、その値pbは次に示すネル
ンストの式■によりめられ、P b = 0.206 
xlo 気圧となる。
That is, the first oxygen sensor 5
When pump current rp is supplied to 4, r of pump current 1p
l! The oxygen partial pressure in the space 49 is determined by the elementary pump action. Now, when the exhaust temperature is 1000°, let's set Va = 500 mV, for example, and maintain the oxygen partial pressure in the space 49 (oxygen partial pressure pb on the third day of the first measurement electrode) at a value corresponding to the stoichiometric air-fuel ratio. In this case, the value pb is determined by the Nernst equation (■) shown below, and P b = 0.206
xlo atmospheric pressure.

E−(RT/4F) ・en ・ (Pa/Pb)■ 但し、Pa:第1基(P電極39の酸素分圧Pb:第1
測定電極38の酸素分圧 R:気体定数 1゛:絶対温度 F:ファラディ定数 ・ このポンプ電流Ipの値は空間部49の酸素分圧pbを
理論空燃比に対応した上記所定値(Pb= 0.206
 X 10 気圧)に維持するために必要なポンプエネ
ルギーの大きさを表しており、ポンプ電流1pの変化は
排気の酸素分圧、すなわち排気中の酸素濃度の変化に対
応したものとなる。
E-(RT/4F) ・en ・(Pa/Pb)■ However, Pa: the first group (oxygen partial pressure of the P electrode 39 Pb: the first
Oxygen partial pressure R of the measuring electrode 38: Gas constant 1゛: Absolute temperature F: Faraday constant - The value of this pump current Ip is determined by changing the oxygen partial pressure pb of the space 49 to the above predetermined value corresponding to the stoichiometric air-fuel ratio (Pb=0 .206
It represents the amount of pump energy required to maintain the pressure at 1p (x 10 atmospheric pressure), and a change in pump current 1p corresponds to a change in the oxygen partial pressure of the exhaust gas, that is, a change in the oxygen concentration in the exhaust gas.

そして、これら両者の関係は排気中の酸素濃度を空燃比
で表すと第7図に示すようになり、ポンプ電流1pの値
を電圧信号Viとして検出することにより、空燃比を連
続して測定することができる。この電圧信号Viは、そ
の大きさが空燃比に対して緩やかに変化しており、理論
空燃比で零となる。なお、ポンプ電流Ipの値は理論空
燃比よりリーン域では排気中の酸素分子02の量に対応
し、リッチ域では排気中のc。
The relationship between these two is shown in Figure 7 when the oxygen concentration in the exhaust gas is expressed as an air-fuel ratio.The air-fuel ratio is continuously measured by detecting the value of the pump current 1p as the voltage signal Vi. be able to. The magnitude of this voltage signal Vi changes gradually with respect to the air-fuel ratio, and becomes zero at the stoichiometric air-fuel ratio. Note that the value of the pump current Ip corresponds to the amount of oxygen molecules 02 in the exhaust gas in the lean range from the stoichiometric air-fuel ratio, and corresponds to the amount of oxygen molecules 02 in the exhaust gas in the rich range.

やI(C等のN(これらが酸素分子o2に変換されるた
め)に対応したものとなり、理論空燃比を境に流れる方
向が反転する。
and I (C, etc.) (because these are converted to oxygen molecules o2), and the direction of flow is reversed at the stoichiometric air-fuel ratio.

一方、第2センザ部55の出力電圧Vs2は前記ネルン
ストの式■がら空間部49と排気との間の酸素分圧比に
りJ応したものとなる。この場合、空間部49の酸素分
圧は第1酸素センザ54に供給されるポンプ電流ipに
より常に理論空燃比に対応した大きさに維持されている
。また、排気の酸素分圧はリンチ域では約lO〜IO気
圧、リーン域では約IO気圧程度になる。したがって、
第2センジ・部55の出力電圧VS2は第8図に示すよ
うに理論空燃比を境にその大きさが急変したものとなり
、その応答性は極めて速くかつ検出精度も高い。これは
、第2センザ部55の各電極42.44が排気に直接接
しており、排気中の酸素濃度変化に対して即座にかつ正
確に反応するからである。
On the other hand, the output voltage Vs2 of the second sensor section 55 corresponds to the oxygen partial pressure ratio J between the space section 49 and the exhaust gas according to Nernst's equation (2). In this case, the oxygen partial pressure in the space 49 is always maintained at a level corresponding to the stoichiometric air-fuel ratio by the pump current ip supplied to the first oxygen sensor 54. Further, the oxygen partial pressure of the exhaust gas is approximately 10 to IO atmospheric pressure in the lynch region, and approximately IO atmospheric pressure in the lean region. therefore,
As shown in FIG. 8, the output voltage VS2 of the second sense section 55 suddenly changes in magnitude at the stoichiometric air-fuel ratio, and its response is extremely fast and its detection accuracy is high. This is because each electrode 42, 44 of the second sensor section 55 is in direct contact with the exhaust gas and reacts immediately and accurately to changes in the oxygen concentration in the exhaust gas.

空燃比検出手段67ば−に記各出力Vi、Vs2を加算
した電圧信号Vnを出力しており、電圧信号■nは第9
図に示すように理論空燃比で急激に変化しそれ以外では
空燃比に対して緩やかに変化したものとなる。したがっ
て、理論空燃比におりる応答性と検出精度を高めつつ、
空燃比を広範囲に亘り連続して検出することができる。
The air-fuel ratio detection means 67 outputs a voltage signal Vn which is the sum of the outputs Vi and Vs2, and the voltage signal
As shown in the figure, the air-fuel ratio changes rapidly at the stoichiometric air-fuel ratio, and at other times the air-fuel ratio changes gradually. Therefore, while improving responsiveness and detection accuracy when reaching the stoichiometric air-fuel ratio,
The air-fuel ratio can be continuously detected over a wide range.

その結果、例えば三元触媒を備えたエンジンに本装置を
適用した場合、低速定常走行では空燃比をリーン空燃比
に制御してatの向上を図りつつ、必要なときには応答
性よくかつ高精度で空燃比を理論空燃比にフィー1ハツ
ク制御することができ、三元触媒の転化率を高めて排気
エミッションを低減させることができる。
As a result, for example, when this device is applied to an engine equipped with a three-way catalyst, the air-fuel ratio can be controlled to a lean air-fuel ratio during low-speed steady driving to improve AT, while providing responsive and highly accurate control when necessary. The air-fuel ratio can be rapidly controlled to the stoichiometric air-fuel ratio, increasing the conversion rate of the three-way catalyst and reducing exhaust emissions.

また、本実施例では各出力Vl、Vs2を加算して1つ
の出力信号■nとしているため、例えばコントロールユ
ニットとのインターフェイスにおいてI10ポートの数
が少なくなるという利点があり、これは低コスト化につ
ながる。
In addition, in this embodiment, each output Vl and Vs2 are added to form one output signal n, which has the advantage of reducing the number of I10 ports in the interface with the control unit, for example, which contributes to cost reduction. Connect.

なお、」二記各出力Vi、Vs2は単に加算するのみで
なく、例えば出力Vs2を所定基準値■0と比較し、そ
の比較信司(整形信号)を出力Viに加算するようにし
てもよい。
It should be noted that the outputs Vi and Vs2 described in "2" are not only simply added together, but also, for example, the output Vs2 may be compared with a predetermined reference value 0, and the comparison signal (shaped signal) may be added to the output Vi.

(効果) 本発明によれば、所定空燃比における応答性と検出精度
を高めつつ空燃比をす、−範囲に亘り連続して検出する
ことができ、特に三元触媒を備えたエンジンへの適応性
を高めることができる。
(Effects) According to the present invention, it is possible to continuously detect the air-fuel ratio over a range of 2 to 30 degrees while improving responsiveness and detection accuracy at a predetermined air-fuel ratio, and is particularly applicable to engines equipped with a three-way catalyst. You can increase your sexuality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は酸素センサの断面図、第2図は先願の空燃比制
御装置を示すその回路構成図、第3図は本発明の全体構
成図、第4〜9図は本発明の一実施例を示す図であり、
第4図はその酸素センサの分解斜視図、第5図はその酸
素センサの断面図、第6図はその回路構成図、第7図は
そのポンプ電流と空燃比との関係を示す図、第8図はそ
の第2センザ部出力と空燃比との関係を示す図、第9図
はその空燃比検出手段の出力と空燃比との関係を示す図
である。 55− 第2酸素濃度検出手段、 66− 第1酸素濃度検出手段、 67 空燃比検出手段、 代理人弁理士 有我軍一部 第1図 6
Fig. 1 is a sectional view of an oxygen sensor, Fig. 2 is a circuit configuration diagram showing the air-fuel ratio control device of the prior application, Fig. 3 is an overall configuration diagram of the present invention, and Figs. 4 to 9 are one embodiment of the present invention. FIG. 2 is a diagram showing an example;
Fig. 4 is an exploded perspective view of the oxygen sensor, Fig. 5 is a sectional view of the oxygen sensor, Fig. 6 is its circuit configuration diagram, Fig. 7 is a diagram showing the relationship between the pump current and the air-fuel ratio, and Fig. 5 is a cross-sectional view of the oxygen sensor. FIG. 8 is a diagram showing the relationship between the output of the second sensor section and the air-fuel ratio, and FIG. 9 is a diagram showing the relationship between the output of the air-fuel ratio detection means and the air-fuel ratio. 55- Second oxygen concentration detection means, 66- First oxygen concentration detection means, 67 Air-fuel ratio detection means, Agent Patent Attorney Yuga Army Part 1 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 被測定ガス中の酸素濃度を検出し空燃比に対して出力電
圧が緩やかに変化する第1酸素濃度検出手段と、被測定
ガス中の酸素濃度を検出し所定空燃比で出力電圧の急変
する第2酸素濃度検出手段と、第1酸素濃度検出手段お
よび第2酸素濃度検出手段の出力に基づいて空燃比を算
出する空燃比検出手段と、を備えたことを特徴とする酸
素濃度測定装置。
A first oxygen concentration detection means detects the oxygen concentration in the gas to be measured and the output voltage changes gradually with respect to the air-fuel ratio; 1. An oxygen concentration measuring device comprising: two oxygen concentration detection means; and an air-fuel ratio detection means for calculating an air-fuel ratio based on the outputs of the first oxygen concentration detection means and the second oxygen concentration detection means.
JP59056893A 1984-03-23 1984-03-23 Apparatus for measuring concentration of oxygen Pending JPS60200162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056893A JPS60200162A (en) 1984-03-23 1984-03-23 Apparatus for measuring concentration of oxygen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056893A JPS60200162A (en) 1984-03-23 1984-03-23 Apparatus for measuring concentration of oxygen

Publications (1)

Publication Number Publication Date
JPS60200162A true JPS60200162A (en) 1985-10-09

Family

ID=13040114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056893A Pending JPS60200162A (en) 1984-03-23 1984-03-23 Apparatus for measuring concentration of oxygen

Country Status (1)

Country Link
JP (1) JPS60200162A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138552A (en) * 1985-12-12 1987-06-22 Sumitomo Chem Co Ltd Thermoplastic resin composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128349A (en) * 1974-03-29 1975-10-09
JPS55125448A (en) * 1979-03-10 1980-09-27 Bosch Gmbh Robert Electrochemical detector for measuring oxygen content of gas
JPS5819553A (en) * 1981-07-27 1983-02-04 Nippon Denso Co Ltd Multifunctional oxygen concentration detector
JPS5963555A (en) * 1982-09-24 1984-04-11 Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai Oxygen sensor
JPS60128355A (en) * 1983-12-15 1985-07-09 Ngk Spark Plug Co Ltd Air fuel ratio detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50128349A (en) * 1974-03-29 1975-10-09
JPS55125448A (en) * 1979-03-10 1980-09-27 Bosch Gmbh Robert Electrochemical detector for measuring oxygen content of gas
JPS5819553A (en) * 1981-07-27 1983-02-04 Nippon Denso Co Ltd Multifunctional oxygen concentration detector
JPS5963555A (en) * 1982-09-24 1984-04-11 Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai Oxygen sensor
JPS60128355A (en) * 1983-12-15 1985-07-09 Ngk Spark Plug Co Ltd Air fuel ratio detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62138552A (en) * 1985-12-12 1987-06-22 Sumitomo Chem Co Ltd Thermoplastic resin composition
JPH0515747B2 (en) * 1985-12-12 1993-03-02 Sumitomo Chemical Co

Similar Documents

Publication Publication Date Title
KR910006224B1 (en) Air fuel ratio detector
JP2669699B2 (en) Air-fuel ratio sensor
JPS60173461A (en) Oxygen sensor
JPS61221644A (en) Air-fuel ratio sensor
JP2929038B2 (en) Air-fuel ratio sensor drive circuit
JPS60200162A (en) Apparatus for measuring concentration of oxygen
JPS60230537A (en) Air-fuel ratio controller
JPH0518058B2 (en)
JPH0436341B2 (en)
JPH0245819B2 (en)
JPS61100651A (en) Apparatus for measuring concentration of oxygen
JPS60224051A (en) Air-fuel ratio detecting device
JPS60195447A (en) Oxygen concentration detector
JPS60238755A (en) Air fuel ratio detecting device
JPS60144655A (en) Air-fuel ratio detector
JPH1183793A (en) Gas detection method and gas detector
JPS60186750A (en) Device for measuring oxygen concentration
JPS60211355A (en) Oxygen sensor and oxygen concentration measuring device
JP2866966B2 (en) Air-fuel ratio sensor
JPS60216251A (en) Air/fuel ratio sensor
JPS61194344A (en) Air-fuel ratio sensor
JPH0634004B2 (en) Oxygen concentration detector
JPS6352052A (en) Lamination type air fuel ratio sensor
JPS62179655A (en) Method and apparatus for detecting air/fuel ratio
EP0320502B1 (en) Method of detecting oxygen partial pressure