JPS5963555A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS5963555A
JPS5963555A JP57167200A JP16720082A JPS5963555A JP S5963555 A JPS5963555 A JP S5963555A JP 57167200 A JP57167200 A JP 57167200A JP 16720082 A JP16720082 A JP 16720082A JP S5963555 A JPS5963555 A JP S5963555A
Authority
JP
Japan
Prior art keywords
electrodes
sensor
fuel ratio
oxygen
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57167200A
Other languages
Japanese (ja)
Inventor
Masaya Kominami
小南 正哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai
Original Assignee
Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai filed Critical Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai
Priority to JP57167200A priority Critical patent/JPS5963555A/en
Publication of JPS5963555A publication Critical patent/JPS5963555A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To provide a higher degree of freedom in a control range with respect to the feedback control of an air to fuel ratio and simplification of the construction wherein an oxygen sensor exhibiting two kinds of characteristics is mounted in a detection part by forming said sensor into one unit. CONSTITUTION:Electrodes 7a, 7b, 7c, 7d are provided in both side parts of the parts which constitute a closed chamber A of a ceramic sintered body 6 and face to each other. The electrodes 7a, 7b, 7c, 7d consisting of, for example, platinum plated externally with gold are used in order to decrease their catalytic effect. Electrode protective layers 8a, 8b, 8c, 8d consisting of porous ceramics cover the top surfaces of the respective electrodes. Diffusion pores 5a, 5b are provided to the electrode protective layers, the respective electrodes and the ceramic sintered body. A voltage is impressed through a resistance at both terminals of the electrodes 7c, 7d, and the current to be conducted is so controlled that the electromotive force induced in the electrodes 7a, 7d is maintained constant by regulating the voltage. The platinum Pt electrodes 9a, 9b provided on both surfaces in the part of the open chamber B in the body 6 constitute a sensor for detecting a theoretical air to fuel ratio.

Description

【発明の詳細な説明】 この発明は例えば内燃機関の混合気の空燃比をフィール
ド・パック制御するために使用され排気ガス中の酸素濃
度を検出する酸素センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen sensor that is used, for example, to field-pack control the air-fuel ratio of an air-fuel mixture in an internal combustion engine and detects the oxygen concentration in exhaust gas.

内燃機関の排気ガス中に設けられ混合気の空燃比をフィ
ールドバック制御するために使用される酸素センサは一
般には、理論空燃比を境として出力電圧がスイッチング
的に変化する出力特性を示し、この出力によって空燃比
を理論空燃比になる様に制御している。従ってこの酸素
センサは排気ガス中の酸素濃度に応答して比較的安定な
出力を発生するが、理陥窒燃比に対する検出しかできな
いことがらフ・「−ドパツク制御においては理論空燃比
に制御することしかできない制限がある。
Oxygen sensors installed in the exhaust gas of internal combustion engines and used for feedback control of the air-fuel ratio of the air-fuel mixture generally exhibit an output characteristic in which the output voltage changes in a switching manner around the stoichiometric air-fuel ratio. The air-fuel ratio is controlled by the output so that it becomes the stoichiometric air-fuel ratio. Therefore, this oxygen sensor generates a relatively stable output in response to the oxygen concentration in the exhaust gas, but since it can only detect the stoichiometric air-fuel ratio, it cannot be controlled to the stoichiometric air-fuel ratio in the air-fuel ratio control. There are limits to what you can do.

このため、これを改良すべく酸素濃度が上昇するリーン
側空燃比を比例的(アナログ的)に検出できる酸素ポン
プ形の酸素センサが提案された。このセンサの構造は第
11dに示す如、2酸化ジルコン等の固体電解質から成
る2板の円板(IJ (2)の間に円環状のスペーサ(
3)を介装して中空部を構成し、更に上記各円板(1)
 (2)のそれぞれの両面に白金(Pt)電極(4a)
 C4b) (4c) (4d)が蒸着され、しかも各
電極、円板(1) (2)にはその中央部に細孔(5a
) 、 (5b)が設けられている。
Therefore, in order to improve this problem, an oxygen pump-type oxygen sensor has been proposed that can proportionally (in an analog manner) detect the lean side air-fuel ratio where the oxygen concentration increases. The structure of this sensor is as shown in No. 11d, with an annular spacer (
3) to constitute a hollow part, and each of the above-mentioned disks (1)
Platinum (Pt) electrodes (4a) on each side of (2)
C4b) (4c) (4d) are deposited, and each electrode and disk (1) (2) has a pore (5a) in the center.
), (5b) are provided.

今、電極(4c) (4d)の両端に直流電圧CVP)
を抵抗(RL)を介して印加すると固体電解質の酸素ポ
ンプとしてのジルコニア円板(2)を通して酸素ガスが
内部(中空部)から外部(被測定ガス側)へ放出される
。中空部から酸素ガスが放出されると電極(4a) (
4b)の両端に酸素濃度差により起電力が生じると同時
に細孔<5a) (5b)を通して被測定ガスが拡散す
る。この時起電力(Vs)を一定にする様に各電極(4
c) (4d)間を流れる電流(IP)を制御すれば、
恒温中で上記電流IPは第2図に示す如く酸素濃度に比
例する値を呈するため酸素センサとして利用可能である
。ところで、このタイプのセンサはN2ガス、あるいは
CO2ガス中の酸素濃度に関しては第2図に示す如く直
線性のある特性を示すが、内燃機関の排気ガス中等の可
燃性ガスが含まれるガス中の酸素濃度に対しては、不安
定な特性となり、特に理論空燃比に近い酸素濃度の小さ
い付近の特性は酸素温度に対し出力が大幅に低下する等
の不安定な特性を示す問題がある。
Now, the DC voltage CVP) across the electrodes (4c) (4d)
When is applied through the resistor (RL), oxygen gas is released from the inside (hollow part) to the outside (to be measured gas side) through the zirconia disk (2) as a solid electrolyte oxygen pump. When oxygen gas is released from the hollow part, the electrode (4a) (
At the same time, an electromotive force is generated at both ends of 4b) due to the difference in oxygen concentration, and at the same time, the gas to be measured diffuses through the pores <5a) (5b). At this time, each electrode (4
c) If the current (IP) flowing between (4d) is controlled,
At constant temperature, the current IP exhibits a value proportional to the oxygen concentration as shown in FIG. 2, so it can be used as an oxygen sensor. By the way, this type of sensor exhibits linear characteristics with respect to the oxygen concentration in N2 gas or CO2 gas, as shown in Figure 2. There is a problem that the characteristics are unstable with respect to the oxygen concentration, and in particular, the characteristics near the stoichiometric air-fuel ratio and the low oxygen concentration exhibit unstable characteristics such as a significant decrease in output with respect to the oxygen temperature.

このため内燃機関のフィードバック空燃比制御にあたり
、上記2種の酸素センサを機関の運転モードによって適
宜選択、組み合せ使用して空燃比をフィードバック制御
すれば理論空燃比、あるいは希薄空燃比に広範囲な空燃
比にフィードバック制御することか可能である。
Therefore, in feedback air-fuel ratio control of an internal combustion engine, if the above two types of oxygen sensors are selected and combined as appropriate depending on the engine operating mode and the air-fuel ratio is feedback-controlled, a wide range of air-fuel ratios can be achieved, including the stoichiometric air-fuel ratio or lean air-fuel ratio. It is possible to perform feedback control.

この発明は上述の点に鑑みてなされたものであり、上記
2捕り特性を呈する酸素センサを一体化(一つの構造単
位比)して構成することにより空燃比リフイードバック
制御に刻し制御範囲の自由度を上げることを可能にする
と共に、検出部に対する取付構造も簡素化し得る酸素セ
ンサを提供することを目的としている。以下図に示すこ
の発明の実施例について説明する。第3図において(6
)はY2O81034承%で安定化した酸化ジルコン等
から成る固体電解質の性質を有するセラミック焼結体で
あり、閉塞された室(A)と一端が大気に開放した室(
β)とを形成している。このセラミック焼結体(6)に
おける上記室(A)を構成する互いに対向する部分の両
側部にはそれぞれ電極(7a) (7b) (7c)(
7d)が設けられている。該1118ii(7a) (
7b) (7c)(7d)は触媒作用を低下させるべく
、例えば白金の上面に金めつきを施したものが使用され
ている。
This invention has been made in view of the above-mentioned points, and by configuring the oxygen sensor exhibiting the above-mentioned two trap characteristics as one unit (one structural unit ratio), it is possible to carve into the air-fuel ratio refeedback control and increase the control range. It is an object of the present invention to provide an oxygen sensor that can increase the degree of freedom and also simplify the mounting structure for the detection section. Embodiments of the present invention shown in the figures will be described below. In Figure 3 (6
) is a ceramic sintered body having the properties of a solid electrolyte made of zirconium oxide stabilized with 1034% Y2O8.
β). Electrodes (7a) (7b) (7c) (
7d) is provided. 1118ii (7a) (
7b) (7c) (7d) For example, platinum plated with gold on the upper surface is used in order to reduce the catalytic action.

(8a) (8b) (8c) (8d)は多孔質セラ
ミックから成る電極保護層であり、上記各電極の上面を
覆っている。これら電極保護層、各電極、セラミック焼
結体には拡散細孔(5a) (5b)が設けられており
、又図示しないが、第1図と同様に電極(7c) (7
d)の両端には抵抗を介して電圧が印加され、この電圧
による電流は電極(7a) (7d)に誘起する起電力
が一定になる様制御される。(9a) (9h)は上記
セラミック焼結体(6)における上記開放室(B)部分
の両面に設けられた白金(pt)電極であり理論空燃比
検出センサを構成する。こり外側の電極(9a)の上面
には多孔質セラミックから成る電極保護層(8e)が設
けられている。OIは上記セラミック焼結体(6)の外
面に保持された温度センサであり、その上面は多孔質セ
ラミックから成る保護層(8f)によって覆われている
。(11)はこの様に構成されたセンサが取り付けられ
機関の排気ガスが流通する排気管である。
(8a) (8b) (8c) (8d) is an electrode protective layer made of porous ceramic and covers the upper surface of each of the electrodes. These electrode protective layers, each electrode, and the ceramic sintered body are provided with diffusion pores (5a) (5b), and although not shown, electrodes (7c) (7
A voltage is applied to both ends of electrode (7a) (7d) through a resistor, and the current caused by this voltage is controlled so that the electromotive force induced in the electrodes (7a) (7d) is constant. (9a) and (9h) are platinum (pt) electrodes provided on both sides of the open chamber (B) portion of the ceramic sintered body (6), and constitute a stoichiometric air-fuel ratio detection sensor. An electrode protective layer (8e) made of porous ceramic is provided on the upper surface of the outer electrode (9a). OI is a temperature sensor held on the outer surface of the ceramic sintered body (6), and its upper surface is covered with a protective layer (8f) made of porous ceramic. (11) is an exhaust pipe to which the sensor configured as described above is attached and through which engine exhaust gas flows.

この様なセンサの製造過程について更に詳述すれば、先
ず、Y2O810重量%で安定化したZrO□焼結体よ
り例えば厚さ0.5 +nmの薄板を構成し、これを所
定寸法の長方形状に2枚切り出し、図の閉塞室(A)を
構成すべき部分の中央部に超音波加工により例えば0.
07mの孔をあけた後、この2枚の薄板の両面に上記孔
を中心として白金を蒸着し更に金めつきを行なって電極
を構成する。同様に一方の薄板の開放室(B)を構成す
べき部分の両面に白金電極を構成し、又他方り薄板の開
放室(B)を構成すべき部分の排気ガスに接する側に温
度センサを取り付け、これら各電極及び温度センサの上
面を保護層により被覆する。
To explain the manufacturing process of such a sensor in more detail, first, a thin plate with a thickness of, for example, 0.5 nm is constructed from a ZrO Two pieces are cut out, and the central part of the part that should constitute the closed chamber (A) in the figure is etched by ultrasonic machining, for example, with a 0.
After drilling a hole of 0.7 m in length, platinum was deposited on both sides of the two thin plates centering around the hole, and then gold plating was performed to form an electrode. Similarly, platinum electrodes are provided on both sides of the part of the thin plate that should constitute the open chamber (B), and a temperature sensor is provided on the side of the thin plate that should constitute the open chamber (B) that is in contact with the exhaust gas. After mounting, the top surface of each of these electrodes and the temperature sensor is covered with a protective layer.

又、例えば厚さIIl]I11の板状の上記焼結体より
、外形が上記長方形状を成し、かつ上記各室(A) (
B)を構成するための所定寸法の孔と切込みとを有する
スペーサを切り出して構成し、このスペーサの両面にN
aO−5iO2−A620Jノ1000℃ノ軟化点を示
すガラスフリットを塗布した後、このスペーサの両面に
上記電極、温度センサ付の2枚の薄板を重ね合せ、炉中
にて1160°Cに加熱して接合し一体化されたセンサ
を構成する。
Further, for example, from the plate-shaped sintered body having a thickness IIl]I11, the outer shape forms the rectangular shape, and each of the chambers (A) (
B) is constructed by cutting out a spacer having holes and notches of predetermined dimensions, and N on both sides of this spacer.
After coating aO-5iO2-A620J with a glass frit having a softening point of 1000°C, the two thin plates with the electrodes and temperature sensor were placed on both sides of this spacer and heated to 1160°C in a furnace. and connect them to form an integrated sensor.

次にこの様にして構成された酸素センサにつき、その機
能を説明する。
Next, the function of the oxygen sensor configured in this manner will be explained.

第3図閉塞室(A)において、図示しないが第1図と同
様に1電極(7c) (7d)の両端には抵抗を介して
電圧が印加されるとセラミック固体電解質酸素ポンプと
して働き酸素ガスが内部(閉塞室A)から外部(排気ガ
ス側)へ放出される。すると内部(閉塞室A)と外部(
排気ガス側)との間に酸素濃度差を生じ電s (7a)
 (7b)間がセラミック固体電解質酸素濃淡電池とし
て働き酸素濃度差により生じた起電力が生じると同時に
細孔(5a) C5b)を通じて内部(閉塞室(A))
に被測定ガスが拡散する。この時起電力を15mV一定
に保つ様に電極(7c) (7d)の両端に抵抗を介し
て電圧が印加すると、恒温中(7=800°C)では印
加電圧による常流(IP)と排気ガス中の酸素濃度との
間には第4図(A)に示す如く比例する値を呈する。第
4図(B)は白金電極(7aC(7b) (7c) (
7d)に金めつきを施さず触媒作用があるもので測定し
た値があり、出力特性は電極(7a) (7b) (7
c) (7d)の触媒作用を抑えた方が安定化する。開
放室CB)において、白金電極(9a) (9b)間に
は触媒活性のためセラミック固体電解質酸素濃淡電池型
理論空燃比検出センサとしての動作出力が発生する。出
力特性は第5図に示す如く理論空燃比で階段状に出力変
化する。
In the closed chamber (A) of Fig. 3, although not shown, when a voltage is applied to both ends of one electrode (7c) (7d) through a resistor, as in Fig. 1, the ceramic solid electrolyte acts as an oxygen pump and gases oxygen. is released from the inside (closed chamber A) to the outside (exhaust gas side). Then, the inside (occlusion chamber A) and the outside (
(7a)
The ceramic solid electrolyte between (7b) acts as an oxygen concentration battery, and an electromotive force is generated due to the difference in oxygen concentration.At the same time, the inside (closed chamber (A))
The gas to be measured is diffused. At this time, if a voltage is applied to both ends of the electrodes (7c) and (7d) through a resistor so as to keep the electromotive force constant at 15 mV, at constant temperature (7 = 800°C), the normal current (IP) and the exhaust gas due to the applied voltage. The oxygen concentration in the gas exhibits a proportional value as shown in FIG. 4(A). Figure 4 (B) shows the platinum electrode (7aC (7b) (7c) (
7d) has a value measured with a non-gold-plated material that has a catalytic action, and the output characteristics are those of the electrode (7a) (7b) (7
c) It is more stable if the catalytic action of (7d) is suppressed. In the open chamber CB), an operational output as a ceramic solid electrolyte oxygen concentration cell type stoichiometric air-fuel ratio detection sensor is generated between the platinum electrodes (9a) and (9b) due to catalytic activity. As for the output characteristics, as shown in FIG. 5, the output changes stepwise at the stoichiometric air-fuel ratio.

温度センサαQを用いて排気ガス温度測定を行う。Exhaust gas temperature is measured using temperature sensor αQ.

保護層(8a) (8b) ’(8c) (8d) (
8e) (8f)は多孔質セラミックから成り各電極と
センサの保護作用を成している。被測定ガスとなる排気
ガスは排気管0υによって導入される。
Protective layer (8a) (8b) '(8c) (8d) (
8e) (8f) is made of porous ceramic and serves to protect each electrode and sensor. The exhaust gas to be measured is introduced through the exhaust pipe 0υ.

以上説明した様に本発明によれば、二種類の酸素センサ
を一体化したために、内燃機関の排気ガス中の酸素濃度
に対する2種類の出力特性を呈する小型で安価なセンサ
の実用が可能となり、又検出部に対する取り付けのため
の構造も簡素化できるものであり、更には内燃機関の空
燃比制御にあたってはその制御範囲の自由度を上げるこ
とができる。
As explained above, according to the present invention, since two types of oxygen sensors are integrated, it is possible to put into practical use a small and inexpensive sensor that exhibits two types of output characteristics with respect to the oxygen concentration in the exhaust gas of an internal combustion engine. Furthermore, the structure for mounting on the detection section can be simplified, and furthermore, the degree of freedom in controlling the air-fuel ratio of the internal combustion engine can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の酸素センサを示す断面図、第2図は第1
図のセンサのN2(窒素)ガス中の酸素濃度を計測した
特性図、第8図はこの発明の一実施例による酸素センサ
ケ示す断面図、第4図は排気ガス中の酸素濃度を計測し
た特性図、第5図は理論空燃比センサの特性図である。 (1)、(2)・・・・ ジルコニア円板、(3)・・
・・・・・中空形成用円環状スペーサ、(4a)(4b
)(4c)(4d)−・−・白金電極、(5aX5b)
・・・・・・・拡散細孔、(6)・・・・・・ジルコニ
アから相るセラミック焼結体、(7a)(7b)(7c
)(7d)−=・”’金めつき白金電極、(8a)(8
b)(8c)(8d)(8e)(8f)・・・・・・・
・ 電極保護層、(9a)(9b)・・・・−・・・白
金電極、0Q・・・・・ 温度センサ、0υ・・・・・
・・・・排気管、(A)・・・・・・・・・閉塞室、C
B)・・・・・・・・・開放室代理人  葛野信− 第1図 /? P 第2図 02(%) 第3図 第4図 第5図 室燃比 ’I)3′「I ’l長゛自殿 1.事f!1の表示   持19(1昭57−1672
00号28発明の21称 酸素センサ 3、抽出をする者 代表台片111己ハ部 (1)明細711をつき゛のとおり訂正する。 1、 事件の表示  特願昭57−167200号8、
 補正をする者 事件との関住 f!旺出出願 人所  兵庫県姫路市土山1丁目5番15号名称  総
合自動車安全公害技術研究組合代表者 坂 1) 邦 
寿 4、代理人 住所  東京都千代田区丸の内二丁目2番3号6、補正
の対象 明細書の特許発明の詳細な説明1図面の簡単な説明の欄
6、補正の内容
Figure 1 is a cross-sectional view of a conventional oxygen sensor, and Figure 2 is a cross-sectional view of a conventional oxygen sensor.
Figure 8 is a cross-sectional view showing an oxygen sensor according to an embodiment of the present invention, and Figure 4 is a characteristic diagram of the sensor measuring oxygen concentration in exhaust gas. FIG. 5 is a characteristic diagram of the stoichiometric air-fuel ratio sensor. (1), (2)... Zirconia disc, (3)...
・・・・・・Annular spacer for hollow formation, (4a) (4b
) (4c) (4d) --- Platinum electrode, (5aX5b)
...... Diffusion pores, (6) ... Ceramic sintered body made of zirconia, (7a) (7b) (7c
) (7d) -=・”'Gold-plated platinum electrode, (8a) (8
b) (8c) (8d) (8e) (8f)
・ Electrode protective layer, (9a) (9b)...Platinum electrode, 0Q... Temperature sensor, 0υ...
...Exhaust pipe, (A) ......Occluded chamber, C
B)......Open room agent Shin Kuzuno - Figure 1/? P Fig. 2 02 (%) Fig. 3 Fig. 4 Fig. 5 Room fuel ratio 'I) 3''I'llength' 1.Indication of 1.
21st name oxygen sensor 3 of No. 00 No. 28 invention, extractor representative stand piece 111 Part (1) Specification 711 is corrected as per the following. 1. Indication of the incident Patent Application No. 167200/1983 8.
Relationship between the person making the amendment and the case f! Ode Applicant Office 1-5-15 Tsuchiyama, Himeji City, Hyogo Prefecture Name General Automobile Safety Pollution Technology Research Association Representative Saka 1) Kuni
Kotobuki 4, Agent address: 2-2-3-6 Marunouchi, Chiyoda-ku, Tokyo, Detailed description of the patented invention in the specification subject to amendment 1 Brief description of drawings column 6, Contents of the amendment

Claims (1)

【特許請求の範囲】[Claims] 固体電解質の性質を有する基体に拡散細孔を有する閉塞
室と大気に開口する凹放室とを形成し、上記閉塞室を構
成する上記基体部を挾んで酸素ポンプとして機能する第
1の電極対と電圧を誘起する第2の電極対を設けると共
に、上記開放室を構成する上記基体部を挾んで第8の電
極対を設け、上記基体部に設けられる第1.第2の電極
対によって構成される酸素ポンプ形センサと上記基体部
に設けられる第3の電極対によって構成さnる理論空燃
比センサとを一体化構成とした酸素センサ。
A first electrode pair forming a closed chamber having diffusion pores and a concave release chamber opening to the atmosphere in a base body having properties of a solid electrolyte, and functioning as an oxygen pump by sandwiching the base portion constituting the closed chamber. and a second electrode pair that induces a voltage, and an eighth electrode pair is provided sandwiching the base portion constituting the open chamber; An oxygen sensor having an integrated configuration of an oxygen pump type sensor constituted by a second pair of electrodes and a stoichiometric air-fuel ratio sensor constituted by a third pair of electrodes provided on the base portion.
JP57167200A 1982-09-24 1982-09-24 Oxygen sensor Pending JPS5963555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57167200A JPS5963555A (en) 1982-09-24 1982-09-24 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57167200A JPS5963555A (en) 1982-09-24 1982-09-24 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS5963555A true JPS5963555A (en) 1984-04-11

Family

ID=15845276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57167200A Pending JPS5963555A (en) 1982-09-24 1982-09-24 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS5963555A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200162A (en) * 1984-03-23 1985-10-09 Nissan Motor Co Ltd Apparatus for measuring concentration of oxygen
JPS62179655A (en) * 1986-02-01 1987-08-06 Ngk Insulators Ltd Method and apparatus for detecting air/fuel ratio
JPS6320056U (en) * 1986-07-23 1988-02-09
WO2002001216A1 (en) * 2000-06-24 2002-01-03 Robert Bosch Gmbh Pt/au electrodes for the pumping out of 02 and method for production thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330386B2 (en) * 1974-01-17 1978-08-26
JPS56130149A (en) * 1980-03-15 1981-10-12 Kogyo Gijutsuin Repairing of stricture part of fine tube in live body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5330386B2 (en) * 1974-01-17 1978-08-26
JPS56130149A (en) * 1980-03-15 1981-10-12 Kogyo Gijutsuin Repairing of stricture part of fine tube in live body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60200162A (en) * 1984-03-23 1985-10-09 Nissan Motor Co Ltd Apparatus for measuring concentration of oxygen
JPS62179655A (en) * 1986-02-01 1987-08-06 Ngk Insulators Ltd Method and apparatus for detecting air/fuel ratio
JPS6320056U (en) * 1986-07-23 1988-02-09
WO2002001216A1 (en) * 2000-06-24 2002-01-03 Robert Bosch Gmbh Pt/au electrodes for the pumping out of 02 and method for production thereof

Similar Documents

Publication Publication Date Title
US4579643A (en) Electrochemical device
US4298573A (en) Device for detection of oxygen concentration in combustion gas
US5948963A (en) Gas sensor
US4720335A (en) Wide range air fuel ratio sensor
JPH0437378B2 (en)
JPS6228422B2 (en)
US4797194A (en) Electrochemical element
JP3623065B2 (en) Nitrogen oxide sensor
JPS61256251A (en) Electrochemical element
JPS6029065B2 (en) Air-fuel ratio control signal generator
JPH11237361A (en) Gas sensor
JPS5963555A (en) Oxygen sensor
JPS59192955A (en) Air fuel ratio sensor
US5194135A (en) Air/fuel ratio sensor
JPS5994051A (en) Oxygen sensor
US5242573A (en) Method of making air/fuel ratio sensor
JP2851632B2 (en) Electrochemical element
JPH10197479A (en) Exhaust gas sensor and exhaust gas sensor system
JPH116818A (en) Exhaust gas sensor and manufacture thereof
JPS6111653A (en) Air-fuel ratio detector
JPH0261704B2 (en)
JPH0210904B2 (en)
JPH0723735Y2 (en) Oxygen concentration sensor
JPH0411823B2 (en)
JPH0760143B2 (en) Oxygen concentration sensor