JP2513350B2 - Air-fuel ratio detector - Google Patents

Air-fuel ratio detector

Info

Publication number
JP2513350B2
JP2513350B2 JP2204327A JP20432790A JP2513350B2 JP 2513350 B2 JP2513350 B2 JP 2513350B2 JP 2204327 A JP2204327 A JP 2204327A JP 20432790 A JP20432790 A JP 20432790A JP 2513350 B2 JP2513350 B2 JP 2513350B2
Authority
JP
Japan
Prior art keywords
fuel ratio
air
pump
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2204327A
Other languages
Japanese (ja)
Other versions
JPH03282250A (en
Inventor
哲朗 石田
信明 村上
喜朗 団野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to EP91103018A priority Critical patent/EP0444674B1/en
Priority to DE69118739T priority patent/DE69118739T2/en
Priority to US07/661,614 priority patent/US5231864A/en
Priority to KR1019910003380A priority patent/KR940001351B1/en
Publication of JPH03282250A publication Critical patent/JPH03282250A/en
Application granted granted Critical
Publication of JP2513350B2 publication Critical patent/JP2513350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/207497Molecular oxygen
    • Y10T436/208339Fuel/air mixture or exhaust gas analysis

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リニアA/Fセンサと称されている空燃比検
出装置に関し、時に内燃機関等の燃焼装置へ供給される
混合気の理論空燃比(ストイキオ)を精度良く検出する
ための改良に関する。
Description: TECHNICAL FIELD The present invention relates to an air-fuel ratio detecting device called a linear A / F sensor, and in some cases, a theoretical air-fuel ratio of an air-fuel mixture supplied to a combustion device such as an internal combustion engine. The present invention relates to an improvement for accurately detecting a fuel ratio (stoichio).

〔従来の技術〕[Conventional technology]

従来、ジルコニアの酸素濃淡電池作用と酸素イオンポ
ンピング作用という特性を利用して、空燃比(A/F)を
単にストイキオよりもリーン側からリッチ側かだけでな
く、どの程度の値であるか検出するリニアA/Fセンサが
提案されている(特開昭63−36140号公報参照)。
Conventionally, by utilizing the characteristics of zirconia's oxygen concentration cell action and oxygen ion pumping action, the air-fuel ratio (A / F) is detected not only from the lean side to the rich side of Stoichio, but also to what value A linear A / F sensor has been proposed (see JP-A-63-36140).

第13図〜第16図を参照して従来の一例を説明する。 A conventional example will be described with reference to FIGS. 13 to 16.

第13図はリニアA/FセンサS1を構成する素子部分を分
解して示し、各々安定化ジルコニア素子であるセンサセ
ル20とポンプセル21とを絶縁層22を介して結合してあ
る。センサセル20とポンプセル21には排ガスを通すため
の拡散孔23,24が形成され、絶縁層22にはこれらの拡散
孔23,24からの排ガスが導かれるような検出室(キャビ
ティ)25が形成され、これらにより拡散律速体が構成さ
れている。また、絶縁層22にはリファレンス室25aが形
成され、ここに参照気体例えば大気(空気)が導かれる
ように構成される。更に、第14図を参照すると、触媒が
兼ねて白金の電極26,27,28,29が設けてあり、これらに
は多数の微小孔があけてある。30は電気ヒータであり、
セル全体を例えば800±100℃に加熱して各セル20,21の
動作の確実化を図っている。
FIG. 13 is an exploded view of the element parts constituting the linear A / F sensor S 1 , in which the sensor cell 20 and the pump cell 21, which are each a stabilized zirconia element, are connected via an insulating layer 22. Diffusion holes 23, 24 for passing exhaust gas are formed in the sensor cell 20 and the pump cell 21, and a detection chamber (cavity) 25 is formed in the insulating layer 22 to guide the exhaust gas from these diffusion holes 23, 24. , And these constitute the diffusion rate controlling body. A reference chamber 25a is formed in the insulating layer 22, and a reference gas such as the atmosphere (air) is introduced into the reference chamber 25a. Further, referring to FIG. 14, platinum electrodes 26, 27, 28, and 29 are provided also as a catalyst, and a large number of micropores are formed in these electrodes. 30 is an electric heater,
The entire cell is heated to, for example, 800 ± 100 ° C. to ensure the operation of each cell 20, 21.

センサセル20は従来のO2センサと同様の原理で電極2
6,27間に酸素濃度差があると起電力を生じる性質を備
え、ポンプセル21は逆に電極28,29間に強制的に電流
(ポンプ電流IP)が流されると酸素をマイナス電極側か
らプラス電極側に汲み出す性質を備える。
Sensor cell 20 is the electrode 2 on the same principle as conventional O 2 sensor
The pump cell 21 has a property of generating an electromotive force when there is a difference in oxygen concentration between 6,27. Conversely, when a current (pump current I P ) is forced to flow between the electrodes 28, 29, the pump cell 21 supplies oxygen from the negative electrode side. It has the property of pumping to the positive electrode side.

そこで制御部31にてセンサセル20の超電力VSを検出
し、この起電力VSを一定に保つように、即ちキャビティ
25内または拡散孔23,24内をストイキオに対応する酸素
濃度に保つようにポンプ電流IPをF/B(フィードバッ
ク)制御する。これにより、ポンプ電流IPは第15図に示
すように空燃比(A/F)に対して連続的に変化するの
で、ポンプ電流IPから空燃比を算出することができる。
Therefore, the control unit 31 detects the super power V S of the sensor cell 20 and keeps this electromotive force V S constant, that is, the cavity.
The pump current I P is F / B (feedback) controlled so as to maintain the oxygen concentration in 25 or the diffusion holes 23, 24 at the oxygen concentration corresponding to stoichio. As a result, the pump current I P continuously changes with respect to the air-fuel ratio (A / F) as shown in FIG. 15, so the air-fuel ratio can be calculated from the pump current I P.

制御部31としては、比較回路1にてセンサセル20の起
電力VSをストイキオ相当の参照電圧Vrefと比較し、比較
回路1の出力を正負電源付き積分アンプ2で積分し、そ
の積分出力でポンプセル21にポンプ電流IPを流す。
As the control unit 31, the comparison circuit 1 compares the electromotive force V S of the sensor cell 20 with the reference voltage V ref equivalent to Stoichio, integrates the output of the comparison circuit 1 with the integration amplifier 2 having a positive / negative power supply, and outputs the integrated output. A pump current I P is passed through the pump cell 21.

そして、ポンプ電流IPの回路に電流検出用の抵抗器5
を介挿し、抵抗器の降下電圧から電流検出回路3により
ポンプ電流IPを検出している。
Then, a resistor 5 for detecting the current is added to the circuit of the pump current I P.
And the pump current I P is detected by the current detection circuit 3 from the voltage drop of the resistor.

更に、回路3の出力を加算回路4に入力し、下式の処
理によって、例えば、0〜5ボルトの信号VOUtにより空
燃比を表わすようにしている。
Further, the output of the circuit 3 is input to the adder circuit 4, and the air-fuel ratio is represented by the signal V OUt of 0 to 5 volts by the processing of the following equation.

VOUt=G・Ip+Vstp 但し、Gは電流−電圧変換ゲイン、Vstpはステップア
ップ電圧である。
V OUt = G · Ip + V stp where G is the current-voltage conversion gain and V stp is the step-up voltage.

しかし、上述した制御されたポンプ電流IPの値で空燃
比を検出する場合、従来のストイキオだけを検出できる
O2センサに比べ、酸素濃度差による本能的な起電力を検
出するのではなくフィードバック制御した結果のポンプ
電流を検出しているので、検出値にフィードバック制御
回路系の誤差例えば参照電圧Vrefのバラツキ、積分アン
プ2の誤差、加算回路4の演算誤差などを含むという精
度上の不都合がある。
However, when detecting the air-fuel ratio with the value of the above-mentioned controlled pump current I P , only conventional stoichio can be detected.
Compared to the O 2 sensor, rather than detecting the instinctual electromotive force due to the difference in oxygen concentration, the pump current resulting from feedback control is detected, so the error in the feedback control circuit system, such as the reference voltage V ref , is detected. There is an inconvenience in accuracy that includes variations, errors of the integrating amplifier 2 and arithmetic errors of the adder circuit 4.

特に、三元触媒を用いた排ガスシステムでは空燃比を
ストイキオ近傍の狭いウィンドウ内に制御する必要があ
り、ストイキオ検出精度が重要である。
Particularly, in an exhaust gas system using a three-way catalyst, it is necessary to control the air-fuel ratio within a narrow window near stoichio, and stoichio detection accuracy is important.

従って、上述のリニアA/Fセンサを用いてS−FB(ス
トイキオ−フィードバック)制御をも行うシステムの場
合、S−FB制御の精度のみについて言えば、従来のO2
ンサを用いたS−FBシステムに比べて精度が悪いと言え
る。
Therefore, in the case of a system that also performs S-FB (stoichio-feedback) control using the above-mentioned linear A / F sensor, the S-FB control using the conventional O 2 sensor can be used as far as the accuracy of S-FB control is concerned. It can be said that the accuracy is lower than that of the system.

そこで、制御回路系の誤差を少しでも軽減する工夫と
して、第14図の従来装置では、電流検出用抵抗器5の降
下電圧を電流反転検出器6に与えてポンプ電流の流れ方
向を検出し、理論空燃比(ストイキオ)信号VStCを得て
いる。
Therefore, as a device for reducing the error of the control circuit system as much as possible, in the conventional device of FIG. 14, the drop voltage of the current detection resistor 5 is applied to the current reversal detector 6 to detect the flow direction of the pump current, The stoichiometric stoichiometric signal V StC is obtained.

即ち、第15図から判るように、ポンプ電流IPはストイ
キオ点を境に正負が反転するので、これを電流反転検出
器6で検出すれば、第16図のようにストイキオ点を境に
レベルが2値に変化する信号VStCが得られる。この信号
VStCには加算回路4でのゲインGの誤差やステップアッ
プ電圧VStPの誤差は含まれないので、ストイキオ検出精
度はその分良くなっている。
That is, as can be seen from FIG. 15, the positive and negative signs of the pump current I P are inverted at the stoichiometric point, so if this is detected by the current reversal detector 6, the level will be at the stoichiometric point as shown in FIG. A signal V StC that changes to a binary value is obtained. This signal
Since V StC does not include the error of the gain G in the adder circuit 4 and the error of the step-up voltage V StP , the stoichiometric detection accuracy is improved accordingly.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、電流反転検出器6の出力VStCには依然とし
て、参照電圧Vrefの誤差、積分アンプ2の誤差と言った
制御回路系の誤差が含まれており、これらの経年変化の
影響も受けるので、改良の余地がある。また、制御系が
あるため応答性が若干悪い。
However, the output V StC of the current reversal detector 6 still contains the errors of the control circuit system such as the error of the reference voltage V ref and the error of the integrating amplifier 2, and is affected by these secular changes. , There is room for improvement. In addition, because of the control system, the responsiveness is slightly poor.

更に、三元触媒は、第9図に示すように、理論空燃比
近傍で各有害性分をバランスよく高レベルの浄化高率で
浄化することができる。
Further, as shown in FIG. 9, the three-way catalyst can purify each harmful component in a well-balanced and high-level purification high ratio in the vicinity of the stoichiometric air-fuel ratio.

しかし、車種によって触媒入口の排ガスの成分割合と
量が異なり、又、触媒のタイプによっても浄化特性が微
妙に異なるため、目標空燃比を微調整したいというニー
ズがある。
However, the component ratio and amount of the exhaust gas at the catalyst inlet differ depending on the vehicle type, and the purification characteristics also slightly differ depending on the catalyst type, so there is a need to finely adjust the target air-fuel ratio.

本発明の目的は、ストイキオ検出精度、応答性がより
良く、更に、目標空燃比を容易に微調整できる空燃比検
出装置を提供することにある。
It is an object of the present invention to provide an air-fuel ratio detection device that has better stoichiometric detection accuracy and responsiveness and that can easily and finely adjust the target air-fuel ratio.

〔課題を解決するための手段〕[Means for solving the problem]

本発明による空燃比検出装置は、排ガス中に置かれる
キャビティと、 参照気体が充填された参照気体室と、 上記キャビティ内に設けられた第1センサ電極と上記
参照気体室内に設けられた第2センサ電極により上記キ
ャビティ内と参照気体室内の酸素濃度の差に応じた電気
信号を出力するセンサセルと、 同センサセルからの出力に応じた電気制御信号を出力
する制御手段と、 排ガス中にさらされる第1ポンプ電極と上記キャビテ
ィ内に設けられた第2ポンプ電極により上記制御手段か
ら供給される電気制御信号に応じて酸素イオンを移動さ
せるポンプセルと、 上記制御手段とポンプセルとの間で授受される制御電
流に応じた空燃比信号を出力する第1の検出手段と、 上記制御手段からポンプセルに印加される制御電圧を
検出してその値と所定の閾値とより理論空燃比を算出し
てその信号を出力する第2の検出手段と、 上記第2の検出手段の閾値を増減調整する閾値設定手
段と、を有することを特徴とする。
The air-fuel ratio detection device according to the present invention includes a cavity placed in exhaust gas, a reference gas chamber filled with a reference gas, a first sensor electrode provided in the cavity, and a second sensor electrode provided in the reference gas chamber. A sensor cell that outputs an electric signal according to the difference in oxygen concentration between the inside of the cavity and the reference gas chamber by the sensor electrode, a control means that outputs an electric control signal according to the output from the sensor cell, and a sensor cell that is exposed to the exhaust gas. A pump cell for moving oxygen ions in response to an electric control signal supplied from the control means by one pump electrode and a second pump electrode provided in the cavity, and control exchanged between the control means and the pump cell. A first detection means for outputting an air-fuel ratio signal corresponding to the current, and a control voltage applied to the pump cell from the control means to detect the value and And having second detection means for outputting the signal to more calculated theoretical air-fuel ratio with a constant threshold, and the threshold setting means for increasing or decreasing adjusting the threshold of the second detecting means.

(作用) この発明ではセンサセルだけでなく、ポンプセルも基
本的にはO2センサであり、参照気体が異なるだけである
から、ポンプセルも酸素濃度差による本能的な起電力を
生じる。このポンプセルはキャビティ内のガスと排ガス
との酸素濃度差によって酸素濃淡起電力を発生させてお
り、この起電力の影響を受けた電圧は制御回路系からの
印加電圧に加わりストイキオ点で、例えば約0.6ボルト
程度ジャンプし、不連続に変化する。これはとりもなお
さず従来のO2センサと同様な酸素濃度差による本能的な
起電力を検出していることになり、制御回路系の影響を
殆ど受けないで、理論空燃比を算出するようになり、特
に、閾値設定手段により閾値が増減調整されることによ
り、目標とする修正理論空燃比に微調整できる。
(Operation) In the present invention, not only the sensor cell but also the pump cell is basically an O 2 sensor and only the reference gas is different. Therefore, the pump cell also produces an instinctual electromotive force due to the oxygen concentration difference. This pump cell generates an oxygen concentration electromotive force due to the difference in oxygen concentration between the gas in the cavity and the exhaust gas, and the voltage affected by this electromotive force is added to the voltage applied from the control circuit system at the stoichiometric point, for example, about Jump about 0.6 volts and change discontinuously. This means that the instinctive electromotive force due to the oxygen concentration difference similar to the conventional O 2 sensor is detected, and the theoretical air-fuel ratio can be calculated without being affected by the control circuit system. In particular, by increasing or decreasing the threshold value by the threshold value setting means, it is possible to finely adjust the target corrected stoichiometric air-fuel ratio.

〔実 施 例〕〔Example〕

以下、図面を参照して本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の概略全体構成を示し、第14図に示し
た従来の装置とは、電流反転検出器6の代りに、第2の
検出手段としてポンプ電圧測定処理回路7を用いた点が
異なる。従って、従来技術と同一部分には同一符号を付
し説明を簡略化する。
FIG. 1 shows a schematic overall configuration of the present invention. In contrast to the conventional device shown in FIG. 14, a pump voltage measurement processing circuit 7 is used as a second detecting means instead of the current inversion detector 6. Is different. Therefore, the same parts as those of the conventional technique are designated by the same reference numerals to simplify the description.

第1図において、比較回路1と正負電源付き積分アン
プ2が制御手段31を構成し、センセセル20の電極26,27
間の起電力VSを参照電圧Vref(例えば0.4ボルト)と比
較し、その出力を積分アンプ2で積分して正又は負の制
御出力をポンプセル21の電極28,29間に印加し、VS=V
refとなるように、ポンプセル21にポンプ電流IPを流
す。
In FIG. 1, the comparison circuit 1 and the integration amplifier 2 with a positive / negative power supply constitute the control means 31, and the electrodes 26 and 27 of the sense cell 20 are provided.
The electromotive force V S between them is compared with a reference voltage V ref (for example, 0.4 V), the output is integrated by the integrating amplifier 2, and a positive or negative control output is applied between the electrodes 28 and 29 of the pump cell 21, S = V
A pump current I P is passed through the pump cell 21 so that it becomes ref .

電流検出用抵抗器5及び電流検出回路3が第1の検出
手段を構成し、抵抗器5に生じる電圧降下から回路3で
ポンプ電流IPを検出する。ポンプ電流IP自体が空燃比の
情報を有するが、加算回路4により0〜5ボルトの空燃
比信号VOUtに変換して出力させている。
The current detecting resistor 5 and the current detecting circuit 3 constitute a first detecting means, and the circuit 3 detects the pump current I P from the voltage drop occurring in the resistor 5. Although the pump current I P itself has the air-fuel ratio information, it is converted into an air-fuel ratio signal V OUt of 0 to 5 V by the adder circuit 4 and output.

そして、ポンプ電圧測定処理回路7にポンプセル21の
A点の電圧、即ち電極28,29間のポンプ電圧VPを入力さ
せている。
Then, the voltage at the point A of the pump cell 21, that is, the pump voltage V P between the electrodes 28 and 29 is input to the pump voltage measurement processing circuit 7.

ポンプ電圧測定処理回路7は第2図(a)に示すスト
イキオ点でジャンプするポンプ電圧VPに対し、不連続の
特性部分を検出するに適した閾値を有しており、第2図
(b)に示すようにストイキオ点を境に、リーン側とリ
ッチ側で異なるレベルとなる理論空燃比(ストイキオ)
信号VStCを出力するようになっている。リーン側とリッ
チ側どちらを高レベルにするかは自由である。
The pump voltage measurement processing circuit 7 has a threshold value suitable for detecting a discontinuous characteristic portion with respect to the pump voltage V P jumping at the stoichiometric point shown in FIG. 2 (a), and FIG. ), The stoichio point is the boundary, and the stoichiometric air-fuel ratio (stoichio) has different levels on the lean side and the rich side.
It is designed to output the signal V StC . It is up to you to choose the lean side or the rich side.

第3図は第2の検出手段即ちポンプ電圧測定処理回路
7の第1の具体例を示し、バッファアンプ8と、CRフィ
ルタ10と、オープンコレクタのコンパレータ9とで構成
してある。
FIG. 3 shows a second specific example of the second detection means, that is, the pump voltage measurement processing circuit 7, which is composed of a buffer amplifier 8, a CR filter 10 and an open collector comparator 9.

即ち、第3図中のA点の電圧をバッファアンプ8を経
てフィルタ10に通し、ここでポンプ電流IPのフィードバ
ックによる発振の防止、サージ対策、ノイズ除去を行っ
たのち、閾値を0ボルトとしてコンパレータ9でストイ
キオ信号VStCを得ている。
That is, the voltage at the point A in FIG. 3 is passed through the buffer amplifier 8 and the filter 10 to prevent oscillation due to the feedback of the pump current I P , prevent surges, and remove noise, and then set the threshold value to 0 volt. The comparator 9 obtains the stoichiometric signal V StC .

第4図はポンプ電圧測定処理回路7の第2の具体例を
示し、第3図の例とはコンパレータ9の閾値を増減調整
する閾値設定手段を設けた点が異なり、ここでのポンプ
電圧測定処理回路7が本発明の要部を構成している。
FIG. 4 shows a second specific example of the pump voltage measurement processing circuit 7, and is different from the example of FIG. 3 in that a threshold value setting means for increasing and decreasing the threshold value of the comparator 9 is provided. The processing circuit 7 constitutes an essential part of the present invention.

即ち、ポテンションメータ9aを用いて閾値設定手段と
しての可変設定器を作り、その出力をコンパレータ9の
非反転入力端子に与え、フィルタ10の出力を反転入力端
子に与えている。
That is, a potentiometer 9a is used to make a variable setter as a threshold setting means, the output of which is applied to the non-inverting input terminal of the comparator 9 and the output of the filter 10 is applied to the inverting input terminal.

これにより、第5図(a)に示すように閾値αを正側
にシフトして設定すれば同図(b)の特性αのようにコ
ンパレータ出力VStCはストイキオよりリーン側でレベル
が変化し、逆に閾値βを負側にシフトして設定すればコ
ンパレータ出力VStCはストイキオよりもリッチ側でレベ
ルが変化する。このように閾値を変えるとストイキオ信
号VStCの変化点がストイキオから若干ずれ、下記の利点
が得られる。即ち、車種によって触媒入口の排出ガス特
性は、同一空燃比でもCO排出量が多かったりNOx排出量
が多かったりまちまちである。また三元触媒においても
傾向は第9図の通りであるが、その浄化効率の絶対値は
そのタイプ(容量等がちがえば)によって異なる。よっ
て、ストイキオ制御の目標空燃比をリッチ側にずらせば
より多くのNOxを浄化することができ(CO排出量が少な
くNOxの多い車に適応)、リーン側にずらせばCO,HCをよ
り多く浄化することができる(NOx排出量が少なく、CO
排出量の多い車に適応)ので、その車に最適な排出ガス
浄化特性が得られる。
As a result, if the threshold value α is shifted and set to the positive side as shown in FIG. 5A, the level of the comparator output V StC changes on the lean side from Stoichio like the characteristic α of FIG. 5B. Conversely, if the threshold value β is set to be shifted to the negative side, the level of the comparator output V StC changes on the rich side of Stoichio. When the threshold value is changed in this way, the change point of the stoichio signal V StC is slightly deviated from stoichio, and the following advantages are obtained. In other words, the exhaust gas characteristics at the catalyst inlet vary depending on the vehicle type, such as a large amount of CO emissions and a large amount of NOx emissions even with the same air-fuel ratio. The tendency of the three-way catalyst is as shown in FIG. 9, but the absolute value of the purification efficiency differs depending on its type (capacity and the like are different). Therefore, if the target air-fuel ratio of stoichio control is shifted to the rich side, more NOx can be purified (adapted to vehicles with less CO emissions and more NOx), and if it is shifted to the lean side, more CO and HC are purified. (NOx emissions are low and CO
It is suitable for vehicles that emit a lot of emissions), so the optimum emission purification characteristics for that vehicle can be obtained.

第6図はポンプ電圧測定処理回路7の第3の具体例を
示し、フィルタ10の出力をオペアンプ(演算増幅器)11
の反転入力端子に抵抗器12を介して与え、オペアンプ11
の出力を抵抗器13を介して反転入力端子に帰還し、非反
転入力端子には閾値設定手段をなす抵抗分圧器14により
ストイキオ検出用の電圧を与えている。そして、直列接
続した2個のダイオード15,16を特性電圧の電源とアー
ス間に逆バイアスに接続し、ダイオードどうしの接続点
とオペアンプ11の出力端子とを抵抗器17で接続すること
により、クリップ機能を有するアンプを構成している。
FIG. 6 shows a third specific example of the pump voltage measurement processing circuit 7, in which the output of the filter 10 is an operational amplifier (operational amplifier) 11
It is applied to the inverting input terminal of
Is fed back to the inverting input terminal via the resistor 13, and the non-inverting input terminal is supplied with the voltage for detecting the stoichio by the resistance voltage divider 14 forming the threshold value setting means. Then, two diodes 15 and 16 connected in series are connected in reverse bias between the characteristic voltage power supply and ground, and the connection point between the diodes and the output terminal of the operational amplifier 11 are connected by the resistor 17 to clip. It constitutes an amplifier having a function.

このようにすると、第7図(a)に示す波形のA点の
入力電圧に対し、ストイキオ信号VStCの波形は第7図
(b)に示すようにストイキオ近傍での変化が若干滑ら
かになり、いわゆるλセンサ並みの出力特性となる利点
がある。
By doing so, the waveform of the stoichio signal V StC becomes slightly smoother in the vicinity of the stoichio as shown in FIG. 7 (b) with respect to the input voltage at the point A of the waveform shown in FIG. 7 (a). That is, there is an advantage that the output characteristics are comparable to those of a so-called λ sensor.

更に、このような出力特性を示すストイキオ信号VStC
を二値としてそのまま用いず、ここでは第7図(b)及
び第10図に示すような閾値Ziを用い、これに対応する目
標空燃比としての修正理論空燃比λa,λb(リッチシフ
ト側)、λc(リーンシフト側)を検出するように構成
できる。
Furthermore, a stoichiometric signal V StC showing such output characteristics
Is not used as a binary value as it is, but here the threshold value Zi as shown in FIG. 7 (b) and FIG. 10 is used, and the corrected theoretical air-fuel ratios λa, λb (rich shift side) as the target air-fuel ratio corresponding to this are used. , Λc (lean shift side) can be detected.

なお、第10図の閾値Zi算出マップはエンジン回転数Ne
と体積効率Evとより複数の値が選択使用され、ここで
は、エンジン回転数Neがレベルa,bで閾値Ziを切換え、
体積効率Evがレベルcで閾値Ziを切換えるべく設定され
る。なお、これら閾値Ziは車種、触媒特性等により任意
に設定されることとなる。
The threshold Zi calculation map in FIG.
And a plurality of values are selected and used according to the volumetric efficiency Ev, and here, the engine speed Ne switches the threshold value Zi at the levels a and b,
The volumetric efficiency Ev is set to switch the threshold Zi at level c. It should be noted that these threshold values Zi are arbitrarily set depending on the vehicle type, catalyst characteristics, and the like.

このような本発明における閾値設定手段は制御手段31
内に内臓される。ここでの制御手段はマイクロコンピュ
ータでその要部が構成され、特に、各出力信号を受け
て、適時にその情報を取込み、あるいは適時に制御信号
を出力するもので、第11図(a),(b)および第12図
に示すVStC閾値設定プログラムや、燃料噴射量算出プロ
グラムや、第10図に示すストイキオ制御判定スレッショ
ルドレベルZi算出マップが記憶処理されている。
Such threshold value setting means in the present invention is the control means 31
It is visceral inside. A main part of the control means is composed of a microcomputer, and in particular, it receives each output signal and fetches the information at a proper time or outputs a control signal at a proper time. The V StC threshold setting program shown in (b) and FIG. 12, the fuel injection amount calculation program, and the stoichiometric control determination threshold level Zi calculation map shown in FIG. 10 are stored.

次に、上記実施例で説明したストイキオ信号VStCと空
燃比信号VOUtを用いた燃料フィードバック制御の一例
を、第11図(a),(b)、第12図を参照して説明す
る。
Next, an example of fuel feedback control using the stoichio signal V StC and the air-fuel ratio signal V OUt described in the above embodiment will be described with reference to FIGS. 11 (a), (b) and FIG.

第11図(a),(b)は本発明で使用するVStC閾値設
定プログラムであり、第12図は燃料噴射量算出プログラ
ムを示している。
11 (a) and 11 (b) show a V StC threshold setting program used in the present invention, and FIG. 12 shows a fuel injection amount calculation program.

第11図(a)のVStC閾値設定プログラムは図示しない
メインルーチン内のストイキオフィードバック条件下で
適時に行なわれる。
The V StC threshold setting program of FIG. 11 (a) is timely executed under stoichiometric feedback conditions in a main routine (not shown).

ここでは、まず、エンジン回転数Neと体積効率Ev(1
行程当りの吸入空気量より求めておく)を読み取り、ス
テップb3でNe<aの判定をする。回転が低いとステップ
b4でEv<cの判定をする。体積効率Evが大きいと閾値Z3
を閾値取込用のアドレスZiに取込み、小さいと閾値Zoを
アドレスZiに取り込みリターンする。
Here, first, the engine speed Ne and the volumetric efficiency Ev (1
(Obtained from the intake air amount per stroke) is read, and it is determined in step b3 that Ne <a. Step when rotation is low
The judgment of Ev <c is made at b4. If the volumetric efficiency Ev is large, the threshold value Z3
Is taken into the address Zi for taking in the threshold value, and if smaller, the threshold value Zo is taken into the address Zi and the process returns.

他方、ステップb3でエンジン回転数がレベルaより大
きいと更に、Ne<bの判定を行ない、a<Ne<bではス
テップb8にNeがレベルbを上回っているとステップb9に
進む。
On the other hand, if the engine speed is higher than the level a in step b3, the determination of Ne <b is further performed, and if a <Ne <b, if Ne exceeds the level b in step b8, the process proceeds to step b9.

ステップb8では更に体積効率Evがレベルcより小さい
か否か判定し、小さいと閾値Z1をアドレスZiに取込み、
大きいと閾値Z4をアドレスZiに取込みリターンする。
In step b8, it is further determined whether or not the volumetric efficiency Ev is smaller than the level c, and if smaller, the threshold value Z 1 is taken into the address Zi,
If it is larger, the threshold value Z 4 is fetched at the address Zi and the process returns.

ステップb9では体積効率Evがレベルcより小さいか否
か判定し、小さいと閾値Z2をアドレスZiに取込み、大き
いと閾値Z5をアドレスZiに取込みリターンする。
At step b9, it is judged whether or not the volume efficiency Ev is smaller than the level c, and if smaller, the threshold value Z 2 is fetched at the address Zi, and if larger, the threshold value Z 5 is fetched at the address Zi and the process returns.

第11図(b)の修正理論空燃比算出処理では、まず、
VStCと閾値Ziをそれぞれ取込み、ステップc3でVStC及び
Ziより修正理論空燃比を算出し、リターンする。
In the modified theoretical air-fuel ratio calculation process of FIG. 11 (b), first,
Each capture V StC and threshold Zi, V StC and in step c3
Calculate the corrected stoichiometric air-fuel ratio from Zi and return.

第12図は燃料噴射量算出プログラムのフローを示し、
概略的にはストイキオ信号VStCに基づき理論空燃比に達
したタイミングをまず求め、その時点で求めた空燃比信
号VStと予め設定しておいた(リッチ及びリーンシフト
させたλb,λc等を含む)理論空燃比信号UStとの差分
ΔV(=VSt−USt)を求め、その上で、各空燃比信号V
OUtを差分ΔVにより修正し、実際の空燃比A/Fの算出を
行い、エンジンの燃料噴射弁を所定タイミングで適正開
弁時間だけ駆動すべく制御作動する。
FIG. 12 shows the flow of the fuel injection amount calculation program,
Generally , the timing at which the stoichiometric air-fuel ratio is reached based on the stoichio signal V StC is first obtained, and the air-fuel ratio signal V St obtained at that time is preset (rich and lean-shifted λb, λc, etc. (Including) The difference ΔV (= V St −U St ) from the stoichiometric air-fuel ratio signal U St is obtained, and then each air-fuel ratio signal V
The OUt is corrected by the difference ΔV, the actual air-fuel ratio A / F is calculated, and the control operation is performed to drive the fuel injection valve of the engine for a proper valve opening time at a predetermined timing.

具体的には、コントローラのプログラムがスタートす
ると、ステッa1で燃料フィードバック制御の条件が満た
されているか否かを周知手段の入力信号より判断する。
Specifically, when the program of the controller is started, it is determined in step a1 from the input signal of the well-known means whether or not the condition of the fuel feedback control is satisfied.

NOの場合はステップa2に進み、YESではステップa3へ
進む。
If NO, the process proceeds to step a2, and if YES, the process proceeds to step a3.

ステップa2では燃料量補正係数KFBを1とし、ステッ
プa4で燃料量Fuelの算出を行う。ここでは、割込みによ
り、吸入空気量A/Nとエンジン回路数Nに基づき基本燃
料量F(A/N,N)を算出し、この値に空燃比による補正
係数KFBを乗じ、更に、その他の条件例えば大気圧等に
よる補正係数Kを乗じて補正燃料量を算出し、メインル
ーチンにリターンする。なお、A/Nの代りに、吸気圧,
スロットル開度等を用いても良い。
Step a2 the fuel amount correction coefficient K FB is 1, to calculate the fuel amount F uel in step a4. Here, by interruption, the basic fuel amount F (A / N, N) is calculated based on the intake air amount A / N and the number of engine circuits N, and this value is multiplied by the correction coefficient K FB based on the air-fuel ratio, and further The correction fuel amount is calculated by multiplying the correction coefficient K based on the condition (1) such as atmospheric pressure, and the process returns to the main routine. In addition, instead of A / N, intake pressure,
You may use throttle opening etc.

ステップa1からa3へ進んだ場合、差分ΔVの平均値Δ
VMの算出に先立ち、これをクリアする必要があるか否か
という初期設定の判断をし、必要ならステップa5でクリ
アを行い、その後はステップa6へ進む。
When the process proceeds from step a1 to a3, the average value Δ of the difference ΔV
Prior to the calculation of V M , it is determined whether or not it needs to be cleared, and if necessary, it is cleared in step a5, and then the process proceeds to step a6.

ステップa6では、修正済のストイキオ信号VStCと空燃
比信号VOUtを読み取る。
At step a6, the corrected stoichio signal V StC and the air-fuel ratio signal V OUt are read.

次にステップa7で、VStCの値が前回取込み時における
値と比べられ、両者に変化があるか否かを判断し、理論
空燃比に達したことによる変化がある場合はステップa8
へ、無い場合はa9へ進む。
Next, in step a7, the value of V StC is compared with the value at the time of previous capture, it is judged whether there is a change in both, and if there is a change due to reaching the stoichiometric air-fuel ratio, step a8
If not, go to a9.

ステップa8では、現在の混合比が理論空燃比に達して
いるので、差分平均値ΔVMを修正する条件(アクセル開
度の変化が基準値以下か、目標空燃比を変更した直後で
ないのかなど)が適正であるとステップa10へ、そうで
ないとa9へ進む。
At step a8, since the current mixture ratio has reached the stoichiometric air-fuel ratio, the condition for correcting the difference average value ΔV M (whether the change in the accelerator opening is equal to or less than the reference value, or immediately after changing the target air-fuel ratio, etc.) Is correct, proceed to step a10; otherwise, proceed to a9.

ステップa10では空燃比信号VOUtを、理論空燃比に達
した時点での実際の値VSTとして読み取り、予め設定し
ておいた理論空燃比信号USTとの差分ΔVを算出し、更
に、外乱排除等のため、前回またはそれ以前の差分との
平均化を行い、差分平均値ΔVMを算出する。
In step a10, the air-fuel ratio signal V OUt is read as the actual value V ST when the stoichiometric air-fuel ratio is reached, the difference ΔV with the preset theoretical air-fuel ratio signal U ST is calculated, and the disturbance is further For exclusion and the like, the difference average value ΔV M is calculated by averaging with the difference between the previous time and the previous time.

そしてステップa9では空燃比の修正を行う。ここで
は、その時点での空燃比信号VOUtの偏差をΔVMにより修
正し、例えば(A/F)=f(VOUt−ΔVM)なる空燃比
算出を行う。
Then, in step a9, the air-fuel ratio is corrected. Here, the deviation of the air-fuel ratio signal V OUt at that time is corrected by ΔV M , and the air-fuel ratio calculation such as (A / F) 2 = f (V OUt −ΔV M ) is performed.

続いて、目標空燃比A/Fと実際の空燃比(A/F)との
差を求め、しかも、これの前回値との差Δεも算出して
おき、空燃比による燃料量補正係数KFBの算出を行う。
Next, the difference between the target air-fuel ratio A / F and the actual air-fuel ratio (A / F) 2 is calculated, and the difference Δε from the previous value is also calculated, and the fuel amount correction coefficient K based on the air-fuel ratio is calculated. Calculate FB .

ここでは、差εのレベルに応じたゲインの比例項K
A(ε)と、三元触媒の応答遅れを防ぐためのオフセッ
ト量KPを算出し、更に、微分項としてKD(Δε)、積分
項としてΣK1(ε,tFB)を各々算出し、これらの加減算
によりKFBを求める。
Here, the proportional term K of the gain according to the level of the difference ε
Calculate A (ε) and the offset amount K P to prevent the response delay of the three-way catalyst, and further calculate K D (Δε) as the differential term and ΣK 1 (ε, t FB ) as the integral term. , K FB is obtained by adding and subtracting these.

この後、ステップa4に進み、各補正係数KFB,KP及び基
準燃料量Fにより、この時点での適正燃料供給量を算出
し、メインルーチンにリターンする。
After that, the process proceeds to step a4, the appropriate fuel supply amount at this point is calculated from each correction coefficient K FB , K P and the reference fuel amount F, and the process returns to the main routine.

上述の処において用いた、リニア空燃比センサS1に代
えて第8図のリニア空燃比センサS2を用いてもよい。
The linear air-fuel ratio sensor S 2 shown in FIG. 8 may be used instead of the linear air-fuel ratio sensor S 1 used in the above-mentioned process.

この場合、センサ20の一方の電極26はキャビティ25
に、他方の電極27はリファレンス室25cに対設され、両
雰囲気中の酸素濃度差により起動力VSを生じる。この場
合、図示しない自己汲み込電流が電極27,26に与えら
れ、リファレンス室25cはリーンに保たれ参照気体を構
成している。なお符号32,33は拡散通路を示す。
In this case, one electrode 26 of sensor 20
In addition, the other electrode 27 is provided opposite to the reference chamber 25c, and the starting force V S is generated due to the difference in oxygen concentration between the two atmospheres. In this case, a self-pumping current (not shown) is applied to the electrodes 27 and 26, and the reference chamber 25c is kept lean to form a reference gas. Reference numerals 32 and 33 represent diffusion passages.

ポンプセル21の一方の電極29は排ガス中に、他方の電
極28はキャビティ25に対設され、ここには制御部31より
ポンプ電流IPが印加される。制御部31は可変抵抗器を介
して与えられる第1の起電力VSと第2の起電力Vaとの合
成起電力に基づきポンプ電流IPを流す。ここでも電流検
出用の抵抗器5と電流検出回路3、加算回路4により空
燃比信号VOUtを検出できる。同じくA点のポンプ電圧Vp
が、第6図に示したと同一のポンプ電圧測定処理回路に
より検出され、ストイキオ信号VStCが検出される。な
お、このVStCも閾値設定手段により設定される閾値Ziに
より修正ストイキオ信号として用いられ、最適排ガス浄
化特性を得ることを可能としている。
One electrode 29 of the pump cell 21 is placed in the exhaust gas, and the other electrode 28 is placed opposite to the cavity 25, to which a pump current I P is applied from the controller 31. The control unit 31 causes the pump current I P to flow based on the combined electromotive force of the first electromotive force V S and the second electromotive force Va given via the variable resistor. Here again, the air-fuel ratio signal V OUt can be detected by the resistor 5 for current detection, the current detection circuit 3, and the addition circuit 4. Similarly, pump voltage Vp at point A
Is detected by the same pump voltage measurement processing circuit as shown in FIG. 6, and the stoichio signal V StC is detected. This V StC is also used as a modified stoichio signal by the threshold value Zi set by the threshold value setting means, and it is possible to obtain the optimum exhaust gas purification characteristic.

上述したVOUtとVStCを併用した燃料のストイキオ・フ
ィードバック制御の他、ストイキオ信号VStCだけを用い
て従来のO2センサの場合と同じロジック,手順でストイ
キオ−フィードバック制御を行うことも可能であり、本
実施例の空燃比検出装置をどちらの制御に用いるかは自
由である。
In addition to the stoichio feedback control of fuel that uses both V OUt and V StC as described above, it is also possible to perform stoichio-feedback control by using only the stoichio signal V StC with the same logic and procedure as in the conventional O 2 sensor. Therefore, which control the air-fuel ratio detection device of this embodiment is used for is arbitrary.

〔発明の効果〕〔The invention's effect〕

本発明によれば、いわゆるリニアA/Fセンサを用いた
空燃比検出において、ポンプセルの本能的な酸素濃度起
電力を直接または間接的に検出してストイキオ(理論空
燃比)の判定信号とするので、制御系の誤差の影響を受
けずストイキオ検出精度,ストイキオ検出応答性が従来
のO2センサ並みに向上する点に加え、特に、閾値設定手
段がストイキオ検出用の閾値を増減調整できるので、目
標とする修正理論空燃比に微調整ができ、リッチあるい
はリーン側にわずかにシフトされた理論空燃比信号(ス
トイキオ信号)により最適な排ガス浄化特性を得ること
ができるようになる。
According to the present invention, in the air-fuel ratio detection using the so-called linear A / F sensor, the instinctive oxygen concentration electromotive force of the pump cell is directly or indirectly detected and used as the stoichio (theoretical air-fuel ratio) determination signal. In addition to the fact that stoichio detection accuracy and stoichio detection responsiveness are improved to the same level as conventional O 2 sensors without being affected by control system errors, in particular, the threshold setting means can increase / decrease the threshold for stoichio detection. The modified stoichiometric air-fuel ratio can be finely adjusted, and the optimal exhaust gas purification characteristic can be obtained by the stoichiometric air-fuel ratio signal (stoichio signal) slightly shifted to the rich or lean side.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例装置の概略構成図、第2図は
動作説明のための波形図、第3図、第4図及び第6図は
各々第2の検出手段の具体的構成図、第5図及び第7図
は動作説明のための波形図、第8図は本発明の他の実施
例で用いられるリニア空燃比センサの概略構成図、第9
図は三元触媒の浄化特性線図、第10図は閾値算出マップ
の特性図、第11図(a)はVStC閾値設定プログラム、第
11図(b)は修正空燃比算出プログラムの各フローチャ
ート、第12図は燃料噴射量算出プログラムのフローチャ
ート、第13図はセンサ素子部分の構成の説明図、第14図
は従来装置の概略構成図、第15図はポンプ電流と空燃比
の関係を示す図、第16図はポンプ電流の方向に基づくス
トイキオ信号の特性を示す図である。 1……比較器、2……正負電源付き積分アンプ、3……
電流検出回路、4……加算回路、5……電流検出用抵抗
器、7……ポンプ電圧測定処理回路(第2の検出手
段)、8……バッファ、9……コンパレータ、9a……閾
値可変設定器、10……フィルタ、11……オペアンプ、14
……抵抗分圧器、20……センサセル、21……ポンプセ
ル、25……キャビティ、VOUt……空燃比信号、VStC……
理論空燃比(ストイキオ)信号、S1,S2……リニア空燃
比センサ。
FIG. 1 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention, FIG. 2 is a waveform diagram for explaining the operation, and FIGS. 3, 4, and 6 are specific configurations of a second detecting means. FIGS. 5, 5 and 7 are waveform diagrams for explaining the operation, FIG. 8 is a schematic configuration diagram of a linear air-fuel ratio sensor used in another embodiment of the present invention, and FIG.
Figure is a purification characteristic diagram of three-way catalyst, Figure 10 is a characteristic diagram of threshold calculation map, Figure 11 (a) is V StC threshold setting program,
FIG. 11 (b) is each flow chart of the corrected air-fuel ratio calculation program, FIG. 12 is a flow chart of the fuel injection amount calculation program, FIG. 13 is an explanatory diagram of the configuration of the sensor element portion, and FIG. 14 is a schematic configuration diagram of the conventional device. FIG. 15 is a diagram showing the relationship between the pump current and the air-fuel ratio, and FIG. 16 is a diagram showing the characteristics of the stoichio signal based on the direction of the pump current. 1 ... Comparator, 2 ... Integral amplifier with positive / negative power supply, 3 ...
Current detection circuit, 4 ... Addition circuit, 5 ... Current detection resistor, 7 ... Pump voltage measurement processing circuit (second detection means), 8 ... Buffer, 9 ... Comparator, 9a ... Threshold variable Setting device, 10 ... Filter, 11 ... Operational amplifier, 14
...... Resistance voltage divider, 20 …… Sensor cell, 21 …… Pump cell, 25 …… Cavity, V OUt …… Air-fuel ratio signal, V StC ……
Theoretical air-fuel ratio (stoichio) signal, S 1 , S 2 ... Linear air-fuel ratio sensor.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】排ガス中に置かれるキャビティと、 参照気体が充填された参照気体室と、 上記キャビティ内に設けられた第1センサ電極と上記参
照気体室内に設けられた第2センサ電極により上記キャ
ビティ内と参照気体室内の酸素濃度の差に応じた電気信
号を出力するセンサセルと、 同センサセルからの出力に応じた電気制御信号を出力す
る制御手段と、 排ガス中にさらされる第1ポンプ電極と上記キャビティ
内に設けられた第2ポンプ電極により上記制御手段から
供給される電気制御信号に応じて酸素イオンを移動させ
るポンプセルと、 上記制御手段とポンプセルとの間で授受される制御電流
に応じた空燃比信号を出力する第1の検出手段と、 上記制御手段からポンプセルに印加される制御電圧を検
出してその値と所定の閾値とより理論空燃比を算出して
その信号を出力する第2の検出手段と、 上記第2の検出手段の閾値を増減調整する閾値設定手段
と、を有することを特徴とする空燃比検出装置。
1. A cavity placed in exhaust gas, a reference gas chamber filled with a reference gas, a first sensor electrode provided in the cavity, and a second sensor electrode provided in the reference gas chamber. A sensor cell that outputs an electric signal according to the difference in oxygen concentration between the cavity and the reference gas chamber, a control unit that outputs an electric control signal according to the output from the sensor cell, and a first pump electrode exposed to the exhaust gas. A pump cell for moving oxygen ions according to an electric control signal supplied from the control means by a second pump electrode provided in the cavity, and a control current exchanged between the control means and the pump cell. The first detection means for outputting the air-fuel ratio signal and the control voltage applied to the pump cell from the control means are detected and calculated based on the detected value and a predetermined threshold value. Second detection means for outputting the signal to calculate the air-fuel ratio, the air-fuel ratio detecting apparatus characterized by having a threshold value setting means for increasing or decreasing adjusting the threshold of said second detection means.
JP2204327A 1990-02-28 1990-07-31 Air-fuel ratio detector Expired - Lifetime JP2513350B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP91103018A EP0444674B1 (en) 1990-02-28 1991-02-28 Air fuel ratio detecting device
DE69118739T DE69118739T2 (en) 1990-02-28 1991-02-28 Air-fuel ratio detection device
US07/661,614 US5231864A (en) 1990-02-28 1991-02-28 Air-fuel ratio detecting device
KR1019910003380A KR940001351B1 (en) 1990-02-28 1991-02-28 Air fuel ratio detecting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-48418 1990-02-28
JP4841890 1990-02-28

Publications (2)

Publication Number Publication Date
JPH03282250A JPH03282250A (en) 1991-12-12
JP2513350B2 true JP2513350B2 (en) 1996-07-03

Family

ID=12802771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204327A Expired - Lifetime JP2513350B2 (en) 1990-02-28 1990-07-31 Air-fuel ratio detector

Country Status (2)

Country Link
JP (1) JP2513350B2 (en)
KR (1) KR940001351B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230537A (en) * 1984-05-01 1985-11-16 Nissan Motor Co Ltd Air-fuel ratio controller
JPS6381258A (en) * 1986-09-25 1988-04-12 Nissan Motor Co Ltd Air/fuel ratio detector

Also Published As

Publication number Publication date
KR910021533A (en) 1991-12-20
KR940001351B1 (en) 1994-02-19
JPH03282250A (en) 1991-12-12

Similar Documents

Publication Publication Date Title
US7285204B2 (en) Apparatus for detecting deterioration of air-fuel ratio sensor
US5231864A (en) Air-fuel ratio detecting device
US5473889A (en) Air-fuel ratio control system for internal combustion engines
JP2601455B2 (en) Air-fuel ratio control method for internal combustion engine
US5366610A (en) Air fuel ratio detecting device
JP2600453B2 (en) Air-fuel ratio sensor output correction method
JP2513350B2 (en) Air-fuel ratio detector
US5497618A (en) Air/fuel control system with catalytic converter monitoring
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JP4064092B2 (en) Engine air-fuel ratio control device
JP2535007B2 (en) Engine air-fuel ratio control device
JP3304653B2 (en) Air-fuel ratio control device for internal combustion engine
JP2591761Y2 (en) Air-fuel ratio detection device for internal combustion engine
JP2613591B2 (en) Air-fuel ratio control method for internal combustion engine
JPS62126235A (en) Air-fuel ratio control device
KR930007609B1 (en) Air-fuel ratio control system for internal combustion engine
JP3998949B2 (en) Engine air-fuel ratio control device
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine
JP2560303B2 (en) Air-fuel ratio control device for internal combustion engine
JP2600767B2 (en) Air-fuel ratio control device for internal combustion engine
JP2848023B2 (en) Air-fuel ratio control device for internal combustion engine
JPS62198744A (en) Output correcting method for oxygen concentration sensor for internal combustion engine
JPS63246437A (en) Air fuel ratio control device for engine
JPH0826804B2 (en) Air-fuel ratio control device for internal combustion engine