JPH03282250A - Air-fuel-ratio detecting apparatus - Google Patents

Air-fuel-ratio detecting apparatus

Info

Publication number
JPH03282250A
JPH03282250A JP2204327A JP20432790A JPH03282250A JP H03282250 A JPH03282250 A JP H03282250A JP 2204327 A JP2204327 A JP 2204327A JP 20432790 A JP20432790 A JP 20432790A JP H03282250 A JPH03282250 A JP H03282250A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
pump
cell
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2204327A
Other languages
Japanese (ja)
Other versions
JP2513350B2 (en
Inventor
Tetsuro Ishida
哲朗 石田
Nobuaki Murakami
信明 村上
Yoshiro Danno
団野 喜朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to US07/661,614 priority Critical patent/US5231864A/en
Priority to KR1019910003380A priority patent/KR940001351B1/en
Priority to EP91103018A priority patent/EP0444674B1/en
Priority to DE69118739T priority patent/DE69118739T2/en
Publication of JPH03282250A publication Critical patent/JPH03282250A/en
Application granted granted Critical
Publication of JP2513350B2 publication Critical patent/JP2513350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/20Oxygen containing
    • Y10T436/207497Molecular oxygen
    • Y10T436/208339Fuel/air mixture or exhaust gas analysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To improve stoichiometric detection accuracy and response and to perform fine adjustment of a target air-fuel ratio readily by directly or indirectly detecting the intrinsic oxygen-concentration electromotive force of a pump cell, and obtaining a stoiciometric judging signal. CONSTITUTION:A comparing circuit 1 and an integration amplifier 2 having positive and negative power supplies constitute a control means 31. Electromotive force Vs across electrodes 26 and 27 of a sensor cell 20 is compared with a reference voltage Vref. The outputs are integrated in the integration amplifier 2, and the positive or negative control output is applied across electrodes 28 and 29 of a pump cell 21. A pump current Ip is made to flow through the cell 21. The current Ip is detected with a circuit 3 based on the voltage drop generated in a resistor 5. The current Ip is converted into an air-fuel ratio signal Vout with an adding circuit 4. Then, the voltage at a point A of the cell 21, i.e. a pump voltage Vp across the electrodes 28 and 29, is inputted into a pump- voltage measuring and processing circuit 7. The circuit 7 outputs a theoretical air-fuel-ratio (stoichiometric) signal Vstc at which the different levels are obtained on the lean side and the rich side with the stoichiometric point as a boundary.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、リニアA/Fセンサと称されている空燃比検
出装置に関し、特に内燃機関等の燃焼装置へ供給される
混合気の理論空燃比(ストイキオ)を精度良く検出する
ための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air-fuel ratio detection device called a linear A/F sensor, and in particular to a stoichiometric air-fuel ratio detection device called a linear A/F sensor. This invention relates to improvements for accurately detecting fuel ratio (stoichiometry).

〔従来の技術〕[Conventional technology]

従来、ジルコニアの酸素a淡電地作用と酸素イオンポン
ピング作用という特性を利用して、空燃比(A/F)を
単にストイキオよりもリーン側かリッチ側かだけでなく
、どの程度の値であるか検出するリニアA/Fセンサが
提案されている(特開昭63−36140号公報参照)
Conventionally, by utilizing the characteristics of zirconia's oxygen a thin electric field action and oxygen ion pumping action, it was possible to determine not only whether the air-fuel ratio (A/F) is leaner or richer than stoichiometry, but also what value it should be. A linear A/F sensor has been proposed that detects the
.

第13図〜第16図を参照して従来の一例を説明する。A conventional example will be described with reference to FIGS. 13 to 16.

第13図はリニアA/FセンサS工を構成する素子部分
を分解して示し、各々安定化ジルコニア素子であるセン
サセル20とポンプセル21とを絶縁層22を介して結
合しである。センサセル20とポンプセル21には排ガ
スを通すための拡散孔23.24が形成され、絶縁層2
2にはこれらの拡散孔23.24からの排ガスが導かれ
るような検出室(キャビティ)25が形成され、これら
により拡散律速体が構成されている。また、絶縁層22
にはリファレンス室25aが形成され、ここに参照気体
例えば大気(空気)が導かれるように構成される。更に
、第14図を参照すると、触媒が兼ねて白金の電極26
,27,28.29が設けてあり、これらには多数の微
小孔があけである。30は電気ヒータであり、セル全体
を例えば800+100℃に加熱シテ各tル20,21
(7)動作の確実化を図っている。
FIG. 13 shows an exploded view of the element parts constituting the linear A/F sensor S, in which a sensor cell 20 and a pump cell 21, each of which is a stabilized zirconia element, are coupled via an insulating layer 22. Diffusion holes 23 and 24 for passing exhaust gas are formed in the sensor cell 20 and the pump cell 21, and the insulating layer 2
2 is formed with a detection chamber (cavity) 25 into which the exhaust gas from these diffusion holes 23 and 24 is guided, and these constitute a diffusion control body. In addition, the insulating layer 22
A reference chamber 25a is formed in which a reference gas such as the atmosphere (air) is introduced. Furthermore, referring to FIG. 14, a platinum electrode 26 also serves as a catalyst.
, 27, 28, and 29 are provided, and these are perforated with a large number of minute holes. Reference numeral 30 denotes an electric heater, which heats the entire cell to, for example, 800+100°C.
(7) Efforts are made to ensure reliable operation.

センサセル20は従来の02センサと同様の原理で電極
26.27間に酸素濃度差があると起電力を生じる性質
を備え、ポンプセル21は逆に電極28.29間に強制
的に電流(ポンプ電流工、)が流されると酸素をマイナ
ス電極側からプラス電極側に汲み出す性質を備える。
The sensor cell 20 has the same principle as the conventional 02 sensor, and has the property of generating an electromotive force when there is a difference in oxygen concentration between the electrodes 26 and 27. On the contrary, the pump cell 21 has the property of generating an electromotive force between the electrodes 28 and 29 (pump current). It has the property of pumping oxygen from the negative electrode side to the positive electrode side when it is flushed.

そこで制御部31にてセンサセル20の起電力Vsを検
出し、この起電力V5を一定に保つように、即ちキャビ
ティ25内または拡散孔23.24内をストイキオに対
応する酸素濃度に保つようにポンプ電流工、をF/B 
(フィードバック)制御する。これにより、ポンプ電流
IPは第15図に示すように空燃比(A/F)に対して
連続的に変化するので、ポンプ電流I、がら空燃比を算
出することができる。
Therefore, the control unit 31 detects the electromotive force Vs of the sensor cell 20, and pumps the electromotive force V5 to keep it constant, that is, to keep the inside of the cavity 25 or the diffusion hole 23, 24 at an oxygen concentration corresponding to stoichiometry. Electrician, F/B
(feedback) to control. As a result, the pump current IP changes continuously with respect to the air-fuel ratio (A/F) as shown in FIG. 15, so the air-fuel ratio can be calculated from the pump current I.

制御部31としては、比較回路上にてセンサセル20の
起電力■、をストイキオ相当の参照電圧V 、 a H
と比較し、比較回路1の出力を正負電源付き積分アンプ
2で積分し、その積分出力でポンプセル21にポンプ電
流IPを流す。
The control unit 31 converts the electromotive force (■) of the sensor cell 20 into a reference voltage V, a H corresponding to a stoichiometry on a comparison circuit.
The output of the comparator circuit 1 is integrated by an integral amplifier 2 with positive and negative power supplies, and the pump current IP is applied to the pump cell 21 using the integrated output.

そして、ポンプ電流I、の回路に電流検出用の抵抗器5
を介挿し、抵抗器の降下電圧から電流検出回路3により
ポンプ電流■2を検出している。
A resistor 5 for current detection is added to the pump current I circuit.
is inserted, and the pump current (2) is detected by the current detection circuit 3 from the voltage drop across the resistor.

更に、回路3の出力を加算回路4に入力し、下式の処理
によって、例えば、0〜5ボルトの信号V 011 C
により空燃比を表わすようにしている。
Furthermore, the output of the circuit 3 is input to the addition circuit 4, and by processing the following formula, a signal of 0 to 5 volts, for example, V 011 C
The air-fuel ratio is expressed as follows.

Vout= G ” I p + V 、tp但し、G
は電流−電圧変換ゲイン、V s + pはステップア
ップ電圧である。
Vout = G ” I p + V , tp However, G
is the current-voltage conversion gain, and V s + p is the step-up voltage.

しかし、上述した制御されたポンプ電流T、の値で空燃
比を検知する場合、従来のストイキオだけを検出できる
02センサに比べ、酸素濃度差による本能的な起電力を
検出するのではなくフィードバック制御した結果のポン
プ電流を検出しているので、検出値にフィードバック制
御回路系の誤差例えば参照電圧V、、、のバラツキ、積
分アンプ2の誤差、加算回路4の演算誤差などを含むと
いう精度上の不都合がある。
However, when detecting the air-fuel ratio using the value of the controlled pump current T, as described above, compared to the conventional 02 sensor that can only detect stoichiometry, feedback control is used instead of detecting the instinctive electromotive force due to the difference in oxygen concentration. Since the pump current as a result of It's inconvenient.

特に、三元触媒を用いた排ガスシステムでは空燃比をス
トイキオ近傍の狭いウィンドウ内に制御する必要があり
、ストイキオ検出精度が重要である。
In particular, in an exhaust gas system using a three-way catalyst, it is necessary to control the air-fuel ratio within a narrow window around the stoichiometry, and stoichiometry detection accuracy is important.

従って、上述のりニアA/Fセンサを用いて5−FB 
(ストイキオ−フィードバック)制御をも行うシステム
の場合、5−FB制御の精度のみについて言えば、従来
の02センサを用いた5−FBシステムに比へて精度が
悪いと言える。
Therefore, using the above-mentioned Linear A/F sensor, the 5-FB
In the case of a system that also performs (stoichiometric feedback) control, it can be said that the accuracy of the 5-FB control is lower than that of the conventional 5-FB system using the 02 sensor.

そこで、制御回路系の誤差を少しでも軽減する工夫とし
て、第14図の従来装置では、電流検出用抵抗器5の降
下電圧を電流反転検出器6に与えてポンプ電流の流れ方
向を検出し、理論空燃比(ストイキオ)信号V、、cを
得ている。
Therefore, as a measure to reduce errors in the control circuit system as much as possible, in the conventional device shown in FIG. 14, the voltage drop across the current detection resistor 5 is applied to the current reversal detector 6 to detect the flow direction of the pump current. Stoichiometric air-fuel ratio (stoichiometry) signals V, , c are obtained.

即ち、第15図から判るように、ポンプ電流I、はスト
イキオ点を特に正負が反転するので、これを電流反転検
出器6で検出すれば、第16図のようにストイキオ点を
特にレベルが2値に変化する信号VSI。が得られる。
That is, as can be seen from FIG. 15, the pump current I is reversed in polarity with respect to the stoichiometric point, so if this is detected by the current reversal detector 6, the level of the pump current I is reversed, especially at the stoichiometric point, as shown in FIG. The signal VSI changes in value. is obtained.

この信号V B c Cには加算回路4でのゲインGの
誤差やステップアップ電圧V s t pの誤差は含ま
れないので、ストイキオ検出精度はその分良くなってい
る。
Since this signal V B c C does not include an error in the gain G in the adder circuit 4 or an error in the step-up voltage V s t p, the stoichiometry detection accuracy is improved accordingly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、電流反転検出器6の出力Vat。には依然とし
て、参照電圧V r m rの誤差、積分アンプ2の誤
差と言った制御回路系の誤差が含まれており。
However, the output Vat of the current reversal detector 6. still includes errors in the control circuit system, such as errors in the reference voltage Vrmr and errors in the integrating amplifier 2.

これらの経年変化の影響も受けるので、改良の余地があ
る。また、制御系があるため応答性が若干悪い。
Since it is also affected by these changes over time, there is room for improvement. Also, since there is a control system, the response is somewhat poor.

更に、三元触媒は、第9図に示すように、理論空燃比近
傍で各有害性分をバランスよく高レベルの浄化効率で浄
化することができる。
Furthermore, as shown in FIG. 9, the three-way catalyst can purify each harmful component in a well-balanced manner at a high level of purification efficiency near the stoichiometric air-fuel ratio.

しかし、車種によって触媒入口の排ガスの成分割合と量
が異なり、又、触媒のタイプによっても浄化特性が微妙
に異なるため、目標空燃比を微調整したいというニーズ
がある。
However, since the component ratio and amount of exhaust gas at the catalyst inlet differ depending on the vehicle model, and the purification characteristics differ slightly depending on the type of catalyst, there is a need to finely adjust the target air-fuel ratio.

本発明の目的は、ストイキオ検出精度、応答性がより良
く、更に、目標空燃比を容易に微調整できる空燃比検出
装置を提供することにある。
An object of the present invention is to provide an air-fuel ratio detection device that has better stoichiometry detection accuracy and responsiveness, and can further easily fine-tune a target air-fuel ratio.

〔課題を解決するための手段〕[Means to solve the problem]

本発明による空燃比検出装置は、混合気燃焼後の排ガス
中の酸素濃度と参照気体中の酸素濃度との差に応じた電
気信号を出力するセンサセルと、上記センサセルからの
出力に応じた電気制御信号を出力する制御手段と、上記
制御手段から供給される電気制御信号に応じて酸素イオ
ンを移動させるポンプセルと、上記制御手段とポンプセ
ルとの間で授受される制御電流に応じた空燃比信号を出
力する第1の検出手段とを有し、更に、上記制御手段か
らポンプセルに印加される制御電圧を検出して理論空燃
比信号を出力する第2の検出手段を有することを特徴と
する。
The air-fuel ratio detection device according to the present invention includes a sensor cell that outputs an electric signal according to the difference between the oxygen concentration in the exhaust gas after combustion of the air-fuel mixture and the oxygen concentration in the reference gas, and an electric control device that outputs an electric signal according to the output from the sensor cell. A control means for outputting a signal, a pump cell for moving oxygen ions according to an electric control signal supplied from the control means, and an air-fuel ratio signal according to a control current exchanged between the control means and the pump cell. The pump is characterized in that it has a first detection means for outputting an output, and further includes a second detection means for detecting a control voltage applied to the pump cell from the control means and outputting a stoichiometric air-fuel ratio signal.

更に、第2の発明は、混合気燃焼後の排ガス中の酸素濃
度と参照気体中の酸素濃度との差に応じた電気信号を出
力するセンサセルと、上記センサセルからの出力に応じ
た電気制御信号を出力する制御手段と、上記制御手段か
ら供給される電気制御信号に応じて酸素イオンを移動さ
せるポンプセルと、上記制御手段とポンプセルとの間で
授受される制御電流に応じた空燃比信号を出力する第1
の検出手段とを有し、更に、上記制御手段からポンプセ
ルに印加される制御電圧を検出してその値と所定の閾値
とより理論空燃比を算出してその信号を出力する第2の
検出手段とを有し、上記第2の検出手段には閾値設定手
段より上記閾値が増減調整されて出力されることを特徴
とする。
Furthermore, a second invention provides a sensor cell that outputs an electric signal according to the difference between the oxygen concentration in the exhaust gas after combustion of the air-fuel mixture and the oxygen concentration in the reference gas, and an electric control signal according to the output from the sensor cell. a pump cell that moves oxygen ions according to an electrical control signal supplied from the control means, and an air-fuel ratio signal that outputs a control current that is exchanged between the control means and the pump cell. First thing to do
and a second detection means for detecting a control voltage applied to the pump cell from the control means, calculating a stoichiometric air-fuel ratio from that value and a predetermined threshold value, and outputting a signal thereof. The second detection means is characterized in that the threshold value is adjusted to increase or decrease and outputted to the second detection means by the threshold value setting means.

〔作  用〕[For production]

第1の発明ではセンサセルだけでなく、ポンプセルも基
本的には02センサであり、参照気体が異なるだけであ
るから、ポンプセルも酸素濃度差による本能的な起電力
を生じる。このポンプセルはキャビティ内のガスと排ガ
スとの酸素濃度差によって酸素a淡起電力を発生させて
おり、この起電力の影響を受けた電圧は制御回路系から
の印加電圧に加わり、ストイキオ点で、例えば約0.6
ボルト程度ジャンプし、不連続に変化する。
In the first invention, not only the sensor cell but also the pump cell are basically 02 sensors, and only the reference gas is different, so the pump cell also generates an instinctive electromotive force due to the difference in oxygen concentration. This pump cell generates an oxygen a weak electromotive force due to the difference in oxygen concentration between the gas in the cavity and the exhaust gas, and the voltage affected by this electromotive force is added to the applied voltage from the control circuit system, and at the stoichiometry point, For example, about 0.6
It jumps about a bolt and changes discontinuously.

これは、とりもなおさず従来の02センサと同様な酸素
濃度差による本能的な起電力を検出していることになり
、制御回路系の影響を殆ど受けないで、理論空燃比を算
出するようになる。
This means that it detects the instinctive electromotive force caused by the difference in oxygen concentration, similar to the conventional 02 sensor, and it calculates the stoichiometric air-fuel ratio with almost no influence from the control circuit system. become.

第2の発明では第1の発明と同様に制御回路系の影響を
殆ど受けないで理論空燃比を算出するようになり、特に
、閾値設定手段により閾値が増減調整されることにより
、目標とする修正理論空燃比に微調整できる。
In the second invention, as in the first invention, the stoichiometric air-fuel ratio is calculated almost without being influenced by the control circuit system, and in particular, the threshold value is adjusted to increase or decrease by the threshold value setting means, so that the target value can be calculated. Fine adjustments can be made to the corrected stoichiometric air-fuel ratio.

〔実施例〕〔Example〕

以下、図面を参照して本発明の詳細な説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は第1の発明の実施例を示し、第14図に示した
従来の装置とは、電流反転検出器6の代りに、第2の検
出手段としてポンプ電圧測定処理回路7を用いた点が異
なる。従って、従来技術と同一部分には同一符号を付し
説明を簡略化する。
FIG. 1 shows an embodiment of the first invention, and the conventional device shown in FIG. 14 is different from the conventional device shown in FIG. The points are different. Therefore, the same parts as in the prior art are given the same reference numerals to simplify the explanation.

第1図において、比較回路1と正負電源付き積分アンプ
2が制御手段31を構成し、センセセル20の電極26
.27間の起電力V、を参照電圧vr−r(例えば0.
4ボルト)と比較し、その出力を積分アンプ2で積分し
て正又は負の制御出力をポンプセル21の電極28.2
9間に印加し、■5=vr、fとなるように、ポンプセ
ル21にポンプ電流工、を流す。
In FIG. 1, a comparator circuit 1 and an integrating amplifier 2 with positive and negative power supplies constitute a control means 31, and an electrode 26 of a sense cell 20
.. The electromotive force V between 27 and 27 is set as a reference voltage vr-r (for example, 0.
4 volts), the output is integrated by the integrating amplifier 2, and the positive or negative control output is sent to the electrode 28.2 of the pump cell 21.
9, and the pump current is applied to the pump cell 21 so that 5=vr, f.

電流検出用抵抗器5及び電流検出回路3が第1の検出手
段を構成し、抵抗器5に生じる電圧降下から回路3でポ
ンプ電流工、を検出する。ポンプ電流工、自体が空燃比
の情報を有するが、加算回路4によりO〜5ボルトの空
燃比信号■。。、に変換して出力させている。
The current detection resistor 5 and the current detection circuit 3 constitute a first detection means, and the circuit 3 detects the pump current from the voltage drop occurring in the resistor 5. The pump electrician itself has air-fuel ratio information, but the adder circuit 4 generates an air-fuel ratio signal of 0 to 5 volts. . , and output it.

そして、ポンプ電圧測定処理回路7にポンプセル21の
A点の電圧、即ち電極28.29間のポンプ電圧■、を
入力させている。
Then, the voltage at point A of the pump cell 21, that is, the pump voltage (2) between the electrodes 28 and 29 is input to the pump voltage measurement processing circuit 7.

ポンプ電圧測定処理回路7は第2図(a)に示すストイ
キオ点でジャンプするポンプ電圧Vpに対し、不連続の
特性部分を検出するに適した閾値を有しており、第2図
(b)に示すようにストイキオ点を境に、リーン側とリ
ッチ側で異なるレベルとなる理論空燃比(ストイキオ)
信号Vat。を出力するようになっている。リーン側と
リッチ側どちらを高レベルにするかは自由である。
The pump voltage measurement processing circuit 7 has a threshold suitable for detecting a discontinuous characteristic portion with respect to the pump voltage Vp that jumps at the stoichiometry point shown in FIG. As shown in , the stoichiometric air-fuel ratio (stoichiometry) is at different levels on the lean side and rich side after the stoichiometry point.
Signal Vat. It is designed to output . It is up to you whether you want the lean side or the rich side to be at a higher level.

第3図は第2の検出手段即ちポンプ電圧測定処理回路7
の第1の具体例を示し、バッファアンプ8と、CRフィ
ルタ10と、オープンコレクタのコンパレータ9とで構
成しである。
FIG. 3 shows the second detection means, that is, the pump voltage measurement processing circuit 7.
A first specific example is shown, which is composed of a buffer amplifier 8, a CR filter 10, and an open collector comparator 9.

即ち、第3図中のA点の電圧をバッファアンプ8を経て
フィルタ10に通し、ここでポンプ電流工、のフィード
バックによる発振の防止、サージ対策、ノイズ除去を行
ったのち、閾値をOボルトとしてコンパレータ9でスト
イキオ信号Vst。を得ている。
That is, the voltage at point A in Fig. 3 is passed through the buffer amplifier 8 and into the filter 10, where the pump current controller is fed back to prevent oscillation, take measures against surges, and remove noise, and then set the threshold to O volts. Comparator 9 outputs stoichiometric signal Vst. I am getting .

第4図はポンプ電圧測定処理回路7の第2の具体例を示
し、第3図の例とはコンパレータ9の閾値を変化できる
ようにした点が異なり、第2の発明を構成している。
FIG. 4 shows a second specific example of the pump voltage measurement processing circuit 7, which differs from the example shown in FIG. 3 in that the threshold value of the comparator 9 can be changed, and constitutes the second invention.

即ち、ポテンションメータ9aを用いて閾値設定手段と
しての可変設定器を作り、その出力をコンパレータ9の
非反転入力端子に与え、フィルタ10の出力を反転入力
端子に与えている。
That is, a variable setter as a threshold value setting means is made using the potentiometer 9a, the output of which is applied to the non-inverting input terminal of the comparator 9, and the output of the filter 10 is applied to the inverting input terminal.

これにより、第5図(a)に示すように閾値αを正側に
シフトして設定すれば同図(b)の特性αのようにコン
パレータ出力■8.6はストイキオよりリーン側でレベ
ルが変化し、逆に閾値βを負側にシフトして設定すれば
コンパレータ出力Vat。はストイキオよりもリッチ側
でレベルが変化する。
As a result, if the threshold value α is shifted and set to the positive side as shown in Figure 5 (a), the level of the comparator output ■8.6 will be on the lean side of the stoichiometry as shown in the characteristic α in Figure 5 (b). If the threshold value β is shifted to the negative side and set, the comparator output Vat. The level changes on the richer side than Stoikio.

このように閾値を変えるとストイキオ信号V s t 
cの変化点がストイキオから若干ずれ、下記の利点が得
られる。即ち、車種によって触媒入口の排出ガス特性は
、同一空燃比でもCO排出量が多かったりNOx排出量
が多かったりまちまちである。
By changing the threshold value in this way, the stoichiometric signal V s t
The change point of c is slightly deviated from the stoichiometry, and the following advantages are obtained. That is, the exhaust gas characteristics at the catalyst inlet vary depending on the vehicle model, such as a large amount of CO emissions or a large amount of NOx emissions even at the same air-fuel ratio.

また三元触媒においても傾向は第9図の通りであるが、
その浄化効率の絶対値はそのタイプ(容量等がちがえば
)によって異なる。よって、ストイキオ制御の目標空燃
比をリッチ側にずらせばより多くのNOxを浄化するこ
とができ(CO排出量が少なくNOxの多い車に適応)
、リーン側にずらせばCo、HCをより多く浄化するこ
とができる(NOx排出量が少なく、CO排出量の多い
車に適応)ので、その車に最適な排出ガス浄化特性か得
られる。
Also, the trends in three-way catalysts are as shown in Figure 9.
The absolute value of the purification efficiency differs depending on the type (different capacity, etc.). Therefore, by shifting the target air-fuel ratio of stoichiometric control to the rich side, more NOx can be purified (suitable for cars with low CO emissions and high NOx emissions).
If you shift it to the lean side, you can purify more Co and HC (suitable for cars with low NOx emissions and high CO emissions), so you can obtain the exhaust gas purification characteristics that are optimal for that car.

第6図はポンプ電圧測定処理回路7の第3の具体例を示
し、フィルタ10の出力をオペアンプ(演算増幅器)1
1の反転入力端子に抵抗器12を介して与え、オペアン
プ11の出力を抵抗器13を介して反転入力端子に帰還
し、非反転入力端子には抵抗分圧器14によりアップシ
フト用の電圧を与えている。そして、直列接続した2個
のダイオード13.16を特定電圧の電源とアース間に
逆バイアスに接続し、ダイオードどうしの接続点とオペ
アンプ11の出力端子とを抵抗器17て接続することに
より、クリップ機能を有するアンプを構成している。
FIG. 6 shows a third specific example of the pump voltage measurement processing circuit 7, in which the output of the filter 10 is connected to an operational amplifier (operational amplifier) 1.
1 through a resistor 12, the output of the operational amplifier 11 is fed back to the inverting input terminal through a resistor 13, and a voltage for upshifting is applied to the non-inverting input terminal through a resistor voltage divider 14. ing. Then, the two diodes 13 and 16 connected in series are connected in reverse bias between the power source of a specific voltage and the ground, and the connection point between the diodes and the output terminal of the operational amplifier 11 are connected through the resistor 17, thereby clipping the diodes 13 and 16. It constitutes an amplifier with functions.

このようにすると、第7図(a)に示す波形のA点の入
力電圧に対し、ストイキオ信号Vstcの波形は第7図
(b)に示すようにストイキオ近傍での変化が若干層ら
かになり、いわゆるλセンサ並みの出力特性となる利点
がある。
In this way, with respect to the input voltage at point A of the waveform shown in FIG. 7(a), the waveform of the stoichiometry signal Vstc has a slightly more gradual change near the stoichiometry as shown in FIG. 7(b). Therefore, it has the advantage of having output characteristics comparable to that of a so-called λ sensor.

更に、このような出力特性を示すストイキオ信号V S
 t Cを二値としてそのまま用いず、ここでは第7図
(b)及び第10図に示すような閾値Ziを用い、これ
に対応する目標空燃比としての修正理論空燃比λa、λ
b(リッチシフト側)、λC(リーンシフト側)を検出
するように構成できる。
Furthermore, a stoichiometric signal V S exhibiting such output characteristics
Instead of using t C as it is as a binary value, here we use a threshold value Zi as shown in FIG. 7(b) and FIG.
b (rich shift side) and λC (lean shift side) can be configured to be detected.

なお、第10図の閾値Zi算出マツプはエンジン回転数
Neと体積効率Evとより複数の値が選択使用され、こ
こでは、エンジン回転数Neがレベルa、bで閾値Zi
を切換え、体積効率EvがレベルCで閾値Ziを切換え
るへく設定される。
In addition, in the threshold value Zi calculation map shown in FIG.
, and the volumetric efficiency Ev is set at level C to switch the threshold value Zi.

なお、これら閾値Ziは車種、触媒特性等により任意に
設定されることとなる。
Note that these threshold values Zi are arbitrarily set depending on the vehicle type, catalyst characteristics, etc.

このような第2の発明における閾値の設定手段はコント
ローラ(第1図中に符号で示した)内に内蔵される。コ
ントローラはマイクロコンピュータでその要部が構成さ
れ、特に、各出力信号を受けて、適時にその情報を取込
み、あるいは適時に制御信号を出力するもので、第11
図(a)、(b)および第12図に示すV 3 c (
閾値設定プログラムや、燃料噴射量算出プログラムや、
第1o図に示すストイキオ制御判定スレッショルドレベ
ルZi算出マツプが記憶処理されている。
The threshold value setting means in the second aspect of the invention is built into the controller (indicated by the reference numeral in FIG. 1). The main part of the controller is composed of a microcomputer, and in particular, it receives each output signal and takes in the information in a timely manner or outputs a control signal in a timely manner.
V 3 c (
Threshold setting program, fuel injection amount calculation program,
The stoichiometric control determination threshold level Zi calculation map shown in FIG. 1o has been stored.

次に、上記実施例で説明したストイキオ信号vstcと
空燃比信号■。U2を用いた燃料フィードバック制御の
一例を、第11図(a)、(b)、第12図を参照して
説明する。
Next, the stoichiometry signal vstc and the air-fuel ratio signal (2) explained in the above embodiment. An example of fuel feedback control using U2 will be explained with reference to FIGS. 11(a), (b), and FIG. 12.

第11図(a)、(b)は第2の発明でのみ使用するV
 5 c C閾値設定プログラムであり、第12図は第
1及び第2の発明で共に使用する燃料噴射量算出プログ
ラムを示している。
Figures 11(a) and (b) show V used only in the second invention.
5 c This is a C threshold value setting program, and FIG. 12 shows a fuel injection amount calculation program used in both the first and second inventions.

第11図(a)のV s t c閾値設定プログラムは
図示しないメインルーチン内のストイキオフィードバッ
ク条件下で適時に行なわれる。
The V s t c threshold setting program shown in FIG. 11(a) is carried out at appropriate times under stoichiometric feedback conditions in a main routine (not shown).

ここでは、まず、エンジン回転数Neと体積効率Ev 
(1行程当りの吸入空気量より求めておく)を読み取り
、ステップb3でN e (aの判定をする。回転が低
いとステップb4でEv<c  の判定をする。体積効
率Evが大きいと閾値Z3を閾値取込用のアドレスZi
に取込み、小さいと閾値Z。
Here, first, engine speed Ne and volumetric efficiency Ev
(predetermined from the amount of intake air per stroke) is read, and in step b3 it is determined that N e (a). If the rotation is low, Ev<c is determined in step b4. If the volumetric efficiency Ev is large, the threshold Z3 is the address Zi for reading the threshold value.
If it is small, the threshold value Z.

をアドレスz1に取り込みリターンする。is fetched into address z1 and returns.

他方、ステップb3でエンジン回転数がレベルaより大
きいと更に、N e < bの判定を行ない、a < 
N e < bてはステップb8にNeがレベルbを上
回っているとステップb9に進む。
On the other hand, if the engine speed is higher than level a in step b3, it is further determined that N e < b, and a <
If Ne is greater than level b in step b8, the process proceeds to step b9.

ステップb8では更に体積効率EvがレベルCより小さ
いか否か判定し、小さいと閾値Zlをアドレスz1に取
込み、大きいと閾値z4をアドレスz1に取込みリター
ンする。
In step b8, it is further determined whether the volumetric efficiency Ev is smaller than the level C, and if it is smaller, the threshold value Zl is taken into the address z1, and if it is larger, the threshold value z4 is taken into the address z1 and the process returns.

ステップb9では体積効率EvがレベルCより小さいか
否か判定し、小さいと閾値z2をアドレスZiに取込み
、大きいと閾値z5をアドレスZiに取込みリターンす
る。
In step b9, it is determined whether the volumetric efficiency Ev is smaller than the level C. If it is smaller, the threshold value z2 is taken into the address Zi, and if it is larger, the threshold value z5 is taken into the address Zi and the process returns.

第11図(b)の修正理論空燃比算出処理では、まず、
Vs L。と閾値z1をそれぞれ取込み、ステップc3
でVSL□及びZlより修正理論空燃比を算出し、リタ
ーンする。
In the modified stoichiometric air-fuel ratio calculation process shown in FIG. 11(b), first,
Vs L. and threshold value z1 respectively, and step c3
Calculate the corrected stoichiometric air-fuel ratio from VSL□ and Zl and return.

第12図は燃料噴射量算出プログラムのフローを示し、
概略的にはストイキオ信号V S c Cに基づき理論
空燃比に達したタイミングをまず求め、その時点で求め
た空燃比信号V s tと予め設定しておいた(リッチ
及びリーンシフトさせたλb、λC等を含む)理論空燃
比信号U s tとの差分ΔV(=vs=  ’esj
を求め、その上で、各空燃比信号■。8.を差分ΔVに
より修正し、実際の空燃比A/Fの算出を行い、エンジ
ンの燃料噴射弁を所定タイミングで適正開弁時間だけ駆
動すべく制御作動する。
Figure 12 shows the flow of the fuel injection amount calculation program,
Roughly speaking, the timing at which the stoichiometric air-fuel ratio is reached is first determined based on the stoichiometric signal V s c C, and the air-fuel ratio signal V s t determined at that point is set in advance (λb shifted rich and lean, difference ΔV (= vs= 'esj) from the stoichiometric air-fuel ratio signal U s t (including λC, etc.)
After that, calculate each air-fuel ratio signal■. 8. is corrected by the difference ΔV, the actual air-fuel ratio A/F is calculated, and a control operation is performed to drive the fuel injection valve of the engine for an appropriate valve opening time at a predetermined timing.

具体的には、コントローラのプログラムがスタートする
と、ステラa1で燃料フィードバック制御の条件が満た
されているか否かを周知手段の入力信号より判断する。
Specifically, when the controller program starts, it is determined based on the input signal of the notifying means whether the fuel feedback control conditions are satisfied in Stella a1.

NOの場合はステップa2に進み、YESではステップ
a3へ進む。
If NO, proceed to step a2; if YES, proceed to step a3.

ステップa2では燃料量補正係数に、を1とし、ステッ
プa4て燃料jL F u−iの算出を行う。ここでは
、割込みにより、吸入空気量A/Nとエンジン回転数N
に基づき基本燃料量F (A/N、N)を算出し、この
値に空燃比による補正係数KF、を乗じ、更に、その他
の条件例えば大気圧等による補正係数Kを乗じて適正燃
料量を算出し、メインルーチンにリターンする。なお、
A/Nの代りに、吸気圧、スロットル開度等を用いても
良い。
In step a2, the fuel amount correction coefficient is set to 1, and in step a4, the fuel jL F u-i is calculated. Here, due to the interrupt, the intake air amount A/N and the engine speed N
Calculate the basic fuel amount F (A/N, N) based on this value, multiply this value by a correction coefficient KF based on the air-fuel ratio, and further multiply by a correction coefficient K based on other conditions such as atmospheric pressure to determine the appropriate fuel amount. Calculate and return to the main routine. In addition,
In place of A/N, intake pressure, throttle opening, etc. may be used.

ステップa1から83へ進んだ場合、差分ΔVの平均値
ΔVwの算出に先立ち、これをクリアする必要があるか
否かという初期設定の判断をし、必要ならステップa5
でクリアを行い、その後はステップへ進む。
When proceeding from step a1 to 83, before calculating the average value ΔVw of the differences ΔV, it is determined in the initial setting whether or not it is necessary to clear this, and if necessary, step a5
Clear it with , then proceed to step.

ステップa6では、修正済のストイキオ信号vstcと
空燃比信号V。U、を読み取る。
In step a6, the corrected stoichiometry signal vstc and air-fuel ratio signal V. Read U.

次にステップa7で、VSCoの値が前回取込み時にお
ける値と比へられ、両者に変化があるか否かを判断し、
理論空燃比に達したことによる変化がある場合はステッ
プa8へ、無い場合はa9へ進む。
Next, in step a7, the value of VSCo is compared with the value at the time of previous acquisition, and it is determined whether there is a change in the two.
If there is a change due to reaching the stoichiometric air-fuel ratio, proceed to step a8; otherwise, proceed to step a9.

ステップa8では、現在の混合比が理論空燃比に達して
いるので、差分平均値ΔVMを修正する条件(アクセル
開度の変化が基準値以下か、目標空燃比を変更した直後
でないのかなど)が適正であるとステップaloへ、そ
うでないとa9へ進む。
In step a8, since the current mixture ratio has reached the stoichiometric air-fuel ratio, the conditions for correcting the average difference value ΔVM (such as whether the change in accelerator opening is less than the reference value or whether the target air-fuel ratio has been changed immediately) are determined. If appropriate, proceed to step alo, otherwise proceed to a9.

ステップaloでは空燃比信号V OU tを、理論空
燃比に達した時点での実際の値■、Tとして読み取り、
予め設定しておいた理論空燃比信号USTとの差分ΔV
を算出し、更に、外乱排除等のため、前回またはそれ以
前の差分との平均化を行い、差分平均値Δ■つを算出す
る。
In step alo, the air-fuel ratio signal V OUT is read as the actual value ■, T at the time when the stoichiometric air-fuel ratio is reached,
Difference ΔV from the stoichiometric air-fuel ratio signal UST set in advance
Then, in order to eliminate disturbances, etc., the difference is averaged with the previous or previous difference, and an average difference value Δ■ is calculated.

そしてステップa9では空燃比の修正を行う。Then, in step a9, the air-fuel ratio is corrected.

ここでは、その時点での空燃比信号V。8、の偏差をΔ
■2により修正し、例えば(A/F) 2=f(V 0
11、、−ΔvM)なる空燃比算出を行う。
Here, the air-fuel ratio signal V at that time. 8, the deviation of Δ
■ Correct according to 2, for example (A/F) 2=f(V 0
11, , -ΔvM).

続いて、目標空燃比A/Fと実際の空燃比(A/F)2
との差を求め、しかも、これの前回値との差Δξも算出
しておき、空燃比による燃料量補正係数KFBの算出を
行う。
Next, the target air-fuel ratio A/F and the actual air-fuel ratio (A/F)2
In addition, the difference Δξ between this value and the previous value is also calculated, and the fuel amount correction coefficient KFB based on the air-fuel ratio is calculated.

ここでは、差εのレベルに応じたゲインの比例項KA(
f)と、三元触媒の応答遅れを防ぐためのオフセット量
に、を算出し、更に、微分項としてKl、(ΔE)、積
分項としてΣKt([+tp、l)を各々算出し、これ
らの加減算によりKFBを求め0 。
Here, the gain proportional term KA (
f) and the offset amount to prevent response delay of the three-way catalyst, and further calculate Kl (ΔE) as the differential term and ΣKt ([+tp, l) as the integral term, and calculate these. Find KFB by addition and subtraction and get 0.

この後、ステップa4に進み、各補正係数K F B 
!に、及び基準燃料量Fにより、この時点での適正燃料
供給量を算出し、メインルーチンにリターンする。
After that, proceed to step a4, and each correction coefficient K F B
! , and the reference fuel amount F, the appropriate fuel supply amount at this point is calculated, and the process returns to the main routine.

上述の処において用いた、リニア空燃比センサS工に代
えて第8図のリニア空燃比センサS2を用いてもよい。
The linear air-fuel ratio sensor S2 shown in FIG. 8 may be used in place of the linear air-fuel ratio sensor S used in the above.

この場合、センサ20の一方の電極26はキャビティ2
5に、他方の電極27はリファレンス室25cに対設さ
れ、雨雲囲気中の酸素濃度差により起電力Vsを生じる
。この場合、図示しない自己汲み通電流が電極27.2
6に与えられ、リファレンス室25cはリーンに保たれ
参照気体を構成している。なお符号32.33は拡散通
路を示す。
In this case, one electrode 26 of the sensor 20 is connected to the cavity 2
5, the other electrode 27 is disposed opposite to the reference chamber 25c, and generates an electromotive force Vs due to the difference in oxygen concentration in the atmosphere surrounding the rain cloud. In this case, a self-drawing current (not shown) is applied to the electrode 27.2.
6, and the reference chamber 25c is kept lean and constitutes a reference gas. Note that numerals 32 and 33 indicate diffusion paths.

ポンプセル21の一方の電極29は排ガス中に。One electrode 29 of the pump cell 21 is in the exhaust gas.

他方の電極28はキャビティ25に対設され、ここには
制御部31よりポンプ電流I、が印加される。制御部3
1は可変抵抗器を介して与えられる第1の起電力Vsと
第2の起電力Vaとの合成起電力に基づきポンプ電流■
2を流す。ここでも電流検出用の抵抗器5と電流検出回
路3、加算回路4により空燃比信号■。IJL を検出
てきる。同じくA点のポンプif圧Vpが、第6図に示
したと同一のポンプ電圧測定処理回路により検出され、
ストイキオ信号V、。。が検出される。なお、この■5
,6も閾値設定手段により設定される閾値Ziにより修
正ストイキオ信号として用いられ、最適排ガス浄化特性
を得ることを可能としている。
The other electrode 28 is provided opposite to the cavity 25, and a pump current I is applied thereto by the control section 31. Control part 3
1 is the pump current based on the composite electromotive force of the first electromotive force Vs and the second electromotive force Va given through the variable resistor.
Run 2. Here again, the air-fuel ratio signal ■ is generated by the resistor 5 for current detection, the current detection circuit 3, and the addition circuit 4. IJL is detected. Similarly, the pump if pressure Vp at point A is detected by the same pump voltage measurement processing circuit as shown in FIG.
Stoichio signal V. . is detected. In addition, this ■5
, 6 are also used as corrected stoichiometry signals by the threshold value Zi set by the threshold value setting means, making it possible to obtain optimal exhaust gas purification characteristics.

上述した■。1.と〜“37.を併用した燃料のストイ
キオ・フィードバック制御の他、ストイキオ信号V、、
、だけを用いて従来の02センサの場合と同しロジック
、手順でストイキオ−フィートハック制御を行うことも
可能であり、本実施例の空燃比検出装置をどちらの制御
に用いるかは自由である。
■ mentioned above. 1. In addition to the stoichiometry feedback control of fuel using
, it is also possible to perform stoichiometric foot hack control using the same logic and procedure as in the case of the conventional 02 sensor, and the air-fuel ratio detection device of this embodiment can be used for either control freely. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば、いわゆるリニア空燃比センサを用いた
空燃比検出において、ポンプセルの本能的な酸素濃度起
電力を直接または間接的に検出してストイキオ(理論空
燃比)の判定信号とするのて、制御系の誤差の影響を受
けずストイキオ検出精度、ストイキオ検出応答性が従来
の02センサ並みに向上する。
According to the present invention, in air-fuel ratio detection using a so-called linear air-fuel ratio sensor, the instinctive oxygen concentration electromotive force of the pump cell is directly or indirectly detected and used as a stoichiometry (stoichiometric air-fuel ratio) determination signal. The stoichiometry detection accuracy and stoichiometry detection responsiveness are improved to the same level as the conventional 02 sensor without being affected by errors in the control system.

更に、閾値設定手段が閾値を増減調整できるので、目標
とする修正理論空燃比に微調整でき、リッチあるいはリ
ーン側にわずかにシフトされた理論空燃比信号(ストイ
キオ信号)により最適な排ガス浄化特性を得ることがで
きるようになる。
Furthermore, since the threshold value setting means can increase or decrease the threshold value, it is possible to make fine adjustments to the target corrected stoichiometric air-fuel ratio, and the stoichiometric air-fuel ratio signal (stoichiometry signal) that is slightly shifted to the rich or lean side provides optimal exhaust gas purification characteristics. be able to obtain it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の概略構成図、第2図は
動作説明のための波形図、第3図、第4図及び第6図は
各々第2の検出手段の具体的構成図、第5図及び第7図
は動作説明のための波形図、第8図は本発明の他の実施
例で用いられるリニア空燃比センサの概略構成図、第9
図は三元触媒の浄化特性線図、第10図は閾値算出マツ
プの特性図、第11図(、)はV、、c閾値設定プログ
ラム、第11図(b)は修正空燃比算出プログラムの各
フローチャート、第12図は燃料噴射量算出プログラム
のフローチャート、第13図はセンサ素子部分の構成の
説明図、第14図は従来装置の概略構成図、第15図は
ポンプ電流と空燃比の関係を示す図、第16図はポンプ
電流の方向に基づくストイキオ信号の特性を示す図であ
る。 1・・・比較器、2・・・正負電源付き積分アンプ、3
・・電流検出回路、4・・・加算回路、5・・・電流検
出用抵抗器、7・・・ポンプ電圧測定処理回路(第2の
検出手段)、8・バッファ、9・・コンパレータ、9a
・・閾値可変設定器、10・・フィルタ、11・・オペ
アンプ、20・・・センサセル、2トポンプセル、Vo
u+・・空燃比信号、 VStっ・理論空燃比(ストイ
キオ)信号、S工+Sz・・リニア空燃比センサ。 77fE)Z圀 IP)v 圀 ポンプ七ル21へ る4(社) 売り 因 ストイキオCλL) リーン 壱q 幻 市Jθ図 Ne (γ酬〕 (f)) 7F3グ(2) 売JD目 もJβ幻 ノ・ソチ スト4〜オ 」−ン A/F
FIG. 1 is a schematic configuration diagram of an embodiment of the device of the present invention, FIG. 2 is a waveform diagram for explaining the operation, and FIGS. 3, 4, and 6 are specific configurations of the second detection means, respectively. 5 and 7 are waveform diagrams for explaining the operation, FIG. 8 is a schematic configuration diagram of a linear air-fuel ratio sensor used in another embodiment of the present invention, and FIG.
The figure is a purification characteristic diagram of a three-way catalyst, Figure 10 is a characteristic diagram of a threshold calculation map, Figure 11 (,) is a V,,c threshold setting program, and Figure 11 (b) is a modified air-fuel ratio calculation program. Each flowchart, Fig. 12 is a flowchart of the fuel injection amount calculation program, Fig. 13 is an explanatory diagram of the configuration of the sensor element part, Fig. 14 is a schematic configuration diagram of the conventional device, and Fig. 15 is the relationship between pump current and air-fuel ratio. FIG. 16 is a diagram showing the characteristics of the stoichiometric signal based on the direction of the pump current. 1... Comparator, 2... Integrating amplifier with positive and negative power supplies, 3
...Current detection circuit, 4.Addition circuit, 5.Resistor for current detection, 7.Pump voltage measurement processing circuit (second detection means), 8.Buffer, 9..Comparator, 9a
...Threshold variable setter, 10...Filter, 11...Operational amplifier, 20...Sensor cell, 2 top pump cell, Vo
u+...Air-fuel ratio signal, VSt-Stoichiometric air-fuel ratio signal, S+Sz...Linear air-fuel ratio sensor. 77fE) Z Kuni IP) v Kuni Pump 7ru 21 Heru 4 (Company) Selling cause Stoikio CλL) Lean 1q Genichi Jθ map Ne (γ reward] (f)) 7F3g (2) Selling JD number is also Jβ Gen No Sochist 4~O''-n A/F

Claims (1)

【特許請求の範囲】 1、混合気燃焼後の排ガス中の酸素濃度と参照気体中の
酸素濃度との差に応じた電気信号を出力するセンサセル
と、 上記センサセルからの出力に応じた電気制御信号を出力
する制御手段と、 上記制御手段から供給される電気制御信号に応じて酸素
イオンを移動させるポンプセルと、上記制御手段とポン
プセルとの間で授受される制御電流に応じた空燃比信号
を出力する第1の検出手段とを有し、更に、 上記制御手段からポンプセルに印加される制御電圧を検
出して理論空燃比信号を出力する第2の検出手段を有す
ることを特徴とする空燃比検出装置。 2、混合気燃焼後の排ガス中の酸素濃度と参照気体中の
酸素濃度との差に応じた電気信号を出力するセンサセル
と、 上記センサセルからの出力に応じた電気制御信号を出力
する制御手段と、 上記制御手段から供給される電気制御信号に応じて酸素
イオンを移動させるポンプセルと、上記制御手段とポン
プセルとの間で授受される制御電流に応じた空燃比信号
を出力する第1の検出手段とを有し、更に、 上記制御手段からポンプセルに印加される制御電圧を検
出してその値と所定の閾値とより理論空燃比を算出して
その信号を出力する第2の検出手段とを有し、上記第2
の検出手段には閾値設定手段より上記閾値が増減調整さ
れて出力されることを特徴とする空燃比検出装置。
[Scope of Claims] 1. A sensor cell that outputs an electric signal according to the difference between the oxygen concentration in the exhaust gas after combustion of the air-fuel mixture and the oxygen concentration in the reference gas; and an electric control signal according to the output from the sensor cell. a pump cell that moves oxygen ions according to an electric control signal supplied from the control means, and an air-fuel ratio signal that outputs an air-fuel ratio signal according to a control current exchanged between the control means and the pump cell. an air-fuel ratio detection means, further comprising a second detection means for detecting a control voltage applied to the pump cell from the control means and outputting a stoichiometric air-fuel ratio signal. Device. 2. A sensor cell that outputs an electric signal according to the difference between the oxygen concentration in the exhaust gas after combustion of the air-fuel mixture and the oxygen concentration in the reference gas; and a control means that outputs an electric control signal according to the output from the sensor cell. , a pump cell that moves oxygen ions according to an electric control signal supplied from the control means, and a first detection means that outputs an air-fuel ratio signal according to a control current exchanged between the control means and the pump cell. and a second detection means for detecting the control voltage applied to the pump cell from the control means, calculating the stoichiometric air-fuel ratio from that value and a predetermined threshold value, and outputting a signal thereof. and the second above
An air-fuel ratio detection device characterized in that the threshold value is increased or decreased and outputted to the detection means by a threshold value setting means.
JP2204327A 1990-02-28 1990-07-31 Air-fuel ratio detector Expired - Lifetime JP2513350B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US07/661,614 US5231864A (en) 1990-02-28 1991-02-28 Air-fuel ratio detecting device
KR1019910003380A KR940001351B1 (en) 1990-02-28 1991-02-28 Air fuel ratio detecting device
EP91103018A EP0444674B1 (en) 1990-02-28 1991-02-28 Air fuel ratio detecting device
DE69118739T DE69118739T2 (en) 1990-02-28 1991-02-28 Air-fuel ratio detection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-48418 1990-02-28
JP4841890 1990-02-28

Publications (2)

Publication Number Publication Date
JPH03282250A true JPH03282250A (en) 1991-12-12
JP2513350B2 JP2513350B2 (en) 1996-07-03

Family

ID=12802771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2204327A Expired - Lifetime JP2513350B2 (en) 1990-02-28 1990-07-31 Air-fuel ratio detector

Country Status (2)

Country Link
JP (1) JP2513350B2 (en)
KR (1) KR940001351B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230537A (en) * 1984-05-01 1985-11-16 Nissan Motor Co Ltd Air-fuel ratio controller
JPS6381258A (en) * 1986-09-25 1988-04-12 Nissan Motor Co Ltd Air/fuel ratio detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230537A (en) * 1984-05-01 1985-11-16 Nissan Motor Co Ltd Air-fuel ratio controller
JPS6381258A (en) * 1986-09-25 1988-04-12 Nissan Motor Co Ltd Air/fuel ratio detector

Also Published As

Publication number Publication date
JP2513350B2 (en) 1996-07-03
KR940001351B1 (en) 1994-02-19
KR910021533A (en) 1991-12-20

Similar Documents

Publication Publication Date Title
US4981125A (en) Output correction method for exhaust gas ingredient-concentration sensors of proportional-output type
US4905652A (en) Device for measuring a component of a gaseous mixture
US7776194B2 (en) Gas concentration measuring apparatus designed to compensate for output error
US5473889A (en) Air-fuel ratio control system for internal combustion engines
US5231864A (en) Air-fuel ratio detecting device
US4915813A (en) Oxygen concentration detecting device
JP2601455B2 (en) Air-fuel ratio control method for internal combustion engine
US4787966A (en) Oxygen concentration sensor for an internal combustion engine
US4763628A (en) Method of compensating output from oxygen concentration sensor of internal combustion engine
JP2600453B2 (en) Air-fuel ratio sensor output correction method
JPH03282250A (en) Air-fuel-ratio detecting apparatus
JPH0750071B2 (en) Output correction method for proportional exhaust concentration sensor
JP4107495B2 (en) Air-fuel ratio arithmetic unit
JPS6042196Y2 (en) Air fuel ratio control device
JP2775654B2 (en) Air-fuel ratio control method for internal combustion engine
JP2780710B2 (en) Air-fuel ratio control method for internal combustion engine
JP2591761Y2 (en) Air-fuel ratio detection device for internal combustion engine
JPS62198750A (en) Air-fuel ratio detecting device for engine
JPS62198744A (en) Output correcting method for oxygen concentration sensor for internal combustion engine
JPH0826804B2 (en) Air-fuel ratio control device for internal combustion engine
JPH0114918Y2 (en)
JP2613591B2 (en) Air-fuel ratio control method for internal combustion engine
JPS6059415B2 (en) Air-fuel ratio control method for internal combustion engine
JPH10300720A (en) Exhaust constituent measuring instrument and engine air/fuel ratio control system
JPS6039548A (en) Air-fuel ratio sensor of engine