JPS60228674A - Method for controlling film thickness - Google Patents

Method for controlling film thickness

Info

Publication number
JPS60228674A
JPS60228674A JP8433884A JP8433884A JPS60228674A JP S60228674 A JPS60228674 A JP S60228674A JP 8433884 A JP8433884 A JP 8433884A JP 8433884 A JP8433884 A JP 8433884A JP S60228674 A JPS60228674 A JP S60228674A
Authority
JP
Japan
Prior art keywords
film thickness
thin film
transmitted light
information
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8433884A
Other languages
Japanese (ja)
Other versions
JPH036991B2 (en
Inventor
Toshiaki Ogura
敏明 小倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8433884A priority Critical patent/JPS60228674A/en
Publication of JPS60228674A publication Critical patent/JPS60228674A/en
Publication of JPH036991B2 publication Critical patent/JPH036991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To control film thickness in addition to integer times of lambdao/4 as well by comparing the information obtd. from a detecting part which detects the change rate of the quantity of transmitted light with respect to the designed wavelength of a sample substrate and a setting part and adjusting a shutter which shuts off vapor flow. CONSTITUTION:The change rate of the quantity of the transmitted light with respect to the design wavelength of the sample substrate 2 under formation of the thin film is detected in the detecting part 34. The change rate of the quantity of the transmitted light until the optical film thickness of the thin film formed on the substrate 2 attains a desired value is outputted as information in the setting part 30. Both sets of the above-described detection information are compared and when the information obtd. from the part 34 is made identical with the information on the desired optical film thickness set in the part 30, a control part 8 for vapor deposition is controlled to control the thin film to be formed on the substrate 2. Said control part 8 controls an evaporating source 6 and the shutter 7 which shuts off the vapor flow evaporating therefrom.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、光学薄膜を真空蒸着によって形成する際の膜
厚制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of controlling film thickness when forming an optical thin film by vacuum deposition.

2 べ−7 従来例の構成とその問題点 従来、レンズなどの光学部品の表面に反射防止膜々どの
光学薄膜が形成されることはよく知られている。また、
近年は光波術の発展にともなって光学部品の表面に各種
の特性をもつ光学薄膜を形成して用いる機会が多くなっ
てきている。前記のよう々光学薄膜を光学部品表面に形
成する手段として一般には真空蒸着法が用いられている
が、光学薄膜の場合には、単層膜でも多層膜でも比較的
精度よく各層の膜厚を制御することが重要である。
2.B-7 Structure of conventional example and its problems It is well known that optical thin films such as antireflection films are formed on the surfaces of optical components such as lenses. Also,
In recent years, with the development of light wave technology, opportunities to form and use optical thin films with various characteristics on the surfaces of optical components have increased. As mentioned above, vacuum evaporation is generally used as a means of forming optical thin films on the surfaces of optical components, but in the case of optical thin films, the film thickness of each layer can be determined with relative precision whether it is a single layer film or a multilayer film. It is important to control.

従来一般には、光学薄膜の膜厚の制御手段として薄膜形
成中の試料基板の透過光量を測定して膜厚を制御する方
法が用いられることが多い。
Conventionally, as a means for controlling the thickness of an optical thin film, a method of controlling the film thickness by measuring the amount of light transmitted through a sample substrate during thin film formation is often used.

以下図面を参照しながら従来の膜厚制御の方法について
説明する。第1図は従来の膜厚制御の方法を示す真空蒸
着装置の構成図を示すものであり、1は膜厚制御用の変
調された光束を発する投光部、2tri膜厚監視用の試
料基板、3は波長選択フィルタ、4は膜厚制御用の光束
の検出部、5は試料基板2の透過光量の変化量に対応し
た情報を表示す3 へ−1 る表示部、6は蒸発源、7は蒸発源6からの蒸発流を制
御するだめのシャッタ、8Iri蒸発源6およびシャッ
タ7を制御するだめの蒸着制御部、9は真空蒸着槽であ
る。
A conventional film thickness control method will be described below with reference to the drawings. Figure 1 shows a configuration diagram of a vacuum evaporation apparatus showing a conventional film thickness control method, in which 1 indicates a light projector that emits a modulated light flux for film thickness control, and a sample substrate for 2-tri film thickness monitoring. , 3 is a wavelength selection filter, 4 is a light flux detection unit for film thickness control, 5 is a display unit that displays information corresponding to the amount of change in the amount of transmitted light of the sample substrate 2, 6 is an evaporation source, 7 is a shutter for controlling the evaporation flow from the evaporation source 6; 8 is a evaporation control section for controlling the Iri evaporation source 6 and the shutter 7; 9 is a vacuum evaporation tank.

以上のように構成された真空蒸着装置の膜厚制御の方法
を以下に説明する。投光部1から発せられた変調光束は
真空蒸着槽9に設けられた窓10を通過し真空蒸着槽9
内に導かれる。光束は通常蒸発源などからの迷光を除く
だめに約1o○○Hzで変調されている。真空蒸着槽内
に導かれた光束は膜厚監視用の試料基板2を通過し窓1
1、波長選択フィルタ3を通過して膜厚制御の波長を選
択され、例えば光電変換器などの検出部4に入射する。
A method of controlling the film thickness of the vacuum evaporation apparatus configured as described above will be described below. The modulated light beam emitted from the light projecting unit 1 passes through a window 10 provided in the vacuum deposition tank 9, and passes through the window 10 provided in the vacuum deposition tank 9.
Guided within. The light flux is normally modulated at about 1000Hz in order to eliminate stray light from evaporation sources and the like. The light flux guided into the vacuum deposition tank passes through a sample substrate 2 for film thickness monitoring, and then passes through a window 1.
1. The light passes through a wavelength selection filter 3, selects a wavelength for film thickness control, and enters a detection unit 4, such as a photoelectric converter.

検出部4で光束のエネルギーは通常電気信号に変換増幅
され、透過光量に対応した信号を表示部5に表示する。
The energy of the light beam is usually converted and amplified into an electric signal in the detection section 4, and a signal corresponding to the amount of transmitted light is displayed on the display section 5.

透過光量は理論的には薄膜の光学的膜厚によって、薄膜
の屈折率が基板の屈折率より低い場合は第2図a、薄膜
の屈折率が基板の屈折率より高い場合には、第2図すの
ように変化し設計波長λOのλ。/4の整数倍と々った
とき極値をとることがわかっているので、その極値を表
示部5から読取り、蒸着制御部8によって蒸発源6から
の蒸発流をシャッタ7によって遮断することによって薄
膜の光学的膜厚の制御を行々っでいる。すなわち従来は
基本的には設計波長λ。のλ。/4の整数倍煙学的膜厚
の制御を行なっていた。
The amount of transmitted light theoretically depends on the optical thickness of the thin film.If the refractive index of the thin film is lower than the refractive index of the substrate, the amount of transmitted light will depend on the optical thickness of the thin film, and if the refractive index of the thin film is higher than the refractive index of the substrate, it will be λ of the design wavelength λO changes as shown in the figure. Since it is known that the extreme value is reached when the value is an integer multiple of /4, the extreme value is read from the display section 5, and the evaporation flow from the evaporation source 6 is shut off by the evaporation control section 8 using the shutter 7. The optical thickness of the thin film is controlled by this method. In other words, in the past, the design wavelength was basically λ. λ. The smokeological film thickness was controlled by an integer multiple of /4.

しかしながら近年は、従来より高性能な特性をもつ光学
膜が設計されており、その場合必らずしも各層の光学的
膜厚が設計波長λ。のλ。/4の整数倍となるものでは
ない。
However, in recent years, optical films with higher performance characteristics than before have been designed, and in this case, the optical film thickness of each layer is not necessarily equal to the design wavelength λ. λ. It is not an integral multiple of /4.

例えば反射防止膜を等価膜を利用して形成することがあ
るが、この等価膜は低屈折率材料と高屈折率材料との交
互膜で各層の膜厚を変えることによシ任意の屈折率の光
学的膜厚λ。/4の層を作る方法であり、前記反射防止
膜の一部の層に適用されることがある。等価膜では構成
する各層の膜厚がλ。/4よりもかカリ薄くなる場合が
ある。膜厚がり4と異なる場合、波長選択フィルタを交
換することによってλ。を変化させ、ある程度の膜5−
/゛ 原質化には対応できるが、検出部に使用されている検出
器の感度上それも限度があり、まだ交換する手間もかか
る。
For example, an anti-reflection film is sometimes formed using an equivalent film, but this equivalent film is made of alternating films of low refractive index material and high refractive index material, and by changing the film thickness of each layer, it is possible to obtain an arbitrary refractive index. optical film thickness λ. /4 layer, and may be applied to some of the layers of the antireflection film. In an equivalent film, the thickness of each layer is λ. It may be slightly thinner than /4. If the film thickness is different from 4, change the wavelength selection filter to λ. to some extent, the membrane 5-
/゛Although it can be used for refining, there is a limit to the sensitivity of the detector used in the detection part, and it still takes time to replace it.

以上のように光学的膜厚がも/4の整数倍でない層を形
成する場合には、前記従来の膜厚制御の方法を用いるこ
とは手間がかかったり、また適用でき々いとともある。
As described above, when forming a layer whose optical thickness is not an integral multiple of /4, using the conventional film thickness control method described above is time-consuming and difficult to apply.

発明の目的 本発明の目的は光学的膜厚がも/4の整数倍以外でも薄
膜の膜厚制御を容易に可能とする膜厚制御方法を提供す
ることである。
OBJECTS OF THE INVENTION An object of the present invention is to provide a film thickness control method that makes it possible to easily control the thickness of a thin film even if the optical film thickness is not an integral multiple of 4.

発明の構成 本発明の膜厚制御法は、薄膜形成中の試料基板の設計波
長に対する透過光量の変化量を検出し前記設計波長に対
応した情報を出力する検出部と、前記試料基板に形成さ
れる薄膜の光学的膜厚が所望の値になるときまでの透過
光量の変化量を前記設計波長に対応した情報として出力
する設定部とから得られる画情報を比較し、蒸発源およ
び前記蒸発源からの蒸発流を遮断するシャッタを制御す
6 ′・− る蒸着制御部を制御して試料基板に形成される薄膜の光
学的膜厚の制御を行なうことを特徴とするものであり、
この方法によって薄膜の光学的膜厚が設計波長λ。のん
/4の整数倍以外でも容易に制御することができる。
Structure of the Invention The film thickness control method of the present invention includes: a detection unit that detects a change in amount of transmitted light with respect to a design wavelength of a sample substrate during thin film formation and outputs information corresponding to the design wavelength; The image information obtained from the setting section outputs the amount of change in the amount of transmitted light until the optical thickness of the thin film reaches a desired value as information corresponding to the design wavelength, and The device is characterized in that the optical thickness of the thin film formed on the sample substrate is controlled by controlling a evaporation control section that controls a shutter that blocks the evaporation flow from the sample substrate.
This method allows the optical thickness of the thin film to be adjusted to the design wavelength λ. It is possible to easily control values other than integral multiples of NON/4.

実施例の説明 以下本発明の実施例について図面を参照しながら説明す
る。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第3図は本発明の膜厚制御方法を示す真空蒸着装置の一
実施例における構成図を示すものである。
FIG. 3 shows a configuration diagram of an embodiment of a vacuum evaporation apparatus showing the film thickness control method of the present invention.

第3図において34は薄膜形成中の試料基板2の設計波
長に対する透過光量の変化量をモニタし前記設計波長に
対応した情報を出力する検出部であり3oIri試料基
板2に形成される薄膜の光学的膜厚が所望の値になると
きまでの透過光量の変化量を前記設計波長に対応した情
報として出力する設定部である。
In FIG. 3, 34 is a detection unit that monitors the amount of change in the amount of transmitted light with respect to the design wavelength of the sample substrate 2 during thin film formation and outputs information corresponding to the design wavelength. This is a setting unit that outputs the amount of change in the amount of transmitted light until the target film thickness reaches a desired value as information corresponding to the design wavelength.

以上のように構成された真空蒸着装置について以下本発
明の膜厚制御方法を説明する。投光部1から発せられた
変調光束は真空蒸着槽9に設けら7 ベ−こ れだ窓10を通過し真空蒸着槽9内に導かれる。
The film thickness control method of the present invention will be explained below regarding the vacuum evaporation apparatus configured as above. The modulated light beam emitted from the light projector 1 passes through a window 10 provided in the vacuum deposition tank 9 and is guided into the vacuum deposition tank 9.

真空蒸着槽内に導かれた光束は、膜厚監視用の試料基板
2を通過し窓11、波長選択フィルタ3を通過して膜厚
制御の波長を選択され、光電変換器などの検出部4に入
る。検出部4では入射光束の光量の変化量を検出し選択
された波長に対応した情報を出力する。前記の情報は設
定部30から出力されるあらかじめ設定され情報、すな
わち、試料基板2に形成される薄膜の光学的膜厚が所望
の値になるときまでの透過光量の変化量に対応する情報
と逐次比較される。そこで検出部4からの情報が設定部
30に設定された所望の値における情報と一致したとき
、蒸着制御部8を制御しシャッタ7を閉じ蒸着を停止す
る。設定された情報は例えば第4図に示すようなもので
ある。第4図の条件は屈折率1.54のガラス基板上に
屈折率1.38のフッ化マグネシウムの薄膜を設計波長
λ0が560nmで光学的膜厚がλ。/4まで蒸着した
ときの情報例を示す。この場合においては、検出部から
得られる情報を逐次設定された情報と比較し、例えば光
学的膜厚をも/8としたいときには第4図において、検
出部から得られる情報がA点に対応する値に達したとき
蒸着を停止すればよく、光学的膜厚をλO/20としだ
いときにはB点に対応する値で蒸着を停止すればよい。
The light flux guided into the vacuum deposition tank passes through a sample substrate 2 for film thickness monitoring, passes through a window 11, a wavelength selection filter 3, selects a wavelength for film thickness control, and then passes through a detection unit 4 such as a photoelectric converter. to go into. The detection unit 4 detects the amount of change in the amount of incident light and outputs information corresponding to the selected wavelength. The above information is preset information output from the setting section 30, that is, information corresponding to the amount of change in the amount of transmitted light until the optical thickness of the thin film formed on the sample substrate 2 reaches a desired value. It is successively compared. Therefore, when the information from the detection section 4 matches the information at the desired value set in the setting section 30, the vapor deposition control section 8 is controlled to close the shutter 7 and stop the vapor deposition. The set information is, for example, as shown in FIG. The conditions in FIG. 4 are that a thin film of magnesium fluoride with a refractive index of 1.38 is formed on a glass substrate with a refractive index of 1.54, the design wavelength λ0 is 560 nm, and the optical film thickness is λ. An example of information when vapor deposition is performed up to /4 is shown. In this case, the information obtained from the detection section is compared with the sequentially set information, and for example, if the optical film thickness is to be set to /8, the information obtained from the detection section corresponds to point A in Fig. 4. It is sufficient to stop the vapor deposition when the value is reached, and as soon as the optical film thickness is set to λO/20, the vapor deposition may be stopped at the value corresponding to point B.

以上のように本実施例によれば、光学的膜厚がλ。/4
の整数倍以外でも容易な膜厚制御を実現している。なお
、上の実施例では形成される薄膜を単層膜としたが多層
膜の膜厚制御にも同様に利用することができる。
As described above, according to this embodiment, the optical film thickness is λ. /4
Easy film thickness control is achieved even when the thickness is not an integer multiple of . In the above embodiment, the formed thin film is a single layer film, but the present invention can be similarly utilized for controlling the thickness of a multilayer film.

発明の効果 以上の説明から明らかなように本発明の膜厚制御方法は
、試料基板の設計波長に対する透過光量の変化量を検出
し設計波長に対応した情報を出力する検出部と、試料基
板に形成される薄膜の光学的膜厚が所望の値になるとき
寸での透過光量の変化量を設計波長に対応した情報とし
て出力する設定部とから得られる画情報を比較し、検出
部から得られる情報が設定部に設定された所望の光学的
膜厚に対する情報となったとき、蒸発源および蒸9f\
−7゛ 発源からの蒸発流を遮断するシャッタを制御する蒸着制
御物を制御して、試料基板に形成される薄膜の光学的膜
厚の制御を行なうため、薄膜の光学的膜厚が設計波長λ
。のλO/4の整数倍以外でも制御でき、その実用上の
価値は犬なるものがある。
Effects of the Invention As is clear from the above explanation, the film thickness control method of the present invention includes a detection unit that detects the amount of change in the amount of transmitted light with respect to the design wavelength of the sample substrate and outputs information corresponding to the design wavelength; The image information obtained from the detection section is compared with the image information obtained from the setting section, which outputs the amount of change in the amount of transmitted light at the time when the optical thickness of the thin film to be formed reaches the desired value as information corresponding to the design wavelength. When the information obtained corresponds to the desired optical film thickness set in the setting section, the evaporation source and evaporation 9f\
-7゛The optical thickness of the thin film is designed to control the optical thickness of the thin film formed on the sample substrate by controlling the evaporation control device that controls the shutter that blocks the evaporation flow from the source. wavelength λ
. It can be controlled with values other than integral multiples of λO/4, and its practical value is considerable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の膜厚制御の方法を示す真空蒸着装置の構
成を示す図、第2図a、第2図すは薄膜の光学的膜厚の
変化に対する透過光量の変化を示す図、第3図は本発明
の膜厚制御の方法を示す真空蒸着装置の一実施例におけ
る構成を示す図、第4図は設定部に設定される情報例を
示す図である。 1・・・・・・投光部、2・・・・・試料基板、3・・
・・・波長選択フィルタ、4・・・・・・検出部、5・
・・・・・表示部、6・・・・・・蒸発源、7・・・・
・・シャッタ、8・・・・・・蒸着制御部、9・・・・
・真空蒸着槽、10.11・・・・・窓、34・・・・
・・検出部、3o・・・・設定部。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 第2図 −尤tg−會勺71又)々L ゴl Ao/s ’/2 ”’/4 z。5、。 やミー 丸41台勺 7I災ノコL 渦 待開昭6O−228674(4) J/ O・− 第4図
Fig. 1 is a diagram showing the configuration of a vacuum evaporation apparatus showing a conventional film thickness control method; FIG. 3 is a diagram showing the configuration of an embodiment of a vacuum evaporation apparatus showing the film thickness control method of the present invention, and FIG. 4 is a diagram showing an example of information set in the setting section. 1...Light emitter, 2...Sample substrate, 3...
...Wavelength selection filter, 4...Detection section, 5.
... Display section, 6 ... Evaporation source, 7 ...
...Shutter, 8... Vapor deposition control section, 9...
・Vacuum deposition tank, 10.11...window, 34...
...Detection section, 3o...Setting section. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 - 尤tg - 会勺71 (also) L Gol Ao/s '/2 ''/4 z. 4) J/O・- Figure 4

Claims (1)

【特許請求の範囲】 薄膜形成中の試料基板の設計波長に対する透過光量の変
化量を検出し、前記設計波長に対応した情報を出力する
検出部と、前記試料基板に形成さ 。 れる薄膜の光学的膜厚が所望の値になるときまでの透過
光量の変化量を前記設計波長に対応した情報として出力
する設定部とから得られる画情報を比較し、検出部から
得られる情報が設定部に設定された所望の光学的膜厚に
対する情報となったとき、蒸発源および前記蒸発源から
の蒸発流を遮断するシャッタを制御する蒸着制御部を制
御して試料基板に形成される薄膜の光学的膜厚の制御を
行なうことを特徴とする膜厚制御方法。
[Scope of Claims] A detecting unit configured to detect a change in amount of transmitted light with respect to a design wavelength of a sample substrate during thin film formation and output information corresponding to the design wavelength; and a detection unit formed on the sample substrate. The image information obtained from the detection section is compared with the image information obtained from the setting section that outputs the amount of change in the amount of transmitted light until the optical thickness of the thin film reaches a desired value as information corresponding to the design wavelength. When the information becomes the desired optical film thickness set in the setting section, the evaporation control section that controls the evaporation source and the shutter that blocks the evaporation flow from the evaporation source is controlled to form the film on the sample substrate. A film thickness control method characterized by controlling the optical thickness of a thin film.
JP8433884A 1984-04-25 1984-04-25 Method for controlling film thickness Granted JPS60228674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8433884A JPS60228674A (en) 1984-04-25 1984-04-25 Method for controlling film thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8433884A JPS60228674A (en) 1984-04-25 1984-04-25 Method for controlling film thickness

Publications (2)

Publication Number Publication Date
JPS60228674A true JPS60228674A (en) 1985-11-13
JPH036991B2 JPH036991B2 (en) 1991-01-31

Family

ID=13827714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8433884A Granted JPS60228674A (en) 1984-04-25 1984-04-25 Method for controlling film thickness

Country Status (1)

Country Link
JP (1) JPS60228674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716704B1 (en) * 2004-03-03 2007-05-14 산요덴키가부시키가이샤 Measurement method of deposition thickness, formation method of material layer, deposition thickness measurement device and material layer formation device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027780A (en) * 1973-07-14 1975-03-22
JPS5724485A (en) * 1980-07-22 1982-02-09 Kayaba Ind Co Ltd Vane pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5027780A (en) * 1973-07-14 1975-03-22
JPS5724485A (en) * 1980-07-22 1982-02-09 Kayaba Ind Co Ltd Vane pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100716704B1 (en) * 2004-03-03 2007-05-14 산요덴키가부시키가이샤 Measurement method of deposition thickness, formation method of material layer, deposition thickness measurement device and material layer formation device

Also Published As

Publication number Publication date
JPH036991B2 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
Sullivan et al. Deposition error compensation for optical multilayer coatings. II. Experimental results—sputtering system
JPS5844961B2 (en) Film thickness control or monitoring equipment
US3781089A (en) Neutral density filter element with reduced surface reflection
EP0585883B1 (en) Method of measuring refractive index of thin film
JPS60228674A (en) Method for controlling film thickness
US4531838A (en) Method and device for controlling the film thickness of evaporated film
JP4732569B2 (en) Method for continuously determining the optical layer thickness of a coating
US20020001668A1 (en) Method and apparatus for forming an optical multilayer filter
US5812264A (en) Method of measuring surface reflectance and a method of producing antireflective polarizing film
JPS60242307A (en) Control method of film thickness
JPH0743528A (en) Filter device
JPH0727907A (en) Optical multilayer film and forming method therefor
JP2002228833A (en) Optical filter and method for manufacturing optical filter
Bates et al. Reflectance and Transmittance of Evaporated Aluminum and Aluminum: Magnesium Fluoride Films in the Ultraviolet (> 1800 Å)
JP2000241127A (en) Film thickness measurement method and winding-up vacuum film-forming device
JPH08136730A (en) Production of antireflection polarizing film
JPS58162805A (en) Method for monitoring vapor deposited film optically
JPH076063B2 (en) Light detection method and device
JP2703324B2 (en) Optical absorption coefficient measuring device
JP2000161923A (en) Film thickness observing device for film-forming apparatus
Baxter et al. New principle for focusing a high-power microscope and means for accomplishing the focusing automatically and with great accuracy
JP2970020B2 (en) Method of forming coating thin film
JP2008033341A (en) Manufacturing method of multilayer cut filter
JP2000171630A (en) Formation of multilayered optical thin film
JPS6034046B2 (en) Thin film generation device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term