JPH0727907A - Optical multilayer film and forming method therefor - Google Patents

Optical multilayer film and forming method therefor

Info

Publication number
JPH0727907A
JPH0727907A JP5170119A JP17011993A JPH0727907A JP H0727907 A JPH0727907 A JP H0727907A JP 5170119 A JP5170119 A JP 5170119A JP 17011993 A JP17011993 A JP 17011993A JP H0727907 A JPH0727907 A JP H0727907A
Authority
JP
Japan
Prior art keywords
film
refractive index
optical multilayer
thin film
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5170119A
Other languages
Japanese (ja)
Inventor
Shinji Uchida
真司 内田
Tsuguhiro Korenaga
継博 是永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5170119A priority Critical patent/JPH0727907A/en
Publication of JPH0727907A publication Critical patent/JPH0727907A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an optical multilayer film with which the incident angle dependency of spectral characteristics can be largely decreased compare with a conventional film. CONSTITUTION:This optical multilayer film is obtd. by alternately laminating thin films 11(TiO2 films) having high refractive index of about >=2.5 and thin films (Ta2O5 films) having lower refractive index by about 0.3 than the thin films 11 on a substrate 10. Even when the incident angle is changed, the shift of spectral characteristics is largely decreased compared with a conventional film. For example, when this film is used as a color separation prism of a videocamera, the shading characteristics can be largely improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば、入射した光を
青色、赤色、緑色に色成分別に分解する3色分解プリズ
ム等に用いる光学多層膜及びその成膜方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical multilayer film for use in a three-color separation prism for separating incident light into blue, red, and green color components, and a film forming method thereof.

【0002】[0002]

【従来の技術】3板カメラ用3色分解プリズムには、色
分離を行う光学多層膜が使用されている。例えば青反射
膜、赤反射膜、緑反射膜等がこれにあたる。
2. Description of the Related Art An optical multi-layer film for color separation is used in a three-color separation prism for a three-plate camera. For example, a blue reflective film, a red reflective film, a green reflective film and the like correspond to this.

【0003】従来より、これら光学多層膜は、主に高屈
折率の薄膜として屈折率が約2.3のTiO2膜を用
い、低屈折率の薄膜として屈折率が約1.46のSiO
2膜を用い、これらを交互に10数層から数10層積層
することで作成してきた。
Conventionally, in these optical multilayer films, a TiO 2 film having a refractive index of about 2.3 is mainly used as a high refractive index thin film, and a SiO having a refractive index of about 1.46 is used as a low refractive index thin film.
Two films have been used, and these films have been formed by alternately laminating 10 to 10 layers.

【0004】従来の光学多層膜の一例として緑反射膜を
取り上げ、その成膜方法を図5を用いて説明する。
A green reflective film is taken as an example of a conventional optical multilayer film, and a film forming method thereof will be described with reference to FIG.

【0005】排気ポンプ50によって高真空状態に保た
れた真空室51内のEB銃52により、蒸着材料(Ti
2)53を加熱溶融し、蒸発させる。この時、酸素導
入口54から、酸素ガスが導入され真空室内の圧力を約
1〜2×10-4torrに設定する。蒸発した蒸発粒子
55は基板ホルダー56上に設置した基板57に到達し
屈折率が約2.3程度の高屈折率の薄膜が形成される。
An EB gun 52 in a vacuum chamber 51 kept in a high vacuum state by an exhaust pump 50 uses a vapor deposition material (Ti
O 2 ) 53 is heated and melted and evaporated. At this time, oxygen gas is introduced from the oxygen inlet 54, and the pressure in the vacuum chamber is set to about 1 to 2 × 10 −4 torr. The evaporated particles 55 that have evaporated reach the substrate 57 installed on the substrate holder 56 and form a thin film having a high refractive index of about 2.3.

【0006】また基板ホルダーの穴部58を通過した蒸
発粒子は光学的膜厚モニタ基板59に到達し薄膜を形成
する。
Evaporated particles that have passed through the hole 58 of the substrate holder reach the optical film thickness monitor substrate 59 to form a thin film.

【0007】光源60を出射した特定波長の光束は光学
的膜厚モニタ基板59上に形成された薄膜に到達し、そ
して反射された光束を検出器61で検出する。光学的膜
厚モニタ基板59上に形成される膜厚によって、反射光
量が変化するため、所定の光量になった時にシャッター
62を回転させることにより閉じて蒸着を終了させ1層
目の成膜を完了する。
The light flux of a specific wavelength emitted from the light source 60 reaches the thin film formed on the optical film thickness monitor substrate 59, and the reflected light flux is detected by the detector 61. Since the amount of reflected light changes depending on the film thickness formed on the optical film thickness monitor substrate 59, when the predetermined amount of light is reached, the shutter 62 is rotated to close and complete the vapor deposition to form the first layer. Complete.

【0008】次に、蒸着材料をSiO2材料に交換し、
光学的膜厚モニタ基板も新しい基板に交換する。第1層
のTiO2膜と同様にEB銃により加熱溶融することで
SiO2材料を蒸発させ、基板上に2層目を形成する。
これにより、屈折率が約1.46の低屈折率の薄膜が形
成される。
Next, the vapor deposition material was replaced with a SiO 2 material,
Also replace the optical film thickness monitor board with a new board. Similar to the TiO 2 film of the first layer, the SiO 2 material is evaporated by heating and melting with an EB gun to form a second layer on the substrate.
As a result, a thin film having a low refractive index of about 1.46 is formed.

【0009】このような操作を多数回繰り返し、TiO
2の膜厚を約50nm、SiO2の膜厚を約330nmと
して交互に12層程度積層して緑多層膜を形成してい
た。
This operation is repeated many times to obtain TiO 2.
The green multilayer film was formed by alternately stacking about 12 layers with the film thickness of 2 being about 50 nm and the film thickness of SiO 2 being about 330 nm.

【0010】このようにして作成した緑反射膜の分光特
性を図6において曲線65で示す。図6では、横軸が波
長(単位:nm)であり、縦軸が反射率(%)である。
ここで、基板の屈折率が約1.6、入射角度が約26度
であり、分光特性は、S偏向の反射率とP偏向の反射率
の平均値を用いて分光特性を示している。以降分光特性
はこのような平均特性で説明する。
The spectral characteristic of the green reflective film thus prepared is shown by a curve 65 in FIG. In FIG. 6, the horizontal axis represents wavelength (unit: nm) and the vertical axis represents reflectance (%).
Here, the refractive index of the substrate is about 1.6, the incident angle is about 26 degrees, and the spectral characteristic shows the spectral characteristic using the average value of the reflectance of S deflection and the reflectance of P deflection. Hereinafter, the spectral characteristics will be described using such average characteristics.

【0011】このように波長490nm〜560nmの
緑色の波長領域で、反射率が著しく高められた、緑反射
膜が作成できていることが判る。
As described above, it can be seen that a green reflective film having a markedly increased reflectance can be formed in the green wavelength region of wavelengths of 490 nm to 560 nm.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、このよ
うな光学多層膜を3色分解プリズム等の色分解を行う光
学デバイスに用いた際に問題となる点を説明する。
However, there will be explained a problem when such an optical multilayer film is used for an optical device for color separation such as a three-color separation prism.

【0013】すなわち、3色分解プリズム等の光学デバ
イスに入射してくる光の角度は一定ではなく、図7の模
式図に示す様に変化することがある。すなわち、被写体
70から出射した光71は、緑反射膜72によって反射
し、CCD73に到達して画像信号が得られるわけであ
るが、出射した光71は撮影条件等によって、ある程度
傾くことが知られている。
That is, the angle of light incident on an optical device such as a three-color separation prism is not constant but may change as shown in the schematic view of FIG. That is, the light 71 emitted from the subject 70 is reflected by the green reflective film 72 and reaches the CCD 73 to obtain an image signal, but it is known that the emitted light 71 is inclined to some extent depending on the photographing conditions and the like. ing.

【0014】この傾き角度をθとすると、当然緑反射膜
72に入射する光の角度が変化するわけであるから、緑
反射膜72の分光特性は入射角度に応じて変化するわけ
である。例えば、入射角度がθ=±1.3度変化した場
合を例にとり、この時の分光特性を図6の曲線66、6
7で示す。これより、分光特性は著しく変化し、θ=2
7.3度と入射角度が大きくなっている場合は曲線67
で示すように短波長側にシフトし、θ=24.7度と入
射角度が小さくなる場合は曲線66で示すように長波長
側にシフトするのが判る。
When the inclination angle is θ, the angle of light incident on the green reflective film 72 naturally changes, so that the spectral characteristic of the green reflective film 72 changes according to the incident angle. For example, taking the case where the incident angle changes by θ = ± 1.3 degrees as an example, the spectral characteristics at this time are shown by the curves 66, 6 in FIG.
Shown by 7. From this, the spectral characteristics change significantly, θ = 2
If the incident angle is as large as 7.3 degrees, the curve 67
It can be seen that the wavelength shifts to the short wavelength side as shown by, and when the incident angle becomes small as θ = 24.7 degrees, the wavelength shifts to the long wavelength side as shown by the curve 66.

【0015】今そのシフト量を最大反射率の半分の反射
率の値を有する波長、すなわち半値波長量でシフト量を
評価すると、長波長側で約13nm、短波長側で約9n
mもシフトしていることがわかる。
When the shift amount is evaluated at a wavelength having a reflectance value half the maximum reflectance, that is, a half value wavelength amount, the shift amount is evaluated to be about 13 nm on the long wavelength side and about 9 n on the short wavelength side.
It can be seen that m is also shifted.

【0016】このような、角度変化による半値波長のシ
フトは、例えばビデオカメラのような場合、撮影画面の
上下方向すなわち垂直方向に、シェーディングと呼ばれ
る色や輝度のむらが発生し、画質を劣化してしまうとい
う課題を有していた。
Such a shift of the half-value wavelength due to a change in angle causes, for example, in the case of a video camera, unevenness in color and brightness called shading to occur in the up-down direction, that is, the vertical direction of the photographic screen, resulting in deterioration of image quality. It had a problem of being lost.

【0017】本発明はこのような点に鑑みて、垂直方向
のシェーディングの抑制された光学多層膜を提供するこ
とを目的とする。
In view of such a point, the present invention has an object to provide an optical multilayer film in which vertical shading is suppressed.

【0018】なお、今後半値波長シフト量は長波長側の
シフト量を代表させて説明する。
Note that the half-value wavelength shift amount will be described below by typifying the shift amount on the long wavelength side.

【0019】[0019]

【課題を解決するための手段】基板上に、屈折率が2.
5以上の高屈折率の薄膜と、前記高屈折率の薄膜よりも
屈折率が0.3以上小さい低屈折率の薄膜を主たる薄膜
物質として交互に積層した光学多層膜を用いることであ
る。
Means for Solving the Problems A refractive index of 2.
An optical multilayer film in which a thin film having a high refractive index of 5 or more and a thin film having a low refractive index smaller than that of the thin film having a high refractive index by 0.3 or more are alternately laminated as a main thin film substance is used.

【0020】又、基板上に、屈折率が2.4〜2.5の
高屈折率の薄膜と、屈折率が約1.65以上であるとと
もに、前記高屈折率の薄膜よりも屈折率が0.3以上小
さい低屈折率の薄膜を主たる構成物質として交互に積層
した光学多層膜を用いることである。
Further, on the substrate, a high refractive index thin film having a refractive index of 2.4 to 2.5, a refractive index of about 1.65 or more, and a refractive index higher than that of the high refractive index thin film. An optical multilayer film in which thin films having a low refractive index smaller by 0.3 or more are alternately laminated as a main constituent substance is used.

【0021】[0021]

【作用】本発明は上記した屈折率の薄膜を交互に積層し
た光学多層膜を用いることによって、入射角度の変化に
対する波長シフト量を著しく抑制できた結果、垂直方向
のシェーディングを抑制することが可能となる。
According to the present invention, by using the optical multilayer film in which the above-mentioned thin films having the refractive index are alternately laminated, the wavelength shift amount with respect to the change of the incident angle can be remarkably suppressed, and as a result, the vertical shading can be suppressed. Becomes

【0022】[0022]

【実施例】【Example】

(第1実施例)本願発明の第1実施例の光学多層膜につ
いて説明する。図1に、本実施例の光学多層膜の構成を
示す。
(First Embodiment) An optical multilayer film according to the first embodiment of the present invention will be described. FIG. 1 shows the structure of the optical multilayer film of this example.

【0023】すなわち、高屈折率の薄膜として屈折率が
約2.6のTiO2膜11を用い、低屈折率の薄膜とし
て、屈折率が約2.1のTa2512を用いて、基板1
0上に交互に19層積層した構成である。ここで、膜厚
はTiO2は約53nmでありTa25は約65nmで
ある。
That is, a TiO 2 film 11 having a refractive index of about 2.6 is used as a thin film having a high refractive index, and Ta 2 O 5 12 having a refractive index of about 2.1 is used as a thin film having a low refractive index. Board 1
It has a structure in which 19 layers are alternately laminated on the 0. Here, the film thickness of TiO 2 is about 53 nm and that of Ta 2 O 5 is about 65 nm.

【0024】図5を用いて、このような光学多層膜を作
成する方法について説明する。真空室51内を排気ポン
プ50によって高真空状態に保持する。EB銃52によ
ってルツボ内の蒸着材料53を加熱溶融させる。蒸着材
料は、酸化チタンを用いる。この時、真空層には酸素導
入口54によって酸素ガスが導入し、真空室内の圧力を
例えば約5×10-5torrに設定する。
A method of forming such an optical multilayer film will be described with reference to FIG. The inside of the vacuum chamber 51 is maintained in a high vacuum state by the exhaust pump 50. The vapor deposition material 53 in the crucible is heated and melted by the EB gun 52. Titanium oxide is used as the vapor deposition material. At this time, oxygen gas is introduced into the vacuum layer through the oxygen introduction port 54, and the pressure in the vacuum chamber is set to, for example, about 5 × 10 −5 torr.

【0025】溶融した酸化チタンは蒸発し、蒸発粒子5
5となって基板ホルダー56上に設置された基板57上
に到達し、薄膜を形成する。この間蒸発粒子は真空室内
に導入された酸素と反応し、非常に透明で安定な屈折率
が約2.6のTiO2膜が実現できる。
The molten titanium oxide evaporates and evaporates particles 5
5 reaches the substrate 57 set on the substrate holder 56 and forms a thin film. During this time, the evaporated particles react with oxygen introduced into the vacuum chamber, and a very transparent and stable TiO 2 film having a refractive index of about 2.6 can be realized.

【0026】このように、従来とは違い酸素ガス分圧を
さらに高真空領域に特定化することで屈折率が約2.6
の高屈折率なTiO2膜が実現できる。
Thus, unlike the conventional case, the refractive index is about 2.6 by specifying the oxygen gas partial pressure in the higher vacuum region.
TiO 2 film having a high refractive index can be realized.

【0027】透明性、付着性、信頼性等を評価した結
果、従来膜と同様に良好であったことは言うまでもな
い。なお、基板としては例えば、BK、SK等の光学ガ
ラスを用いる。
As a result of evaluating the transparency, adhesion, reliability, etc., it is needless to say that it was as good as the conventional film. As the substrate, for example, optical glass such as BK or SK is used.

【0028】このとき、基板ホルダーの穴部58を通過
した蒸発粒子は、光学的膜厚モニタ基板59に到達し、
薄膜を形成する。この光学的膜厚モニタ基板59には光
源60から出射した特定波長の光束が照射されており、
反射光となって検出器61に到達する。このときの反射
光量は、モニタ基板に成膜される薄膜の屈折率や膜厚に
よって変化し、反射光量が所定の値になったときにシャ
ッター62を閉じて、膜厚が約53nmの第1層目のT
iO2膜の成膜を完了する。
At this time, the vaporized particles passing through the hole portion 58 of the substrate holder reach the optical film thickness monitor substrate 59,
Form a thin film. The optical film thickness monitor substrate 59 is irradiated with the light flux of the specific wavelength emitted from the light source 60,
The reflected light reaches the detector 61. The amount of reflected light at this time varies depending on the refractive index and the film thickness of the thin film formed on the monitor substrate. When the amount of reflected light reaches a predetermined value, the shutter 62 is closed and the first film having a film thickness of about 53 nm. Layer T
The formation of the iO 2 film is completed.

【0029】第1層目の成膜が完了すると、次にルツボ
内の蒸着材料53をTa25に交換すると共に、新しい
光学的膜厚モニタ基板を設定する。そして、Ta25
3がEB銃52によって加熱溶融され蒸発粒子55とな
って飛翔し、基板57上に第2層目の薄膜が成膜され
る。
When the film formation of the first layer is completed, the vapor deposition material 53 in the crucible is replaced with Ta 2 O 5 and a new optical film thickness monitor substrate is set. And Ta 2 O 5 5
3 is heated and melted by the EB gun 52 to fly as vaporized particles 55, and a second thin film is formed on the substrate 57.

【0030】この薄膜は、交換された光学的膜厚モニタ
基板59にも成膜され、反射光を測定することによっ
て、膜厚が約65nmになった時点で終了する。
This thin film is also formed on the exchanged optical film thickness monitor substrate 59, and when the reflected light is measured, it ends when the film thickness becomes about 65 nm.

【0031】以下に、本実施例の光学多層膜の分光特性
について説明する。図2に、上記の方法で形成された本
実施例の光学多層膜の分光特性を示すが、曲線21は入
射角度が26度の場合である。従来と比べて薄膜の構成
物質並びに屈折率を変更したにも関わらず、従来の緑反
射膜と同様に、波長490nm〜560nmの緑色の波
長領域の反射率が高められた良好な多層膜が実現できて
いることがわかる。
The spectral characteristics of the optical multilayer film of this embodiment will be described below. FIG. 2 shows the spectral characteristics of the optical multilayer film of the present example formed by the above method. Curve 21 shows the case where the incident angle is 26 degrees. A good multi-layered film with improved reflectance in the green wavelength range of 490 nm to 560 nm, similar to the conventional green reflective film, even though the constituent materials and refractive index of the thin film were changed compared to the conventional one. You can see that it is done.

【0032】次に、この緑反射膜の角度依存性について
説明する。この緑反射膜の入射角度を26度から±1.
3度変化させて、角度に対する分光特性変化を調べてみ
ると、同図にも示している様に、θ=24.7度の場合
は曲線22で示すように長波長側にシフトし、θ=2
7.3度の場合には曲線23で示すように短波長側にシ
フトしていることがわかる。
Next, the angle dependence of the green reflective film will be described. The incident angle of this green reflective film is 26 degrees ± 1.
When the change in the spectral characteristic with respect to the angle is examined by changing the angle by 3 degrees, as shown in the figure, when θ = 24.7 degrees, the wavelength shifts to the long wavelength side as shown by the curve 22, and θ = 2
It can be seen that in the case of 7.3 degrees, the wavelength shifts to the short wavelength side as shown by the curve 23.

【0033】今このシフト幅を評価してみると約5.3
nmであり、従来構成の約13nmに比べ著しく抑制さ
れていることがわかる。
When this shift width is evaluated, it is about 5.3.
It can be seen that this is significantly suppressed compared with the conventional configuration of about 13 nm.

【0034】従って、本発明の光学多層膜は、従来の光
学多層膜と分光特性がほとんど同じ特性を保持しなが
ら、入射角度にたいする依存性能を従来に比べ半分以下
に抑制できるため極めて有用な光学多層膜と言える。
Therefore, the optical multilayer film of the present invention can maintain the spectral characteristics almost the same as those of the conventional optical multilayer film, and can suppress the dependence on the incident angle to less than half that of the conventional optical multilayer film. It can be called a membrane.

【0035】ここで、実施例では屈折率が2.6のTi
2膜と屈折率が2.1のTa25膜を一例に示した
が、検討の結果、従来例とは違って、下記の条件を満足
しておれば非常に角度依存性が得られることを見いだし
た。
Here, in the embodiment, Ti having a refractive index of 2.6 is used.
An example of an O 2 film and a Ta 2 O 5 film with a refractive index of 2.1 was shown, but as a result of examination, unlike the conventional example, if the following conditions are satisfied, a very large angle dependence is obtained. I found that I could be.

【0036】すなわち、屈折率が2.5以上の高屈折率
の薄膜と、高屈折率の薄膜よりも屈折率が0.3以上小
さい低屈折率の薄膜を主たる構成物質として交互に積層
するか、高屈折率の薄膜の屈折率が2.4〜2.5の場
合には、屈折率が約1.65以上でかつ、高屈折率の薄
膜よりも屈折率が0.3以上小さい低屈折率の薄膜を主
たる構成物質として交互に積層すれば、波長シフト量が
7nm以下のきわめて良好な光学多層膜が得られること
が判明した。
That is, whether a high-refractive-index thin film having a refractive index of 2.5 or more and a low-refractive-index thin film having a refractive index of 0.3 or more smaller than that of the high-refractive index thin film are alternately laminated as main constituents When the refractive index of the high refractive index thin film is 2.4 to 2.5, the refractive index is about 1.65 or more, and the refractive index is 0.3 or more smaller than that of the high refractive index thin film. It was found that by alternately laminating thin films having a high refractive index as a main constituent substance, a very good optical multilayer film having a wavelength shift amount of 7 nm or less can be obtained.

【0037】実験の結果、高屈折率薄膜をTiO2とし
て、低屈折率の薄膜をTa25、ZrTiO4、Zn
S、ZrO2、TiO2、Al23、SiO2、MgF2
によって、効果が発現することが判明した。
As a result of the experiment, the high refractive index thin film was TiO 2 , and the low refractive index thin film was Ta 2 O 5 , ZrTiO 4 , Zn.
It was found that the effects are exhibited by S, ZrO 2 , TiO 2 , Al 2 O 3 , SiO 2 , MgF 2 and the like.

【0038】特にこの中でも、低屈折率の薄膜としてT
25、ZrTiO4、ZnS、ZrO2、TiO2、を
用いた場合には、特に良好で、波長シフト量が約5nm
以下ときわめて良好な光学多層膜が実現できた。
In particular, as a thin film having a low refractive index, T
The use of a 2 O 5 , ZrTiO 4 , ZnS, ZrO 2 , and TiO 2 is particularly good, and the wavelength shift amount is about 5 nm.
An extremely good optical multilayer film was realized as follows.

【0039】(第2実施例)次に本発明の第2実施例に
ついて説明する。図3にその構成図を示す。すなわち、
基板30上に、1層から19層まで同じ材料であるTi
2膜が形成されている。しかし、各層の屈折率は変化
させていて奇数層が屈折率が約2.6のTiO2膜31
であり、偶数層が屈折率が約2.2のTiO2膜32で
ある。ここで、奇数層のTiO2膜の膜厚は約53nm
であり偶数層のTiO2膜は約63nmである。
(Second Embodiment) Next, a second embodiment of the present invention will be described. FIG. 3 shows its configuration diagram. That is,
1 to 19 layers of the same material Ti on the substrate 30
An O 2 film is formed. However, the refractive index of each layer is changed so that the odd-numbered layers have a TiO 2 film 31 with a refractive index of about 2.6.
And the even layer is a TiO 2 film 32 having a refractive index of about 2.2. Here, the film thickness of the odd-numbered TiO 2 film is about 53 nm.
The TiO 2 film of the even layer has a thickness of about 63 nm.

【0040】図5を用いて、このような光学多層膜を作
成する方法について説明する。真空室51内を排気ポン
プ50によって高真空状態に保持する。EB銃52によ
って蒸着材料53を加熱溶融させる。蒸着材料は、酸化
チタンを用いる。この時、真空層には酸素導入口54に
よって酸素ガスが導入し、真空室内の圧力を例えば約5
×10-5torrに設定する。
A method for forming such an optical multilayer film will be described with reference to FIG. The inside of the vacuum chamber 51 is maintained in a high vacuum state by the exhaust pump 50. The evaporation material 53 is heated and melted by the EB gun 52. Titanium oxide is used as the vapor deposition material. At this time, oxygen gas is introduced into the vacuum layer through the oxygen inlet 54, and the pressure in the vacuum chamber is adjusted to, for example, about 5
Set to × 10 -5 torr.

【0041】溶融した酸化チタンは蒸発し、蒸発粒子5
5となって基板ホルダー56上に設置された基板57上
に到達し、薄膜を形成する。この間蒸発粒子は真空室内
に導入された酸素と反応し、非常に透明で安定な屈折率
が約2.6のTiO2膜が実現できる。
The molten titanium oxide evaporates and evaporates particles 5
5 reaches the substrate 57 set on the substrate holder 56 and forms a thin film. During this time, the evaporated particles react with oxygen introduced into the vacuum chamber, and a very transparent and stable TiO 2 film having a refractive index of about 2.6 can be realized.

【0042】このとき、基板ホルダーの穴部58を通過
した蒸発粒子は、光学的膜厚モニタ基板59に到達し、
薄膜を形成する。この光学的膜厚モニタ基板59には光
源60から出射した特定波長の光束が照射されており、
反射光となって検出器61に到達する。このときの反射
光量は、モニタ基板に成膜される薄膜の屈折率や膜厚に
よって変化し、反射光量が所定の値になったときにシャ
ッター62を閉じて、膜厚が約53nmの第1層目のT
iO2膜の成膜を完了する。
At this time, the vaporized particles that have passed through the hole portion 58 of the substrate holder reach the optical film thickness monitor substrate 59,
Form a thin film. The optical film thickness monitor substrate 59 is irradiated with the light flux of the specific wavelength emitted from the light source 60,
The reflected light reaches the detector 61. The amount of reflected light at this time varies depending on the refractive index and the film thickness of the thin film formed on the monitor substrate. When the amount of reflected light reaches a predetermined value, the shutter 62 is closed and the first film having a film thickness of about 53 nm. Layer T
The formation of the iO 2 film is completed.

【0043】第1層目の成膜が完了すると、新しい光学
的膜厚モニタ基板を設定する。そして、酸素導入54よ
り導入される酸素ガス量を増大させ、真空室内の圧力を
約1×10-4torrに設定する。そして、シャッター
62を開けて第2層目のTiO2膜を成膜する。
When the film formation of the first layer is completed, a new optical film thickness monitor substrate is set. Then, the amount of oxygen gas introduced by the oxygen introduction 54 is increased, and the pressure in the vacuum chamber is set to about 1 × 10 −4 torr. Then, the shutter 62 is opened to form a second layer TiO 2 film.

【0044】酸素分圧を第1層目と変更し、特定の圧力
にすることで屈折率2.2のTiO 2膜を作成する。こ
の薄膜は、第1層目と同様に光学的膜厚モニタ基板59
にも成膜され、反射光を測定することによって、膜厚が
約63nmになった時点で終了する。
The oxygen partial pressure is changed to that of the first layer, and the specific pressure is changed.
With a refractive index of 2.2 2Create a membrane. This
The thin film is an optical film thickness monitor substrate 59 as in the first layer.
The film thickness is also formed by measuring the reflected light.
It ends when it reaches about 63 nm.

【0045】このように、2種類の蒸発物質を用いなく
ても、TiO2膜を形成するさいの酸素導入圧を変更す
るだけで高い屈折率と低い屈折率を実現できるわけであ
る。
As described above, a high refractive index and a low refractive index can be realized only by changing the oxygen introduction pressure when forming the TiO 2 film without using two kinds of evaporation substances.

【0046】これは、真空装置内で材料を変更するため
の複雑な機構を用いなくてもよいという効果や、又、1
種類の材料しか使わないために、2種類の材料が混合し
て屈折率が変化してしまうという問題がなくなるし、
又、材料を変更する毎に行っていた加熱溶融時間がなく
なるという成膜時間の短縮をももたらし、装置上、実用
上きわめて有用であるといえる。
This has the effect that it is not necessary to use a complicated mechanism for changing the material in the vacuum apparatus, and
Since only two kinds of materials are used, there is no problem that two kinds of materials are mixed and the refractive index changes.
In addition, the heating and melting time, which has been carried out each time the material is changed, is shortened, which shortens the film forming time, which can be said to be extremely useful in practice in the apparatus.

【0047】図4において、本実施例の光学多層膜の分
光特性を曲線41で示す。ここで、入射角度は一例とし
て26度としている。
In FIG. 4, a curve 41 indicates the spectral characteristic of the optical multilayer film of this embodiment. Here, the incident angle is set to 26 degrees as an example.

【0048】上記のように、1種類の材料から形成した
にも関わらず、従来の緑反射膜と同様に、波長490n
m〜560nmの緑色の波長領域の反射率が高められた
良好な多層膜が実現できていることがわかる。
As described above, even though it is made of one kind of material, the wavelength is 490n as in the conventional green reflective film.
It can be seen that a good multilayer film in which the reflectance in the green wavelength region of m to 560 nm is increased can be realized.

【0049】次に、この緑反射膜の角度依存性について
説明する。この緑反射膜の入射角度を26度から±1.
3度変化させて、角度に対する分光特性変化を調べてみ
ると、図4にも示している様に、θ=24.7度の場合
には曲線42で示すように長波長側にシフトし、θ=2
7.3度の場合には曲線43で示すように短波長側にシ
フトしていることがわかる。今そのシフト幅を評価して
みると約5.2nmであり、実施例の1と同様に、従来
構成の約13nmに比べ著しく抑制されていることがわ
かる。
Next, the angle dependence of the green reflective film will be described. The incident angle of this green reflective film is 26 degrees ± 1.
When the change in the spectral characteristic with respect to the angle is examined by changing the angle by 3 degrees, as shown in FIG. 4, when θ = 24.7 degrees, the wavelength shifts to the long wavelength side as shown by the curve 42. θ = 2
It can be seen that in the case of 7.3 degrees, the wavelength shifts to the short wavelength side as shown by the curve 43. When the shift width is evaluated now, it is about 5.2 nm, and it can be seen that the shift width is remarkably suppressed as compared with the conventional structure of about 13 nm, as in Example 1.

【0050】従って、本実施例の光学多層膜も、従来の
光学多層膜と分光特性がほとんど同じ特性を保持しなが
ら、入射角度にたいする依存性能を従来に比べ半分以下
に抑制できるため極めて有用な光学多層膜と言える。
Therefore, the optical multilayer film of the present embodiment can maintain the spectral characteristics almost the same as those of the conventional optical multilayer film, while suppressing the dependence on the incident angle to less than half that of the conventional optical multilayer film. It can be called a multilayer film.

【0051】又、前述したように、TiO2という1種
類の材料により形成するために、真空装置内で材料を変
更するための複雑な機構を用いなくてもよいという効果
や、又、2種類の材料が混合して屈折率が変化してしま
うという問題がなくなるとともに、材料を変更する毎に
行なう加熱溶融時間がなくなるという成膜時間の短縮を
ももたらし、装置上、実用上きわめて有用であるといえ
る。
Further, as described above, the effect of not using a complicated mechanism for changing the material in the vacuum apparatus because it is formed of one kind of material called TiO 2 or two kinds of materials The problem that the refractive index changes due to the mixing of the materials described above is eliminated, and the heating and melting time required each time the material is changed is also shortened, which shortens the film formation time, which is extremely useful in terms of equipment and practical use. Can be said.

【0052】なお、本発明は、緑反射膜について説明し
たが、赤反射膜、青反射膜等についても有用であること
はいうまでもない。
Although the present invention has been described with respect to the green reflective film, it goes without saying that it is also useful for the red reflective film, the blue reflective film and the like.

【0053】また、層数も19層構成で説明したが、本
発明は層数を何等限定するものではなく、12層もしく
は数10層の光学多層膜でも有用なことはいうまでもな
い。
Although the number of layers has been described as 19 layers, the present invention does not limit the number of layers in any way, and it goes without saying that an optical multilayer film of 12 layers or several tens layers is also useful.

【0054】また、2種類もしくは1種類の材料を用い
て実施例を説明したが、特定角度での所望の光学特性を
得るために、第3の屈折率の薄膜を数層挿入しても問題
ないこともいうまでもない。
Although the embodiment has been described by using two kinds or one kind of material, there is a problem even if several thin films having the third refractive index are inserted in order to obtain desired optical characteristics at a specific angle. Needless to say

【0055】また、薄膜層自体も一つの材料である必要
もなく、屈折率が本発明の条件を満足していれば効果あ
ることはいうまでもない。
Further, it is needless to say that the thin film layer itself does not have to be a single material, and is effective as long as the refractive index satisfies the conditions of the present invention.

【0056】また、基板の屈折率も約1.6について説
明したが、約1.5のBK7等でも有用であった。
Although the refractive index of the substrate has been described as about 1.6, BK7 having a refractive index of about 1.5 was also useful.

【0057】また、角度についても約26度について説
明したが、他の入射角度でも有用であることはいうまで
もない。
Although an angle of about 26 degrees has been described, it goes without saying that other incident angles are also useful.

【0058】また、材料を示すさいに、TiO2等の化
学式を用いたが、必ずしも化学式に示されるようなTi
とOの比が精密に1:2である必要はない。屈折率が本
発明の条件を満足していればよい。
Further, the chemical formulas such as TiO 2 were used to indicate the materials, but Ti as shown in the chemical formulas is not necessarily used.
The ratio of and O need not be exactly 1: 2. It suffices that the refractive index satisfies the conditions of the present invention.

【0059】[0059]

【発明の効果】本発明の成膜装置もしくは成膜方法を用
いることで、従来よりも入射角度にたいする依存性能を
著しく抑制できた光学多層膜が実現できる。
By using the film forming apparatus or the film forming method of the present invention, it is possible to realize an optical multi-layer film in which the dependency performance on the incident angle can be suppressed more than ever before.

【0060】これは、これまで課題であった、ビデオカ
メラ等で問題であったシェーディングを著しく抑制でき
るためきわめて有用であるといえる。
This can be said to be extremely useful because shading, which has been a problem up to now, which has been a problem in video cameras and the like, can be significantly suppressed.

【0061】又、TiO2という1種類の材料により形
成する形成方法を用いることで、真空装置内で材料を変
更するための複雑な機構を用いなくてもよいし、又、2
種類の材料が混合して屈折率が変化してしまうという問
題がなくなるとともに、材料を変更する毎に行なう加熱
溶融時間がなくなるという成膜時間の短縮をももたら
し、装置上、実用上きわめて有用であるといえる。
Further, by using the forming method of forming with one kind of material called TiO 2 , it is not necessary to use a complicated mechanism for changing the material in the vacuum apparatus, and 2
The problem that the refractive index changes due to mixing of different types of materials is eliminated, and the heating and melting time required each time the material is changed is shortened, which shortens the film formation time. It can be said that there is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の光学多層膜の構成図FIG. 1 is a configuration diagram of an optical multilayer film according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の光学多層膜の光学特性
FIG. 2 is an optical characteristic diagram of the optical multilayer film according to the first embodiment of the present invention.

【図3】本発明の第2の実施例の光学多層膜の構成図FIG. 3 is a configuration diagram of an optical multilayer film according to a second embodiment of the present invention.

【図4】本発明の第2の実施例の光学多層膜の光学特性
FIG. 4 is an optical characteristic diagram of the optical multilayer film according to the second embodiment of the present invention.

【図5】光学多層膜の成膜する成膜装置の構成図FIG. 5 is a block diagram of a film forming apparatus for forming an optical multilayer film.

【図6】従来の光学多層膜の光学特性図FIG. 6 is an optical characteristic diagram of a conventional optical multilayer film.

【図7】分光特性の入射角依存性の説明図FIG. 7 is an explanatory diagram of incident angle dependence of spectral characteristics.

【符号の説明】[Explanation of symbols]

10、30 基板 11 TiO2膜 12 Ta25膜 30 TiO2膜(n=2.6) 32 TiO2膜(n=2.2) 50 排気ポンプ 51 真空室 52 EB銃 53 蒸着材料 54 酸素導入口 55 蒸発粒子 56 基板ホルダー 57 基板 58 穴部 59 光学的膜厚モニタ基板 60 光源 61 検出器 62 シャッター 70 被写体 71 光 72 緑反射膜 73 CCD10, 30 substrate 11 TiO 2 film 12 Ta 2 O 5 film 30 TiO 2 film (n = 2.6) 32 TiO 2 film (n = 2.2) 50 exhaust pump 51 vacuum chamber 52 EB gun 53 vapor deposition material 54 oxygen Inlet 55 Evaporated particles 56 Substrate holder 57 Substrate 58 Hole 59 Optical film thickness monitor substrate 60 Light source 61 Detector 62 Shutter 70 Subject 71 Light 72 Green reflective film 73 CCD

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】基板上に、屈折率が2.5以上の高屈折率
の薄膜と、前記高屈折率の薄膜よりも屈折率が0.3以
上小さい低屈折率の薄膜を主たる構成薄膜として交互に
積層した光学多層膜、もしくは、基板上に、屈折率が
2.4〜2.5の高屈折率の薄膜と、屈折率が1.65
以上であるとともに、前記高屈折率の薄膜よりも屈折率
が0.3以上小さい低屈折率の薄膜を主たる構成薄膜と
して交互に積層した光学多層膜。
1. A thin film having a high refractive index of 2.5 or more and a low refractive index thin film having a refractive index of 0.3 or more smaller than that of the high refractive index thin film as a main constituent thin film on a substrate. An optical multilayer film which is alternately laminated or a high refractive index thin film having a refractive index of 2.4 to 2.5 and a refractive index of 1.65 on a substrate.
In addition to the above, an optical multi-layer film in which thin films having a low refractive index smaller than that of the thin film having a high refractive index by 0.3 or more are alternately laminated as main constituent thin films.
【請求項2】高屈折率の薄膜がTiO2膜であり、低屈
折率の物質がTa25、ZrTiO4、ZnS、Zr
2、TiO2を主成分とした請求項1記載の光学多層
膜。
2. The high refractive index thin film is a TiO 2 film, and the low refractive index substance is Ta 2 O 5 , ZrTiO 4 , ZnS, Zr.
The optical multilayer film according to claim 1, which contains O 2 and TiO 2 as main components.
【請求項3】蒸着装置内に反応ガスとして酸素を導入
し、酸素量を変化することによって、高い屈折率のTi
2膜と低い屈折率のTiO2膜を蒸着により作成する光
学多層膜の成膜方法。
3. Ti having a high refractive index is obtained by introducing oxygen as a reaction gas into the vapor deposition apparatus and changing the amount of oxygen.
A method for forming an optical multilayer film, which comprises forming an O 2 film and a TiO 2 film having a low refractive index by vapor deposition.
JP5170119A 1993-07-09 1993-07-09 Optical multilayer film and forming method therefor Pending JPH0727907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5170119A JPH0727907A (en) 1993-07-09 1993-07-09 Optical multilayer film and forming method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5170119A JPH0727907A (en) 1993-07-09 1993-07-09 Optical multilayer film and forming method therefor

Publications (1)

Publication Number Publication Date
JPH0727907A true JPH0727907A (en) 1995-01-31

Family

ID=15899000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5170119A Pending JPH0727907A (en) 1993-07-09 1993-07-09 Optical multilayer film and forming method therefor

Country Status (1)

Country Link
JP (1) JPH0727907A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055471A (en) * 1998-07-06 2000-04-25 Toyota Jidosha Kabushiki Kaisha Sprung mass estimating apparatus
EP1879058A2 (en) * 2006-07-11 2008-01-16 Murakami Corporation Dielectric Multilayer Filter
JP2010250339A (en) * 1999-02-04 2010-11-04 Oerlikon Trading Ag Truebbach Spectrally-selective beam splitter and recombining device and method for manufacturing the same
KR20170134190A (en) * 2016-05-27 2017-12-06 엘지디스플레이 주식회사 Liquid crystal display device, light source device, and method of manufacturing light source device
CN107577006A (en) * 2017-10-13 2018-01-12 无锡奥芬光电科技有限公司 A kind of low incidence dependence of angle cutoff filter
US10073202B2 (en) 2012-08-29 2018-09-11 Asahi Glass Company, Limited Near-infrared cut filter
WO2020137195A1 (en) * 2018-12-27 2020-07-02 コニカミノルタ株式会社 Dielectric multilayer film, production method therefor and image display device equipped with same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6055471A (en) * 1998-07-06 2000-04-25 Toyota Jidosha Kabushiki Kaisha Sprung mass estimating apparatus
JP2010250339A (en) * 1999-02-04 2010-11-04 Oerlikon Trading Ag Truebbach Spectrally-selective beam splitter and recombining device and method for manufacturing the same
EP1879058A2 (en) * 2006-07-11 2008-01-16 Murakami Corporation Dielectric Multilayer Filter
EP1879058A3 (en) * 2006-07-11 2008-10-22 Murakami Corporation Dielectric Multilayer Filter
US10073202B2 (en) 2012-08-29 2018-09-11 Asahi Glass Company, Limited Near-infrared cut filter
KR20170134190A (en) * 2016-05-27 2017-12-06 엘지디스플레이 주식회사 Liquid crystal display device, light source device, and method of manufacturing light source device
CN107577006A (en) * 2017-10-13 2018-01-12 无锡奥芬光电科技有限公司 A kind of low incidence dependence of angle cutoff filter
WO2020137195A1 (en) * 2018-12-27 2020-07-02 コニカミノルタ株式会社 Dielectric multilayer film, production method therefor and image display device equipped with same

Similar Documents

Publication Publication Date Title
US5914817A (en) Thin film dichroic color separation filters for color splitters in liquid crystal display systems
US6771420B2 (en) Optical device with barrier layer, optical system, and projector apparatus
TWI275892B (en) Dichroic mirror and projection type display unit
JP5270922B2 (en) Antireflective coating for optical windows and elements
EP1008868B1 (en) Optical-thin-film material, process for its production, and optical device making use of the optical-thin-film material
JP2004102200A (en) Liquid crystal projector
JPH0727907A (en) Optical multilayer film and forming method therefor
JP2002518714A (en) Dichroic filter with small angle dependence
US5786937A (en) Thin-film color-selective beam splitter and method of fabricating the same
JP2006171328A (en) Phase difference compensation element, optical modulation system, liquid crystal display device, and liquid crystal projector
US20020135706A1 (en) Optical element and liquid crystal projector and camera using the same
JPH11101913A (en) Optical element
JPH01254087A (en) Projection type television receiver
JP2013247440A (en) Imaging apparatus
US20070041087A1 (en) Reflector, light source device, liquid crystal projector, and method for depositing reflecting film coatings
JP2008203493A (en) Image projection device
CN112859228A (en) Optical element, method for manufacturing the same, and projection type image display apparatus
JP2006292784A (en) Oblique vapor deposition film element
JP2007010743A (en) Method for manufacturing optical filter
JP3355188B2 (en) Color compensation filter for optical equipment having observation light path and photographic light path
JP2001183524A (en) Projection type display device
JP2003131010A (en) Optical parts, optical unit and graphic display device using it
JPH05157915A (en) Polarizing device and projection type display device using it
JPS63116106A (en) Optical multi-layer film and its manufacture
JP2003149404A (en) Optical thin film, its manufacturing method, optical element using optical thin film, optical system, and image pickup device, recording device and exposure device provided with optical system