WO2020137195A1 - Dielectric multilayer film, production method therefor and image display device equipped with same - Google Patents

Dielectric multilayer film, production method therefor and image display device equipped with same Download PDF

Info

Publication number
WO2020137195A1
WO2020137195A1 PCT/JP2019/044043 JP2019044043W WO2020137195A1 WO 2020137195 A1 WO2020137195 A1 WO 2020137195A1 JP 2019044043 W JP2019044043 W JP 2019044043W WO 2020137195 A1 WO2020137195 A1 WO 2020137195A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
multilayer film
dielectric multilayer
layer
film
Prior art date
Application number
PCT/JP2019/044043
Other languages
French (fr)
Japanese (ja)
Inventor
亮二 松田
永悟 佐野
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2020137195A1 publication Critical patent/WO2020137195A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters

Definitions

  • the present invention relates to a dielectric multilayer film, a method for manufacturing the same, and an image display device equipped with the same. More specifically, the present invention relates to a dielectric multilayer film formed on a resin substrate, which has suppression of shape change of the dielectric multilayer film, crack prevention, optical characteristics (oblique incidence characteristics), and productivity.
  • thermal deformation and cracks due to the difference in linear expansion become major problems.
  • the intrinsic stress of the dielectric multilayer film may be set in the compression direction, but since the stress of the vapor deposition material (especially high refractive index material) is in the tensile direction, the ion assisted deposition (Ion Assisted Deposition, hereinafter, simply Also referred to as "IAD”), stress adjustment is required.
  • IAD ion assisted deposition
  • Patent Document 1 the high refractive index layer (TiO 2) and the low-refractive index layer and method of forming the alternate multilayer film of (SiO 2) is disclosed, IAD the TiO 2 film formation, the SiO 2 normal Technology that offsets internal stress of laminated multilayer film by alternately laminating compressive stress film and tensile stress film by forming by vapor deposition to improve adhesion between film and substrate and suppress crack generation Is disclosed.
  • a thick film of 2 ⁇ m or more is required, so the film formation time is long, and if the power during IAD is increased, the resin substrate may reach the deflection temperature under load due to radiant heat.
  • SiO 2 low-refractive index material
  • whose stress can be adjusted at a relatively low temperature has high sensitivity to variations in the incident angle of light on the dielectric multilayer film, so that optical characteristics such as blue shift occur (oblique light incident characteristics).
  • optical characteristics such as blue shift occur (oblique light incident characteristics).
  • the blue shift means that the wavelength of the spectrum line shifts to the short wavelength side due to a certain cause, which causes fluctuations in light reflectance and light transmittance, which causes poor visibility.
  • Non-Patent Document 1 The method described in Non-Patent Document 1 can be referred to for measuring the stress of each layer of the multilayer film.
  • Patent Document 2 in an optical element in which a multilayer film is formed on one surface of a substrate and a single layer film in the same stress direction is formed on the opposite surface, a single layer film having a stress in the same direction as the stress of the multilayer film is formed.
  • a technique is disclosed in which the warpage due to the stress of the multilayer film and the warpage due to the stress of the single layer film are offset, and as a result, the warpage of the substrate is relaxed and reduced.
  • the production process is complicated and the productivity is poor.
  • Patent Document 3 a high-refractive-index layer (TiO 2 or LaTiO 3 ) and a low-refractive-index layer (SiO 2 ) are formed under a specific pressure to compress the high-refractive-index layer and the low-refractive-index layer. Therefore, when the resin base material expands due to heat, the dielectric multilayer film expands while releasing the compressive stress of each layer. Therefore, the optical multi-layer film expands while sufficiently following the substrate, so that cracks are less likely to occur in the dielectric multi-layer film.
  • the present invention has been made in view of the above problems and circumstances, and the problem to be solved is to suppress the shape change of the dielectric multilayer film, prevent cracks, combine optical characteristics (oblique light incidence characteristics) and productivity, and resin.
  • a dielectric multilayer film in which at least one low refractive index layer and a plurality of high refractive index layers are formed on a resin substrate. There, a high refractive index layer having a specific refractive index is alternately laminated to form an alternating laminated portion, and the low refractive index layer is arranged between the alternating laminated portions by a dielectric multilayer film.
  • a dielectric multi-layer film formed on a resin substrate which has suppression of shape change of the dielectric multi-layer film, crack prevention, optical characteristics (oblique light incidence characteristics) and productivity, its manufacturing method and image display including the same It has been found that a device is obtained.
  • a dielectric multilayer film comprising at least one low refractive index layer and a plurality of high refractive index layers on a resin substrate, The total thickness of the dielectric multilayer film is 2 ⁇ m or more, The plurality of high refractive index layers have different refractive indices at a light wavelength of 550 nm of 1.9 or more, and have a plurality of high refractive index layers alternately laminated, and A dielectric multilayer film, wherein the low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions.
  • the difference in refractive index between the plurality of high refractive index layers is 0.2 or more, and the materials contained in the plurality of high refractive index layers may be the same or different.
  • dielectric multilayer film according to any one of items 1 to 3, wherein the dielectric multilayer film has an average refractive index at a light wavelength of 550 nm of 1.95 or more.
  • the stress per unit layer thickness of the low refractive index layer and the high refractive index layer is in the range of 0 to 500 MPa in the compression direction, according to any one of the items 1 to 5.
  • Dielectric multilayer film is in the range of 0 to 500 MPa in the compression direction, according to any one of the items 1 to 5.
  • the material contained in the high refractive index layer is selected from Nb 2 O 5 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 and LaTiO 3 , or a mixture of materials selected from these.
  • the material contained in the low refractive index layer is SiO 2 , LaSiO, Al 2 O 3 , and La 2x Al 2y O 3(x+y) (wherein x and y are 0.3 to 0.7, respectively ).
  • x and y are 0.3 to 0.7, respectively .
  • the dielectric multilayer film When the total thickness of the dielectric multilayer film is 3 ⁇ m or more and there are a plurality of the low refractive index layers, the interval between the low refractive index layers is 1.2 ⁇ m or less, and the plurality of the high refractive index layers. 8. The dielectric multilayer film according to any one of items 1 to 7, wherein each layer thickness is 500 nm or less.
  • An optical see-through type image display device for projecting and displaying an image on an external landscape by projecting it to an observer's eye, A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to an observer, and two resin prisms that form the combiner, The two resin prisms are bonded to each other, and the bonding surface includes a prism convex surface and a prism concave surface, and An image display device, comprising the dielectric multilayer film according to any one of items 1 to 9 on the joint surface.
  • the present inventor has organized past technical contents relating to the formation of a dielectric multilayer film, and has been addressed to problems such as suppression of shape change of the dielectric multilayer film, crack prevention, and optical characteristics such as blue shift and productivity.
  • the dielectric multilayer film has a layer structure mainly composed of a high-refractive index material (for example, TiO 2 or LaTiO 3 ) and has a strong compressive stress without increasing the power during IAD (hereinafter referred to as IAD power). I thought that the solution would be to form the film without doing so.
  • IAD power a layer structure mainly composed of a high-refractive index material
  • the dielectric multilayer film has a layer structure in which high refractive index materials having a refractive index of 1.9 or more at an optical wavelength of 550 nm are alternately laminated, and the film forming temperature and IAD power are controlled.
  • the high refractive index material is formed so as not to have a strong compressive stress, but columnar growth is likely to occur particularly when the IAD power is low, and the film density decreases as the layers are laminated and the layer as a whole has tensile stress.
  • the film when a dielectric multilayer film is formed on a resin substrate, the film should be formed with an appropriate IAD power so as to have a compressive stress, and a low-refractive layer such as SiO 2 may be formed in the middle of an alternate laminated portion of high-refractive material.
  • the columnar growth is eliminated to increase the film density, and the temperature during film formation is controlled to suppress the thermal stress of the resin substrate, thereby suppressing the shape change of the dielectric multilayer film, preventing cracks, and improving optical characteristics ( It is considered that it was possible to obtain a dielectric multilayer film in which the reduction in productivity was suppressed by film formation using oblique light incidence characteristics: suppression of blue shift and appropriate IAD power.
  • Example of optical see-through type image display device The graph which shows the light transmission characteristic of the dielectric multilayer film of this invention.
  • the dielectric multilayer film of the present invention is a dielectric multilayer film in which at least one low refractive index layer and a plurality of high refractive index layers are formed on a resin substrate, and the total thickness of the dielectric multilayer film is 2 ⁇ m.
  • the refractive index of the plurality of high refractive index layers at the light wavelength of 550 nm is 1.9 or more and different from each other, and the plurality of high refractive index layers are alternately laminated to form an alternating laminated portion, and
  • the low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions.
  • the total film thickness of the dielectric multilayer film is a requirement of 2 ⁇ m or more, but in the range of 3 ⁇ m or more, the visibility is improved (the transmittance of the transmission band is high and the external scenery can be seen more). preferable.
  • the layer thickness of each of the alternating laminated portions is a requirement of 1.5 ⁇ m or less, but a range of 1.2 ⁇ m or less, It is preferable from the viewpoint of preventing the generation of cracks.
  • the difference in refractive index between the plurality of high refractive index layers is 0.2 or more, and the materials contained in the plurality of high refractive index layers may be the same or different, from the viewpoint of preventing the occurrence of cracks and It has a peak of light reflectance at a specific wavelength and is preferable from the viewpoint of configuring a see-through type image display device.
  • the refractive index difference is preferably in the range of 0.25 or more from the viewpoint of improving visibility (the transmittance of the transmission band is high and the external scenery can be seen more), and the range of 0.3 or more is more preferable.
  • the dielectric multilayer film has an average refractive index of 1.95 or more from the viewpoint of forming a see-through type image display device having a light reflectance peak at a specific wavelength.
  • the average refractive index is preferably in the range of 2.0 or more from the viewpoint of improving the visibility (small color unevenness caused by the positional deviation between the eyes of the observer and the image display surface), and the range of 2.1 or more is more preferable. preferable.
  • the layer thickness of the low refractive index layer is preferably 8 nm or more from the viewpoint of resetting the columnar growth of the high refractive index layer.
  • the layer thickness is preferably 10 nm or more from the viewpoint of film thickness controllability during film formation, and more preferably 20 nm or more.
  • the stress per unit layer thickness of the low-refractive index layer and the high-refractive index layer being in the range of 0 to 500 MPa in the compression direction matches the direction of thermal stress of the resin substrate and prevents the occurrence of cracks. It is preferable from the viewpoint.
  • the stress per unit layer thickness is preferably in the range of 0 to 300 MPa from the viewpoint of suppressing changes in the shape of the substrate.
  • the material contained in the high refractive index layer is at least one selected from Nb 2 O 5 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and LaTiO 3 , or is selected from these. It is a mixture of materials, and the material contained in the low refractive index layer is at least one selected from SiO 2 , LaSiO, Al 2 O 3 , and La 2x Al 2y O 3 (x+Y). It is preferable or a mixture of materials selected from these materials from the viewpoint of controlling the refractive index of the dielectric multilayer film. Among them, Ti 3 O 5 and LaTiO 3 are preferable as the material contained in the high refractive index layer, and SiO 2 and LaSiO are preferable as the low refractive index material.
  • each layer thickness is 500 nm or less from the viewpoint of suppressing columnar growth of the high refractive index layer.
  • the blue shift amount when the light incident angle changes from 0° to 10° is 6 nm or less, which reduces the wavelength shift of the optical characteristics and improves the visibility. And color unevenness caused by positional deviation of the image display surface is small).
  • the method for producing a dielectric multilayer film of the present invention is characterized by including a step of forming the dielectric multilayer film by ion assisted vapor deposition.
  • the image display device of the present invention is an optical see-through type image display device for projecting and displaying an image on an external landscape by projecting it to an observer's eye, and a display element for displaying the image and image light from the display element. It has a combiner that simultaneously guides external light from the external scenery to an observer, and two resin prisms that compose the combiner. The two resin prisms are bonded to each other, and the bonding surface is a prism.
  • the present invention is characterized in that it comprises a convex surface and a concave surface of a prism, and that the dielectric multilayer film of the present invention is formed.
  • the dielectric multilayer film of the present invention is a dielectric multilayer film in which at least one low refractive index layer and a plurality of high refractive index layers are formed on a resin substrate, and the total thickness of the dielectric multilayer film is 2 ⁇ m. That is, the refractive index at the light wavelength of 550 nm of the plurality of high refractive index layers is different from each other by 1.9 or more, and the plurality of high refractive index layers are alternately laminated to form an alternating laminated portion, and The low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions.
  • each refractive index layer refers to a relative refractive index
  • the high refractive index layer may have a refractive index of 1.9 or more at a light wavelength of 550 nm and a low refractive index.
  • the refractive index layer may have a refractive index of less than 1.9 at a light wavelength of 550 nm.
  • the present invention is characterized in that an alternating laminated portion in which a plurality of high refractive index layers having different refractive indexes are laminated is formed, the high refractive index layer-1, the high refractive index layer-2... The notation of rate-n will be used.
  • the refractive index is the refractive index at a light wavelength of 550 nm, and each layer of the multilayer film is formed as a single layer, and the optical surface reflectance measurement at a light wavelength of 550 nm is performed using an Olympus microspectroscope USPM-RU III. It is calculated by performing.
  • the refractive index of the layer obtained by adjusting the refractive index so as to fit the actually measured light reflectance data was specified using thin film calculation software (Essential Macleod) (Sigma Koki Co., Ltd.).
  • FIG. 1 is a schematic diagram showing an example of the structure of the dielectric multilayer film of the present invention.
  • the high-refractive index layers forming the alternately laminated portions are two different layers, that is, the high-refractive index layer-1 and the high-refractive index layer-2, but a plurality of layers may be further provided.
  • the dielectric multilayer film 1 having a function of controlling the light reflectance is formed on, for example, a substrate 2 used for a resin prism that constitutes a combiner included in a see-through type image display device, for example, a high refractive index having a different refractive index.
  • the alternating laminated portion 3 in which a plurality of layers-1 (H1) and high refractive index layers-2 (H2) are alternately laminated, and the high refractive index layer-1 (H1) and the high refractive index layer-2 (H2) And a low refractive index layer 4 having a lower refractive index. It is preferable to have a multi-layer structure in which alternating layers of these high refractive index layers and low refractive index layers are appropriately laminated between them. In FIG. 1, the low refractive index layers 4-1 and 4-2 are arranged between the alternating laminated portions 3-1, 3-2 and 3-3.
  • total layer thickness of the dielectric multilayer film refers to the high refractive index layer-2 (H2) which is the uppermost layer of the dielectric multilayer film from the surface of the high refractive index layer-1 (H1) in contact with the substrate 2 in FIG. ) Refers to the thickness up to the surface.
  • the “layer thickness of each of the alternating laminated portions” is the thickness of the high refractive index layer-2 (H2) from the surface of the high refractive index layer-1 (H1) on the substrate side or the low refractive index layer 4 side in FIG. The thickness up to the surface opposite to the substrate.
  • the interval between the low-refractive-index layers refers to the low-refractive-index layer 4-2 from the surface of the low-refractive-index layer 4-1 on the side opposite to the substrate in FIG. The distance to the surface of the substrate side.
  • the dielectric multilayer film of the present invention preferably satisfies the following characteristics as required performance from the image display device provided.
  • Figure 2 shows a graph of the light reflection characteristics of a dielectric multilayer film that satisfies the above optical characteristics.
  • (B) Change in shape It is preferable that the change is 6 ⁇ m or less at the end of the resin prism before and after the formation of the dielectric multilayer film.
  • the stress per unit layer thickness of the low refractive index layer and the high refractive index layer according to the present invention is preferably in the range of 0 to 500 MPa in the compression direction, but "0 to 500 MPa in the compression direction” means " It is synonymous with “0 to ⁇ 500 MPa as film stress”.
  • the optical film thickness is the value of nd obtained by multiplying the physical film thickness d by the refractive index n.
  • the substrate will bend due to the film stress of the formed thin film.
  • the film stress ⁇ is approximated by the following equation.
  • E Young's modulus of the substrate
  • b substrate thickness
  • l substrate length
  • substrate Poisson's ratio
  • d thin film thickness
  • the dielectric multilayer film of the present invention is characterized in that it has the alternating laminated portions composed of a plurality of high refractive index layers and the low refractive index layers between them. is there. It is preferable to have a multilayer structure in which these high refractive index layers and low refractive index layers are alternately laminated.
  • the number of layers is not particularly limited, but it is preferably 80 or less from the viewpoint of maintaining high productivity and obtaining a desired antireflection layer. That is, although the number of layers depends on the required optical performance, the reflectance of the specific light wavelength body in the visible region can be increased by stacking the layers of about 20 to 40 layers. It is preferable that the upper limit is 80 layers or less from the viewpoint that the stress of the entire film becomes large and the film can be prevented from peeling off.
  • the dielectric multilayer film according to the present invention utilizes the spectral transmission and reflection functions within a discrete light wavelength range so that the visible light reflection ability is exhibited in a specific wavelength range of the visible light range.
  • incident light traverses between two materials having different refractive indices, for example, an interface between the high refractive index layer-1 and the high refractive index layer-2
  • the incident light path has a refraction of each material. It changes according to the difference in rates.
  • the larger the difference in refractive index the larger the refraction of incident light. Therefore, by using the layers having different refractive indexes, an excellent reflection effect can be obtained.
  • the refractive index difference between the high refractive index layer-1 and the high refractive index layer-2, which are high refractive index layers adjacent to each other be 0.2 or more.
  • the upper limit is not particularly limited, but is usually preferably 0.6 or less.
  • the difference in refractive index and the required number of layers can be simulated or calculated by using commercially available thin film calculation software (Essential Macleod) (Sigma Optical Co., Ltd.). For example, in order to obtain a light reflectance of 60% or more at 635 nm, if the refractive index difference is smaller than 0.1, it is necessary to stack 200 layers or more, which not only lowers the productivity but also scatters at the stacking interface. May become large, the transparency may deteriorate, and it may be very difficult to manufacture without failure. Therefore, it is practically necessary to design to have the above-mentioned difference in refractive index.
  • the refractive index ratio between the layers depends on the refractive index ratio between the layers, the larger the refractive index ratio, the higher the reflectance.
  • n is the refractive index
  • d is the physical layer thickness of the layer.
  • the reflection can be controlled by utilizing this optical path difference.
  • the refractive index and layer thickness of each layer can be controlled to control the reflection of ultraviolet light, visible light, or near infrared light.
  • the reflectance in a specific wavelength region can be increased depending on the refractive index of each layer, the layer thickness of each layer, and the stacking mode of each layer.
  • the average refractive index of the entire dielectric multilayer film at a light wavelength of 550 nm is preferably 1.95 or more.
  • the refractive index of the high refractive index layer for the light wavelength of 550 nm is preferably in the range of 1.9 to 2.50, and the refractive index of the low refractive index layer for the light wavelength of 550 nm is 1.3 to 1.6. It is preferably within the range.
  • the materials contained in the high refractive index layer are Nb 2 O 5 , TiO 2 , and Ti 3 O 5 , Ta 2 O 5 and LaTiO 3 , or a mixture of materials selected from these, and the material contained in the low refractive index layer is SiO 2 , LaSiO. , Al 2 O 3 , and La 2x Al 2y O 3(x+Y) (wherein x and y each represent a range of 0.3 to 0.7). Or, a mixture of materials selected from these is preferable from the viewpoint of controlling the refractive index of the dielectric multilayer film.
  • the high refractive index layer may be, for example, a mixture of Ta oxide and Ti oxide, or a mixture of Ti oxide, Ta oxide, La oxide and Ti oxide, and the like. preferable.
  • Ta 2 O 5 or TiO 2 is preferable, and Ta 2 O 5 is more preferable.
  • the low refractive index layer SiO 2, MgF 2, or and Al 2 O 3
  • it is preferable from the viewpoint of the light reflectance is such as a mixture of SiO 2 and Al 2 O 3.
  • the thickness of the dielectric multilayer film (the total thickness when a plurality of layers are laminated) is 2 ⁇ m or more, preferably within the range of 2 to 8 ⁇ m. When the thickness is 2 ⁇ m or more, antireflection optical characteristics can be exhibited, and when the thickness is 8 ⁇ m or less, surface deformation due to film stress of the multilayer film itself can be prevented.
  • the thickness of the alternate laminated portion in which a plurality of high refractive index layers are laminated is preferably 1.5 ⁇ m or less.
  • the individual layer thickness of the high refractive index layer at that time is appropriately determined by the above-mentioned simulation or calculation.
  • the layer thickness of the low refractive index layer arranged between them is 8 nm or more from the viewpoint of suppressing columnar growth of the high refractive index layer.
  • the range is preferably 10 nm or more.
  • each layer of the index layers has a thickness of 500 nm or less.
  • the distance between the low refractive index layers is preferably 1.0 ⁇ m or less.
  • the thickness of each of the plurality of high refractive index layers is preferably in the range of 0 to 300 nm.
  • the resin base material used for the dielectric multilayer film is preferably a transparent resin base material in the visible light range, and is not particularly limited.
  • the resin that can be used as the transparent resin substrate is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and modified polyester, polyethylene (PE), polypropylene (PP), polystyrene ( PS), cycloolefin (COP) and other polyolefin resins, polyvinyl chloride, polyvinylidene chloride and other vinyl resins, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate ( PC), polyamide, polyimide resin, acrylic resin, triacetyl cellulose (TAC) and the like. Of these, cycloolefin (COP), polycarbonate (PC), acrylic resin and the like are preferable. These resins may be used alone or in combination.
  • polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and modified polyester, polyethylene (PE), polyprop
  • the thickness and type of the resin base material are not particularly limited as long as they are selected within a range that satisfies the characteristics of visible light transmittance of the device including the dielectric multilayer film of the present invention.
  • the thickness of the resin base material is preferably about 1 to 10 mm.
  • the resin base material may be a resin prism, which is provided in an optical see-through type image display device described later, and in this case, the concave surface joint portion or the convex surface joint portion of the resin prism is the same as the resin substrate used in the present invention. Become.
  • the resin base material preferably has a transmittance of 85% or more, particularly 90% or more, in the visible light region shown in JIS R 3106:1998. It is preferable that the resin base material has the above transmittance or more from the viewpoint of easily adjusting the luminous transmittance in the normal direction of the dielectric multilayer film to 80% or more.
  • a vapor deposition system includes a vacuum vapor deposition method, an ion beam vapor deposition method, an ion plating method, and a sputtering system includes a sputtering method and an ion beam sputtering.
  • IAD a method, a magnetron sputtering method and the like are known, it is preferable to use IAD as a film forming method for forming the dielectric multilayer film of the present invention from the viewpoint of forming a high density thin film.
  • IAD is a method of applying a high kinetic energy of ions during film formation to form a dense film or enhancing the adhesion of the film.
  • an ion beam method is an ionized gas irradiated from an ion source. This is a method of accelerating the deposition material by molecules and forming a film on the substrate surface. IAD is also called "ion beam assist method".
  • FIG. 3 is a schematic diagram showing an example of a vacuum vapor deposition apparatus using IAD.
  • a vacuum vapor deposition apparatus 10 using IAD (hereinafter, also referred to as an IAD vapor deposition apparatus in the present invention) includes a dome 13 inside a chamber 12, and a substrate 14 is arranged along the dome 13.
  • the vapor deposition source 15 includes an electron gun or a resistance heating device that evaporates the vapor deposition material, and the vapor deposition material 16 scatters from the vapor deposition source 15 toward the substrate 14 and is condensed and solidified on the substrate 14.
  • the ion beam 18 is irradiated from the IAD ion source 17 toward the substrate, and the high kinetic energy of the ions is applied during the film formation to form a dense film or enhance the adhesion of the film.
  • the substrate 14 is preferably made of polycarbonate resin (PC), cycloolefin resin (COP), acrylic resin, or the like.
  • a plurality of vapor deposition sources 15 may be arranged at the bottom of the chamber 12.
  • one evaporation source is shown as the evaporation source 15, but the number of the evaporation sources 15 may be plural.
  • the film-forming material (vapor-depositing material) of the vapor-deposition source 15 is generated by an electron gun to generate a vapor-depositing substance 16, and the film-forming material is scattered and adhered to the substrate 14 (for example, a resin-molded prism) installed in the chamber 12, thereby forming the material.
  • a layer made of a film material (for example, a low refractive index material such as SiO 2 , MgF 2 or Al 2 O 3 layer and a high refractive index material such as LaTiO 3 , Ta 2 O 5 or TiO 2 ) is a substrate.
  • a film is formed on 14.
  • the chamber 12 is provided with a vacuum exhaust system (not shown), so that the inside of the chamber 12 is evacuated.
  • the degree of reduced pressure in the chamber is usually in the range of 1 ⁇ 10 ⁇ 4 to 1 ⁇ 10 ⁇ 1 Pa, preferably 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 Pa.
  • the dome 13 holds at least one holder (not shown) that holds the substrate 14, and is also called a vapor deposition umbrella.
  • the dome 3 has an arcuate cross section, and has a rotationally symmetric shape in which the dome 3 passes through the center of a chord connecting both ends of the arc and rotates about an axis perpendicular to the chord as a rotational symmetry axis.
  • the dome 13 rotates about the axis at a constant speed, for example, the substrate 14 held by the dome 13 via the holder revolves around the axis at a constant speed.
  • the dome 13 can hold a plurality of holders arranged side by side in the rotation radius direction (revolution radius direction) and the rotation direction (revolution direction). As a result, it becomes possible to simultaneously form a film on the plurality of substrates 14 held by the plurality of holders, and it is possible to improve the manufacturing efficiency of the element.
  • the IAD ion source 17 is a device that introduces argon or oxygen gas into the main body to ionize them and irradiates the ionized gas molecules (ion beam 18) toward the substrate 14.
  • Argon gas or oxygen gas has a positive charge accumulated on the substrate in order to prevent the phenomenon that the whole substrate is positively charged (so-called charge-up) due to the accumulation of positive ions irradiated from the ion gun on the substrate. It is also used as a neutralizer that electrically neutralizes.
  • a Kauffman type (filament), a hollow cathode type, an RF type, a bucket type, a duoplasmatron type, or the like can be applied.
  • the IAD ion source 7 By irradiating the substrate 14 with the above-mentioned gas molecules from the IAD ion source 17, for example, molecules of the film forming material that are evaporated from a plurality of evaporation sources can be pressed against the substrate 14, and a film having high adhesion and denseness can be formed on the substrate. A film can be formed on 14.
  • the IAD ion source 7 is installed so as to face the substrate 14 at the bottom of the chamber 12, it may be installed at a position offset from the facing axis.
  • the ion beam used in IAD is used at a lower degree of vacuum and the acceleration voltage tends to be lower than the ion beam used in the ion beam sputtering method.
  • an ion beam having an accelerating voltage of 100 to 2000 V, an accelerating current of 100 to 2000 mA, and a neutralizer bias current of 100 to 2000 mA can be used.
  • the irradiation time of the ion beam can be set to, for example, 1 to 800 seconds, and the irradiation number of particles of the ion beam can be set to, for example, 1 ⁇ 10 13 to 5 ⁇ 10 17 particles/cm 2 .
  • the ion beam used in the film formation step can be an oxygen ion beam, an argon ion beam, or an oxygen/argon mixed gas ion beam.
  • the oxygen introduction amount is within a range of 20 to 60 sccm and the argon introduction amount is within a range of 0 to 15 sccm.
  • SCCM is an abbreviation for standard cc/min, and is a unit indicating how many cc flows per minute at 0° C. and 1 atm (atmospheric pressure 1013 hPa).
  • the monitor system (not shown) is a system that monitors the wavelength characteristics of the layer formed on the substrate 14 by monitoring the layer evaporated from each evaporation source 15 and attached to itself during vacuum film formation. .. With this monitor system, the optical characteristics of the layer formed on the substrate 14 (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.) can be grasped.
  • the monitoring system also includes a crystal layer thickness monitor, which can also monitor the physical layer thickness of the layer deposited on the substrate 14.
  • the monitor system also functions as a control unit that controls ON/OFF switching of the plurality of evaporation sources 15 and ON/OFF switching of the IAD ion source 17 according to the monitoring result of the layer.
  • the dielectric multilayer film of the present invention when performed by IAD, it can be performed while heating (for example, 300° C. or higher), but from the viewpoint of adjusting the thermal stress of the substrate, heating is not performed at room temperature ( The temperature is preferably adjusted to 25°C).
  • the image display device of the present invention is an optical see-through type image display device that displays an image by superimposing it on an external landscape and displaying it on an observer's eye, and a display element for displaying the image and the display element.
  • a combiner that simultaneously guides the image light from the outside scene and the outside light from the outside scene to the observer, and two resin prisms that constitute the combiner, and the two resin prisms are joined to each other.
  • the joining surface is composed of a prism convex surface and a prism concave surface, and the dielectric multilayer film of the present invention is formed on the convex surface or the concave surface.
  • FIG. 4 shows an example of an optical see-through type image display device.
  • the image display device 20 includes a component 25 that reflects the image information input and output from the image display element 21 by the dielectric multilayer film 24 provided on the joint surface of the upper prism 22 and the lower prism 23, and the external scenery.
  • An observer 27 can visually recognize the transmitted light component 26 that is incident from above.
  • a head-mounted display device (head-mounted display, hereafter HMD) is known as one of the display devices.
  • HMD head-mounted display
  • the HMD is compact, it has a merit of being hands-free because it can substantially view an image on a large screen and can be worn on the head.
  • light emitted from an image display element is normally transmitted and reflected by a combiner made of a transparent base material including a half mirror material and the like. Therefore, the observer can acquire information as a virtual image displayed at a distance away from the combiner by a certain distance, and at the same time acquire external environment information that is visually recognized through the combiner.
  • a film forming apparatus (BIS-1300) (manufactured by Syncron Co., Ltd.) was used for manufacturing the following dielectric multilayer film.
  • Dielectric Multilayer Film Comparative Example 1 As a resin substrate, using TiO 2 and SiO 2 (both manufactured by Merck Performance Materials, Inc.) on ZEONEX E48R (Nippon Zeon Co., Ltd.) having a thickness of 5 mm as a cycloolefin resin system under the following conditions: The multilayer film shown in Table II was formed into a dielectric multilayer film comparative example 1.
  • an accelerating voltage of 700 V, an accelerating current of 700 mA and a neutralizing current of 700 mA were used, and an apparatus of RF ion source “OIS One” manufactured by Optolan Corporation was used.
  • the IAD introduction gas O 2 50 sccm was introduced into the electron gun, and Ar gas 10 sccm was introduced into the neutralizer.
  • Material 2 SiO 2 : Refractive index 1.42
  • the substrate on which the material 1 was deposited was loaded with the material 2 in the second evaporation source, and vapor deposition was performed at a deposition rate of 7 nm/sec with the IAD power set to 0, and a low thickness of 211.9 nm was deposited on the material 1.
  • a refractive index layer was formed.
  • the material 1:TiO 2 has a total layer thickness of 1378.6 nm
  • the material 2:SiO 2 has a total layer thickness of 1256.2 nm
  • the dielectric multilayer film 1 has a total layer thickness of 2634.8 nm.
  • the average refractive index was 1.93.
  • the layer thickness (film thickness) and refractive index of each layer were measured by the following methods.
  • each layer is formed on the TiO 2 , H 4, and SiO 2 film under the above-mentioned film forming conditions, the light reflectance is measured, and the refractive index of the layer and the layer are calculated from the change amount. Calculate the thickness.
  • the light reflectance was measured with a microspectrophotometer USPM-RU III manufactured by Olympus at a light wavelength of 550 nm.
  • H4 is a trade name “H4”: LaTiO 3 manufactured by Merck Performance Materials, Inc.
  • the refractive index was calculated by forming each layer of the multilayer film as a single layer and measuring the light reflectance at a light wavelength of 550 nm using a spectrophotometer U-4100 manufactured by Hitachi High Technologies.
  • the refractive index of the obtained layer was specified by adjusting the refractive index so as to fit the actually measured light reflectance data using thin film calculation software (Essential Macleod) (Sigma Optical Co., Ltd.).
  • the substrate is bent by the film stress of the thin film.
  • E the Young's modulus of the substrate
  • b the thickness of the substrate
  • l the length of the substrate
  • the Poisson's ratio of the substrate
  • d the thickness of the thin film.
  • Comparative Example 2 Material 1: TiO 2 AD Refractive index 2.4 at 700 power setting. Material 2: The refractive index is 1.45 by setting the SiO 2 IAD power to 700.
  • Comparative Example 3 Material 1: TiO 2 AD Refractive index 2.2 by setting power 300.
  • Material 2 H4 (trade name “H4” (LaTiO 3 ), manufactured by Merck Performance Materials, Inc.) IAD power of 300, and a refractive index of 1.95.
  • the H4 film formation rate was 4 nm/sec.
  • Comparative Example 4 Material 1: TiO 2 AD The refractive index was 2.5 when the power was set to 1000. Material 2: H4 IAD power 1000 setting, refractive index 2.1.
  • a cycloolefin resin on 5mm thick of ZEONEX E48R (Nippon Zeon Co., Ltd.), H4 stacked alternately by laminating a plurality of (refractive index 2.1) and TiO 2 (refractive index 2.4) Part was formed, SiO 2 which is a low refractive index layer material was formed between the laminated alternating parts, and the film was formed under the layer thickness conditions shown in Table III to prepare a dielectric multilayer film Example 1.
  • the dielectric multilayer film Example 1 has a total layer thickness of 512.9 nm for TiO 2, a total layer thickness of 1558.4 nm for H 4, and a total layer thickness of 8.0 nm for the low refractive index layer SiO 2. Had a total film thickness of 2079.3 nm and an average refractive index of 2.17.
  • Dielectric Multilayer Film Examples 2 to 9 In the preparation of the dielectric multilayer film Example 1, the dielectric multilayer films Examples 2 to 9 were prepared by IAD so as to have the layer constitutions of Table III, Table IV, Table V and Table VI. The TiO 2 b used in Example 5 was obtained by setting the IAD power to 300 and changing the refractive index of TiO 2 to 2.2.
  • Visibility Definition Optical characteristics at an incident angle of 10°. By simultaneously satisfying the requirements for the light reflectance and the light transmittance, it is possible to achieve both visibility of the image and the outside world. Measurement: Measured with the concave prism formed and the convex prism without film bonded with an adhesive. Transmittance is measured with a multi-channel spectroscope MCPD-3000 manufactured by Otsuka Electronics Co., Ltd. For the reflectance, the value of (100%-transmittance) was calculated.
  • Wavelength shift amount Definition The wavelength shift amount of the light reflectance peak when the incident angle changes from 0° to 10°. Of the three reflection peaks in the visible light region, the peak on the longest wavelength side (around 635 nm) was evaluated. Measured with the concave prism formed and the convex prism without film bonded with an adhesive. In the measurement, the transmittance was measured with a multi-channel spectroscope MCPD-3000 manufactured by Otsuka Electronics Co., Ltd. at any incident angle, and the shift amount was calculated.
  • Shape change Definition The amount of deformation of the tip when a film is formed on the entire concave surface of the resin prism of the image display device. This is an example, and the present invention is not limited to the image display device. The measurement was performed by measuring the prism shape before and after film formation with a high-precision three-dimensional measuring machine UA3P manufactured by Panasonic Corporation, and calculating the amount of deformation.
  • Comparative Example 1 the alternating layers in the compression direction and the tensile direction generate stress at the layer interface, and thus cracks occur.
  • the light reflectance peaks at 465 nm, 520 nm and 635 nm are 60% or more (>R60%), and the luminous transmittance is 70% or more (>T70). %), which means that the specifications of the dielectric multilayer film of the present invention are satisfied.
  • FIG. 5 is a graph showing the spectral characteristics of the dielectric multilayer film obtained in Example 2. It can be seen that the visibility of the image and the outside world can be compatible by simultaneously satisfying the specifications of the light reflectance and the light transmittance at an incident angle of 10°. In particular, it is clear that the luminous transmittance is excellent.
  • the layer thickness ratios of the material 1 and the material 2 are the same in most of the examples for simplification, but this layer thickness ratio is not limited regardless of the invention.
  • Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 is used instead of TiO 2 and H 4, respectively, and a material contained in the low refractive index layer.
  • SiO 2 LaSiO, Al 2 O 3 or La 2x Al 2y O 3(x+y) (wherein x and y each represent a number in the range of 0.3 to 0.7).
  • the dielectric multilayer film of the present invention is a dielectric multilayer film formed on a resin substrate, which has both shape change suppression, crack prevention, optical characteristics (oblique light incidence characteristics) and productivity, the image can be displayed outside It is preferably used for an optical see-through type image display device that projects and displays it on a viewer's eye by superimposing it on a landscape.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The objective of the present invention is to provide a dielectric multilayer film that is formed on a resin substrate and that balances shape change suppression, crack prevention, optical characteristics (oblique incidence characteristics) and producibility of the dielectric multilayer film, and to provide a production method therefor and an image display device equipped with the same. This dielectric multilayer film comprises at least one layer of a low refractive index layer and a plurality of high refractive index layers on a resin substrate, and is characterized in that the total film thickness of the dielectric multilayer film is 2 μm or thicker, the refractive indices for the plurality of high refractive index layers for a light wavelength of 550 nm are 1.9 or greater and are different from one another, an alternately layered part wherein the plurality of high refractive index layers have been layered alternately is provided, and the low refractive index layers, having a refractive index of less than 1.9 for a light wavelength of 550 nm, are disposed between the alternately layered parts.

Description

誘電体多層膜、その製造方法及びそれを具備した画像表示装置Dielectric multilayer film, method of manufacturing the same, and image display device having the same
 本発明は誘電体多層膜、その製造方法及びそれを具備した画像表示装置に関する。より詳細には、誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性を兼ね備えた、樹脂基板上に形成された誘電体多層膜等に関する。 The present invention relates to a dielectric multilayer film, a method for manufacturing the same, and an image display device equipped with the same. More specifically, the present invention relates to a dielectric multilayer film formed on a resin substrate, which has suppression of shape change of the dielectric multilayer film, crack prevention, optical characteristics (oblique incidence characteristics), and productivity.
 樹脂基板への誘電体多層膜の成膜では線膨張差による熱変形とクラックが大きな問題となる。成膜中は蒸着源からの輻射熱や蒸着分子の運動エネルギーによって温度上昇するため、リークで室温に戻る際に基板と膜の線膨張差による応力(熱応力)で形状変化が発生する。このときの膜の熱応力は圧縮方向に作用するため、膜自身の応力(真性応力)が引張り方向に向いていると界面の応力差に耐え切れず、誘電体多層膜にクラックが発生する。クラックを抑制するには誘電体多層膜の真性応力を圧縮方向にすれば良いが、蒸着材料(特に高屈折率材料)の応力は引張り方向のため、イオンアシスト蒸着(Ion Assisted Deposition、以下、単に「IAD」ともいう。)による応力調整が必要になる。 When forming a dielectric multilayer film on a resin substrate, thermal deformation and cracks due to the difference in linear expansion become major problems. During film formation, the temperature rises due to the radiant heat from the vapor deposition source and the kinetic energy of vapor deposition molecules, so when returning to room temperature due to leakage, the shape changes due to stress (thermal stress) due to the difference in linear expansion between the substrate and the film. Since the thermal stress of the film at this time acts in the compression direction, if the stress of the film itself (intrinsic stress) is oriented in the tensile direction, it cannot withstand the stress difference at the interface and cracks occur in the dielectric multilayer film. In order to suppress cracks, the intrinsic stress of the dielectric multilayer film may be set in the compression direction, but since the stress of the vapor deposition material (especially high refractive index material) is in the tensile direction, the ion assisted deposition (Ion Assisted Deposition, hereinafter, simply Also referred to as "IAD"), stress adjustment is required.
 特許文献1には、高屈折率層(TiO2)と低屈折率層(SiO2)の交互多層膜の成膜方法が開示されており、当該TiO2成膜をIAD、SiO2を通常の蒸着で成膜することにより、圧縮応力の膜と引張応力の膜を交互に積層することで積層多層膜の内部応力を相殺し、膜と基板の密着性を高めてクラックの発生を抑制する技術が開示されている。 Patent Document 1, the high refractive index layer (TiO 2) and the low-refractive index layer and method of forming the alternate multilayer film of (SiO 2) is disclosed, IAD the TiO 2 film formation, the SiO 2 normal Technology that offsets internal stress of laminated multilayer film by alternately laminating compressive stress film and tensile stress film by forming by vapor deposition to improve adhesion between film and substrate and suppress crack generation Is disclosed.
 しかしながら、TiO2層とSiO2層の界面には相反する大きい応力が掛かっているためストレス環境に弱く、例えば高温環境、高温高湿環境ではクラックの発生を抑制することができない。 However, since a large amount of contradictory stress is applied to the interface between the TiO 2 layer and the SiO 2 layer, the interface is vulnerable to a stress environment and, for example, the generation of cracks cannot be suppressed in a high temperature environment or a high temperature and high humidity environment.
 また、所望の光学特性を満たすには2μm以上の厚膜になるため成膜時間が長く、IAD時のパワーを強めると輻射熱で樹脂基板が荷重たわみ温度に達する恐れがある。 Also, in order to satisfy the desired optical characteristics, a thick film of 2 μm or more is required, so the film formation time is long, and if the power during IAD is increased, the resin substrate may reach the deflection temperature under load due to radiant heat.
 加えて、比較的低温で応力調整可能なSiO2(低屈折率材料)は、誘電体多層膜への光入射角のバラツキに対する感度が高いためブルーシフトの発生等、光学特性(斜光入射特性)が劣る問題がある。前記ブルーシフトとは、スペクトル線の波長が、ある種の原因によって短波長側にずれることをいい、光反射率や光透過率に変動が生じ、視認性不良の原因となる。 In addition, SiO 2 (low-refractive index material), whose stress can be adjusted at a relatively low temperature, has high sensitivity to variations in the incident angle of light on the dielectric multilayer film, so that optical characteristics such as blue shift occur (oblique light incident characteristics). There is a problem that is inferior. The blue shift means that the wavelength of the spectrum line shifts to the short wavelength side due to a certain cause, which causes fluctuations in light reflectance and light transmittance, which causes poor visibility.
 さらに、クラックを抑制できたとしても真性応力が大きければ形状変化も大きくなるためIAD時のパワーをあまり高くすることができないという問題もある。このため、熱応力を抑えるために層間インターバルをかなり長くすると(例えば、層ごとに12時間放置するとか)、生産性が著しく悪い。 Furthermore, even if cracks can be suppressed, there is also the problem that the power during IAD cannot be increased too much because the shape change will be large if the intrinsic stress is large. For this reason, if the interlayer interval is considerably lengthened to suppress thermal stress (for example, if each layer is left for 12 hours), the productivity is remarkably poor.
 なお、多層膜の個々の層の応力の測定は、非特許文献1に記載されている方法が参照できる。 The method described in Non-Patent Document 1 can be referred to for measuring the stress of each layer of the multilayer film.
 特許文献2では、基板の片面に多層膜、反対面に同じ応力方向の単層膜が形成された光学素子で、多層膜の応力と同じ方向の応力の単層膜が形成されることで、多層膜の応力による反りと単層膜の応力による反りとが相殺され、その結果、基板の反りが緩和されて小さくなるとの技術が開示されている。しかしながら、基板を挟んで両面に薄膜形成がされるので、生産工程が複雑で生産性に劣る。 In Patent Document 2, in an optical element in which a multilayer film is formed on one surface of a substrate and a single layer film in the same stress direction is formed on the opposite surface, a single layer film having a stress in the same direction as the stress of the multilayer film is formed. A technique is disclosed in which the warpage due to the stress of the multilayer film and the warpage due to the stress of the single layer film are offset, and as a result, the warpage of the substrate is relaxed and reduced. However, since thin films are formed on both sides of the substrate, the production process is complicated and the productivity is poor.
 特許文献3では、高屈折率層(TiO2又はLaTiO3)と低屈折率層(SiO2)とを特定の圧力下で成膜することで、高屈折率層、低屈折率層ともに圧縮応力を有するため、熱によって樹脂基材が膨張すると各層の圧縮応力が開放されながら誘電体多層膜も膨張する。したがって、光学多層膜は基材に十分追従しながら膨張するので誘電体多層膜にクラックが生じにくくなるとある。 In Patent Document 3, a high-refractive-index layer (TiO 2 or LaTiO 3 ) and a low-refractive-index layer (SiO 2 ) are formed under a specific pressure to compress the high-refractive-index layer and the low-refractive-index layer. Therefore, when the resin base material expands due to heat, the dielectric multilayer film expands while releasing the compressive stress of each layer. Therefore, the optical multi-layer film expands while sufficiently following the substrate, so that cracks are less likely to occur in the dielectric multi-layer film.
 しかしながら、成膜圧力を層ごとに変えるため、生産工程が複雑で生産性に劣る。また、前述のとおり、SiO2(低屈折率材料)は誘電体多層膜への光入射角のバラツキに対する感度が高いため、ブルーシフトの発生等、光学特性に劣る問題がある。 However, since the film forming pressure is changed for each layer, the production process is complicated and the productivity is poor. Further, as described above, since SiO 2 (low refractive index material) has high sensitivity to variations in the incident angle of light on the dielectric multilayer film, there is a problem that the optical characteristics are inferior such as the occurrence of blue shift.
 したがって、熱応力や、圧縮及び引っ張り応力による誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性を兼ね備えた誘電体多層膜を樹脂基板上に成膜する新たな技術が望まれている。 Therefore, it is possible to form a dielectric multilayer film on a resin substrate that has both thermal stress, suppression of shape change of the dielectric multilayer film due to compression and tensile stress, crack prevention, optical characteristics (oblique light incidence characteristics) and productivity. Technology is desired.
特開2007-63574号公報JP, 2007-63574, A 特開2006-308721号公報JP, 2006-308721, A 特開2006-251760号公報JP 2006-251760 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性を兼ね備えた、樹脂基板上に形成された誘電体多層膜、その製造方法及びそれを具備した画像表示装置を提供することである。 The present invention has been made in view of the above problems and circumstances, and the problem to be solved is to suppress the shape change of the dielectric multilayer film, prevent cracks, combine optical characteristics (oblique light incidence characteristics) and productivity, and resin. A dielectric multilayer film formed on a substrate, a method for manufacturing the same, and an image display device including the same.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、樹脂基板上に少なくとも一層の低屈折率層と複数の高屈折率層が形成された誘電体多層膜であって、特定の屈折率を有する高屈折率層が交互に積層されて交互積層部を形成し、かつ、前記交互積層部の間に、前記低屈折率層が配置された誘電体多層膜によって、誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性を兼ね備えた、樹脂基板上に形成された誘電体多層膜、その製造方法及びそれを具備した画像表示装置が得られることを見出した。 In order to solve the above problems, the present inventor, in the process of examining the cause of the above problems, a dielectric multilayer film in which at least one low refractive index layer and a plurality of high refractive index layers are formed on a resin substrate. There, a high refractive index layer having a specific refractive index is alternately laminated to form an alternating laminated portion, and the low refractive index layer is arranged between the alternating laminated portions by a dielectric multilayer film. , A dielectric multi-layer film formed on a resin substrate, which has suppression of shape change of the dielectric multi-layer film, crack prevention, optical characteristics (oblique light incidence characteristics) and productivity, its manufacturing method and image display including the same It has been found that a device is obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problems according to the present invention are solved by the following means.
 1.樹脂基板上に少なくとも一層の低屈折率層と複数の高屈折率層が具備した誘電体多層膜であって、
 前記誘電体多層膜の総膜厚が2μm以上であり、
 前記複数の高屈折率層の光波長550nmにおける屈折率が1.9以上で互いに異なっており、当該複数の高屈折率層が交互に積層された交互積層部を有し、かつ、
 前記交互積層部の間に、光波長550nmにおける屈折率が1.9未満である前記低屈折率層が配置されたことを特徴とする誘電体多層膜。
1. A dielectric multilayer film comprising at least one low refractive index layer and a plurality of high refractive index layers on a resin substrate,
The total thickness of the dielectric multilayer film is 2 μm or more,
The plurality of high refractive index layers have different refractive indices at a light wavelength of 550 nm of 1.9 or more, and have a plurality of high refractive index layers alternately laminated, and
A dielectric multilayer film, wherein the low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions.
 2.前記交互積層部のそれぞれの層厚が、1.5μm以下あることを特徴とする第1項に記載の誘電体多層膜。 2. 2. The dielectric multilayer film according to item 1, wherein the layer thickness of each of the alternating laminated portions is 1.5 μm or less.
 3.前記複数の高屈折率層の屈折率差が0.2以上であり、かつ前記複数の高屈折率層に含有される材料は同じでも異なってもよいことを特徴とする第1項又は第2項に記載の誘電体多層膜。 3. The difference in refractive index between the plurality of high refractive index layers is 0.2 or more, and the materials contained in the plurality of high refractive index layers may be the same or different. The dielectric multilayer film according to the item.
 4.前記誘電体多層膜の光波長550nmにおける平均屈折率が、1.95以上であることを特徴とする第1項から第3項までのいずれか一項に記載の誘電体多層膜。 4. The dielectric multilayer film according to any one of items 1 to 3, wherein the dielectric multilayer film has an average refractive index at a light wavelength of 550 nm of 1.95 or more.
 5.前記低屈折率層の層厚が、8nm以上であることを特徴とする第1項から第4項までのいずれか一項に記載の誘電体多層膜。 5. 5. The dielectric multilayer film according to any one of items 1 to 4, wherein the layer thickness of the low refractive index layer is 8 nm or more.
 6.前記低屈折率層及び高屈折率層の単位層厚当たりの応力が、圧縮方向に0~500MPaの範囲内であることを特徴とする第1項から第5項までのいずれか一項に記載の誘電体多層膜。 6. 6. The stress per unit layer thickness of the low refractive index layer and the high refractive index layer is in the range of 0 to 500 MPa in the compression direction, according to any one of the items 1 to 5. Dielectric multilayer film.
 7.前記高屈折率層に含有される材料が、Nb25、TiO2、Ti35、Ta25、及びLaTiO3から選択されるか、又はこれらから選択される材料の混合物であり、かつ、
 前記低屈折率層に含有される材料が、SiO2、LaSiO、Al23、及びLa2xAl2y3(x+y)(式中、xとyはそれぞれ0.3~0.7の範囲の数字を表す。)から選択されるか、又はこれらから選択される材料の混合物であることを特徴とする第1項から第6項までのいずれか一項に記載の誘電体多層膜。
7. The material contained in the high refractive index layer is selected from Nb 2 O 5 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 and LaTiO 3 , or a mixture of materials selected from these. ,And,
The material contained in the low refractive index layer is SiO 2 , LaSiO, Al 2 O 3 , and La 2x Al 2y O 3(x+y) (wherein x and y are 0.3 to 0.7, respectively ). Which represents a numeral in the range of 1), or a mixture of materials selected from these, the dielectric multilayer film according to any one of 1 to 6 above. ..
 8.前記誘電体多層膜の総膜厚が3μm以上であり、前記低屈折率層が複数あるときに、当該低屈折率層の間隔が1.2μm以下であり、かつ、前記複数の高屈折率層の各層厚がそれぞれ500nm以下であることを特徴とする第1項から第7項までのいずれか一項に記載の誘電体多層膜。 8. When the total thickness of the dielectric multilayer film is 3 μm or more and there are a plurality of the low refractive index layers, the interval between the low refractive index layers is 1.2 μm or less, and the plurality of the high refractive index layers. 8. The dielectric multilayer film according to any one of items 1 to 7, wherein each layer thickness is 500 nm or less.
 9.光波長635nmにおいて、光入射角が0°から10°に変化したときのブルーシフト量が、6nm以下であることを特徴とする第1項から第8項までのいずれか一項に記載の誘電体多層膜。 9. The dielectric constant according to any one of items 1 to 8, wherein the amount of blue shift when the incident angle of light changes from 0° to 10° at a light wavelength of 635 nm is 6 nm or less. Body multilayer film.
 10.第1項から第9項に記載の誘電体多層膜を製造する誘電体多層膜の製造方法であって、当該誘電体多層膜をイオンアシスト蒸着によって形成する工程を有することを特徴とする誘電体多層膜の製造方法。 10. A method for producing a dielectric multilayer film according to any one of claims 1 to 9, which comprises a step of forming the dielectric multilayer film by ion-assisted vapor deposition. Method for manufacturing multilayer film.
 11.映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であって、
 前記映像を表示する表示素子と、当該表示素子からの映像光と前記外界風景からの外界光とを同時に観察者に導くコンバイナーと、当該コンバイナーを構成する2枚の樹脂プリズムと、を有し、
 前記2枚の樹脂プリズムは互いに接合されており、接合面がプリズム凸面とプリズム凹面とからなり、かつ、
 前記接合面に第1項から第9項までのいずれか一項に記載の誘電体多層膜を具備することを特徴とする画像表示装置。
11. An optical see-through type image display device for projecting and displaying an image on an external landscape by projecting it to an observer's eye,
A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to an observer, and two resin prisms that form the combiner,
The two resin prisms are bonded to each other, and the bonding surface includes a prism convex surface and a prism concave surface, and
An image display device, comprising the dielectric multilayer film according to any one of items 1 to 9 on the joint surface.
 本発明の上記手段により、誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性を兼ね備えた、樹脂基板上に形成された誘電体多層膜、その製造方法及びそれを具備した画像表示装置を提供することができる。 By the above means of the present invention, suppression of shape change of the dielectric multilayer film, crack prevention, optical characteristics (oblique light incidence characteristics) and having both productivity, the dielectric multilayer film formed on the resin substrate, its manufacturing method and It is possible to provide an image display device equipped with it.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The mechanism of action or mechanism of action of the present invention has not been clarified, but is presumed as follows.
 本発明者は、誘電体多層膜の成膜に係る過去の技術内容を整理し、前記誘電体多層膜の形状変化の抑制、クラック防止、及びブルーシフト等の光学特性及び生産性などの問題に対し、誘電体多層膜を高屈折率材料(例えば、TiO2又はLaTiO3)を主体にした層構成にし、IAD時のパワー(以下、IADパワーという。)を強くせず、強い圧縮応力を有さないように成膜することが解決策ではないかと考えた。しかしながら、以下の知見を得た。 The present inventor has organized past technical contents relating to the formation of a dielectric multilayer film, and has been addressed to problems such as suppression of shape change of the dielectric multilayer film, crack prevention, and optical characteristics such as blue shift and productivity. On the other hand, the dielectric multilayer film has a layer structure mainly composed of a high-refractive index material (for example, TiO 2 or LaTiO 3 ) and has a strong compressive stress without increasing the power during IAD (hereinafter referred to as IAD power). I thought that the solution would be to form the film without doing so. However, the following findings were obtained.
(1)高屈折率材料は、特にIADパワーが低いと柱状成長しやすく、積層していくと膜密度が低下して層全体として逆に引張り応力になってしまい、上記問題を解決できない。(2)樹脂基板の形状変化の原因となる熱応力を抑えることも重要であり、成膜温度はなるべく低く設定することが好ましいが、層間インターバル(各層で冷却時間を設ける。)、ドーム冷却機構、又は蒸着斜め成分の輻射熱遮蔽等は生産工程が複雑になったり、生産が長時間になったりして生産性に劣る。
(3)多層膜の真性応力と熱応力の向きが逆では基板と膜の界面でクラック発生する(すなわち、膜は基材を伸ばしたいのに、基材自体は縮もうとするためストレスが掛かる。)。真性応力が強い圧縮応力であると熱応力と相まって基板が大きく変形する。
(4)樹脂基板の変形に追従しやすいようにIADパワーを弱くする、もしくはIADなしの真空蒸着で多層膜の膜密度を低下した場合、密着力が低下し、高温高湿試験で水分を多量に吸着してしまうため前記ブルーシフトなどの光波長シフトが大きくなる。また、膜剥がれが発生する。
(1) In the case of a high refractive index material, columnar growth is likely to occur particularly when the IAD power is low, and the film density decreases as the layers are stacked, and the layer as a whole becomes tensile stress, which cannot solve the above problems. (2) It is also important to suppress the thermal stress that causes the shape change of the resin substrate, and it is preferable to set the film forming temperature as low as possible, but the interlayer interval (a cooling time is provided in each layer), the dome cooling mechanism. Also, the shielding of the radiant heat of the vapor deposition oblique component complicates the production process and lengthens the production time, resulting in poor productivity.
(3) If the directions of the intrinsic stress and the thermal stress of the multilayer film are opposite, cracks occur at the interface between the substrate and the film (that is, the film wants to stretch the base material, but the base material itself tends to shrink, so stress is applied. ..). If the intrinsic stress is a strong compressive stress, the substrate is largely deformed together with the thermal stress.
(4) If the IAD power is weakened so as to easily follow the deformation of the resin substrate, or if the film density of the multilayer film is reduced by vacuum deposition without IAD, the adhesion will decrease and a large amount of moisture will be obtained in the high temperature and high humidity test. Therefore, the light wavelength shift such as the blue shift becomes large. Further, film peeling occurs.
 以上の知見について鋭意検討を重ねた結果、誘電体多層膜を光波長550nmにおける屈折率が1.9以上の高屈折率材料を交互積層する層構成にし、成膜温度及びIADパワーを制御して強い圧縮応力を有さないように成膜するが、前記高屈折率材は、特にIADパワーが低いと柱状成長しやすく、積層していくと膜密度が低下して層全体として引張り応力になってしまうところを、高屈折材料の交互積層の途中にSiO2などの低屈折層を加えて、前記柱状成長を一旦リセットさせることよって、前記柱状成長を解消し、結果として膜密度を高めることが可能になることを見出した。 As a result of earnestly studying the above findings, the dielectric multilayer film has a layer structure in which high refractive index materials having a refractive index of 1.9 or more at an optical wavelength of 550 nm are alternately laminated, and the film forming temperature and IAD power are controlled. The high refractive index material is formed so as not to have a strong compressive stress, but columnar growth is likely to occur particularly when the IAD power is low, and the film density decreases as the layers are laminated and the layer as a whole has tensile stress. However, by adding a low-refractive-index layer such as SiO 2 in the middle of alternate lamination of high-refractive-index materials to reset the columnar growth once, the columnar growth can be eliminated, and as a result, the film density can be increased. I found it possible.
 すなわち、樹脂基板上に誘電体多層膜を形成する際に、圧縮応力になるように適切なIADパワーで成膜すること、及び高屈折材料の交互積層部の途中にSiO2などの低屈折層を加えて柱状成長を解消し膜密度を高めること、及び成膜時の温度を制御して樹脂基板の熱応力を抑えることで、誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性:ブルーシフトの抑制)及び適切なIADパワーを用いた成膜によって生産性の低下を抑制した、誘電体多層膜を得ることができたものと考えられる。 That is, when a dielectric multilayer film is formed on a resin substrate, the film should be formed with an appropriate IAD power so as to have a compressive stress, and a low-refractive layer such as SiO 2 may be formed in the middle of an alternate laminated portion of high-refractive material. The columnar growth is eliminated to increase the film density, and the temperature during film formation is controlled to suppress the thermal stress of the resin substrate, thereby suppressing the shape change of the dielectric multilayer film, preventing cracks, and improving optical characteristics ( It is considered that it was possible to obtain a dielectric multilayer film in which the reduction in productivity was suppressed by film formation using oblique light incidence characteristics: suppression of blue shift and appropriate IAD power.
本発明の誘電体多層膜の構成の一例を示す模式図The schematic diagram which shows an example of a structure of the dielectric multilayer film of this invention. 本発明の誘電体多層膜の光反射特性を示すグラフThe graph which shows the light reflection characteristic of the dielectric multilayer film of this invention. IADを用いた蒸着装置の一例を示す模式図The schematic diagram which shows an example of the vapor deposition apparatus using IAD. 光学シースルー型の画像表示装置の一例Example of optical see-through type image display device 本発明の誘電体多層膜の光透過特性を示すグラフThe graph which shows the light transmission characteristic of the dielectric multilayer film of this invention.
 本発明の誘電体多層膜は、樹脂基板上に少なくとも一層の低屈折率層と複数の高屈折率層が形成された誘電体多層膜であって、前記誘電体多層膜の総膜厚が2μm以上であり、 前記複数の高屈折率層の光波長550nmにおける屈折率が1.9以上で互いに異なっており、当該複数の高屈折率層が交互に積層されて交互積層部を形成し、かつ、前記交互積層部の間に、光波長550nmにおける屈折率が1.9未満である前記低屈折率層が配置されたことを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The dielectric multilayer film of the present invention is a dielectric multilayer film in which at least one low refractive index layer and a plurality of high refractive index layers are formed on a resin substrate, and the total thickness of the dielectric multilayer film is 2 μm. The refractive index of the plurality of high refractive index layers at the light wavelength of 550 nm is 1.9 or more and different from each other, and the plurality of high refractive index layers are alternately laminated to form an alternating laminated portion, and The low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions. This feature is a technical feature common to or corresponding to the following embodiments.
 前記誘電体多層膜の総膜厚は、2μm以上であることが構成要件であるが、3μm以上の範囲が視認性の向上(透過帯の透過率が高く、外界風景がより見える)の観点から好ましい。 The total film thickness of the dielectric multilayer film is a requirement of 2 μm or more, but in the range of 3 μm or more, the visibility is improved (the transmittance of the transmission band is high and the external scenery can be seen more). preferable.
 本発明の実施態様としては、本発明の効果発現の観点から、前記交互積層部のそれぞれの層厚が、1.5μm以下であることが構成要件であるが、1.2μm以下の範囲が、クラックの発生を防止する観点から好ましい。 As an embodiment of the present invention, from the viewpoint of manifestation of the effect of the present invention, the layer thickness of each of the alternating laminated portions is a requirement of 1.5 μm or less, but a range of 1.2 μm or less, It is preferable from the viewpoint of preventing the generation of cracks.
 前記複数の高屈折率層の屈折率差が0.2以上であり、かつ前記複数の高屈折率層に含有される材料は同じでも異なってもよいことが、クラックの発生を防止する観点や特定波長に光反射率のピークを有し、シースルー型の画像表示装置を構成する観点で好ましい。前記屈折率差は、0.25以上の範囲が視認性の向上(透過帯の透過率が高く、外界風景がより見える)の観点から好ましく、0.3以上の範囲がより好ましい。
 前記誘電体多層膜の平均屈折率が、1.95以上であることが、特定波長に光反射率のピークを有し、シースルー型の画像表示装置を形成する観点で好ましい。前記平均屈折率は、2.0以上の範囲が視認性の向上(観察者の目と画像表示面の位置ズレによって発生する色ムラが小さい)の観点から好ましく、2.1以上の範囲がより好ましい。
The difference in refractive index between the plurality of high refractive index layers is 0.2 or more, and the materials contained in the plurality of high refractive index layers may be the same or different, from the viewpoint of preventing the occurrence of cracks and It has a peak of light reflectance at a specific wavelength and is preferable from the viewpoint of configuring a see-through type image display device. The refractive index difference is preferably in the range of 0.25 or more from the viewpoint of improving visibility (the transmittance of the transmission band is high and the external scenery can be seen more), and the range of 0.3 or more is more preferable.
It is preferable that the dielectric multilayer film has an average refractive index of 1.95 or more from the viewpoint of forming a see-through type image display device having a light reflectance peak at a specific wavelength. The average refractive index is preferably in the range of 2.0 or more from the viewpoint of improving the visibility (small color unevenness caused by the positional deviation between the eyes of the observer and the image display surface), and the range of 2.1 or more is more preferable. preferable.
 前記低屈折率層の層厚が、8nm以上であることが、高屈折率層の柱状成長をリセットする観点で好ましい。前記層厚は、10nm以上の範囲が成膜時の膜厚制御性の観点から好ましく、20nm以上の範囲がより好ましい。 The layer thickness of the low refractive index layer is preferably 8 nm or more from the viewpoint of resetting the columnar growth of the high refractive index layer. The layer thickness is preferably 10 nm or more from the viewpoint of film thickness controllability during film formation, and more preferably 20 nm or more.
 前記低屈折率層及び高屈折率層の単位層厚当たりの応力が、圧縮方向に0~500MPaの範囲内であることが、樹脂基板の熱応力の方向と合致し、クラックの発生を防止する観点で好ましい。前記単位層厚当たりの応力は、0~300MPaの範囲であることが基板の形状変化の抑制の観点から好ましい。 The stress per unit layer thickness of the low-refractive index layer and the high-refractive index layer being in the range of 0 to 500 MPa in the compression direction matches the direction of thermal stress of the resin substrate and prevents the occurrence of cracks. It is preferable from the viewpoint. The stress per unit layer thickness is preferably in the range of 0 to 300 MPa from the viewpoint of suppressing changes in the shape of the substrate.
 前記高屈折率層に含有される材料が、Nb25、TiO2、Ti35、Ta25、及びLaTiO3から選択される少なくとも1種であるか、又はこれらから選択される材料の混合物であり、かつ、前記低屈折率層に含有される材料が、SiO2、LaSiO、Al23、及びLa2xAl2y3(x+Y)から選択される少なくとも1種であるか、又はこれらから選択される材料の混合物であることが、誘電体多層膜の屈折率を制御する観点で好ましい。中でも、高屈折率層に含有される材料としては、Ti35やLaTiO3が好ましく、低屈折材料としては、SiO2やLaSiOが好ましい。 The material contained in the high refractive index layer is at least one selected from Nb 2 O 5 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 , and LaTiO 3 , or is selected from these. It is a mixture of materials, and the material contained in the low refractive index layer is at least one selected from SiO 2 , LaSiO, Al 2 O 3 , and La 2x Al 2y O 3 (x+Y). It is preferable or a mixture of materials selected from these materials from the viewpoint of controlling the refractive index of the dielectric multilayer film. Among them, Ti 3 O 5 and LaTiO 3 are preferable as the material contained in the high refractive index layer, and SiO 2 and LaSiO are preferable as the low refractive index material.
 前記誘電体多層膜の総膜厚が3μm以上であり、前記低屈折率層が複数あるときに、当該低屈折率層の間隔が1.2μm以下であり、かつ、前記複数の高屈折率層の各層厚がそれぞれ500nm以下であることが、高屈折率層の柱状成長を抑制する観点で好ましい。 When the total thickness of the dielectric multilayer film is 3 μm or more and there are a plurality of the low refractive index layers, the interval between the low refractive index layers is 1.2 μm or less, and the plurality of the high refractive index layers. It is preferable that each layer thickness is 500 nm or less from the viewpoint of suppressing columnar growth of the high refractive index layer.
 光波長635nmにおいて、光入射角が0°から10°に変化したときのブルーシフト量が、6nm以下であることが、光学特性の波長シフトを小さくし、視認性を向上する(観察者の目と画像表示面の位置ズレによって発生する色ムラが小さい)観点で好ましい。 At the light wavelength of 635 nm, the blue shift amount when the light incident angle changes from 0° to 10° is 6 nm or less, which reduces the wavelength shift of the optical characteristics and improves the visibility. And color unevenness caused by positional deviation of the image display surface is small).
 本発明の誘電体多層膜を製造する誘電体多層膜の製造方法は、当該誘電体多層膜をイオンアシスト蒸着によって形成する工程を有することを特徴とする。 The method for producing a dielectric multilayer film of the present invention is characterized by including a step of forming the dielectric multilayer film by ion assisted vapor deposition.
 本発明の画像表示装置は、映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であって、前記映像を表示する表示素子と、当該表示素子からの映像光と前記外界風景からの外界光とを同時に観察者に導くコンバイナーと、当該コンバイナーを構成する2枚の樹脂プリズムと、を有し、前記2枚の樹脂プリズムは互いに接合されており、接合面がプリズム凸面とプリズム凹面とからなり、かつ、本発明の誘電体多層膜が形成されていることを特徴とする。 The image display device of the present invention is an optical see-through type image display device for projecting and displaying an image on an external landscape by projecting it to an observer's eye, and a display element for displaying the image and image light from the display element. It has a combiner that simultaneously guides external light from the external scenery to an observer, and two resin prisms that compose the combiner. The two resin prisms are bonded to each other, and the bonding surface is a prism. The present invention is characterized in that it comprises a convex surface and a concave surface of a prism, and that the dielectric multilayer film of the present invention is formed.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 The following is a detailed description of the present invention, its components, and modes and modes for carrying out the present invention. In the present application, "to" is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
 ≪本発明の誘電体多層膜の概要≫
 本発明の誘電体多層膜は、樹脂基板上に少なくとも一層の低屈折率層と複数の高屈折率層が形成された誘電体多層膜であって、前記誘電体多層膜の総膜厚が2μm以上であり、 前記複数の高屈折率層の光波長550nmにおける屈折率が1.9以上で互いに異なっており、当該複数の高屈折率層が交互に積層されて交互積層部を形成し、かつ、前記交互積層部の間に、光波長550nmにおける屈折率が1.9未満である前記低屈折率層が配置されたことを特徴とする。
<<Outline of Dielectric Multilayer Film of the Present Invention>>
The dielectric multilayer film of the present invention is a dielectric multilayer film in which at least one low refractive index layer and a plurality of high refractive index layers are formed on a resin substrate, and the total thickness of the dielectric multilayer film is 2 μm. That is, the refractive index at the light wavelength of 550 nm of the plurality of high refractive index layers is different from each other by 1.9 or more, and the plurality of high refractive index layers are alternately laminated to form an alternating laminated portion, and The low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions.
 ここで、各屈折率層の「高」及び「低」とは、それぞれ相対的な屈折率を指し、高屈折率層は光波長550nmにおける屈折率が1.9以上であればよく、低屈折率層は光波長550nmにおける屈折率が1.9未満であればよい。また、本発明では、複数の屈折率の異なる高屈折率層を積層する交互積層部を形成することが特徴であるため、高屈折率層-1、高屈折率層-2・・・高屈折率層-nとの表記を用いることにする。 Here, “high” and “low” of each refractive index layer refer to a relative refractive index, and the high refractive index layer may have a refractive index of 1.9 or more at a light wavelength of 550 nm and a low refractive index. The refractive index layer may have a refractive index of less than 1.9 at a light wavelength of 550 nm. Further, since the present invention is characterized in that an alternating laminated portion in which a plurality of high refractive index layers having different refractive indexes are laminated is formed, the high refractive index layer-1, the high refractive index layer-2... The notation of rate-n will be used.
 なお、屈折率は、光波長550nmにおける屈折率であり、多層膜の各層を単層で成膜し、オリンパス社製顕微分光測定機USPM-RU IIIを用いた光波長550nmにおける光表面反射率測定を行うことで算出している。薄膜計算ソフト(Essential Macleod)(シグマ光機株式会社)を用いて、実測した光反射率データに対してフィットするように屈折率を調整することで得られた層の屈折率を特定した。 The refractive index is the refractive index at a light wavelength of 550 nm, and each layer of the multilayer film is formed as a single layer, and the optical surface reflectance measurement at a light wavelength of 550 nm is performed using an Olympus microspectroscope USPM-RU III. It is calculated by performing. The refractive index of the layer obtained by adjusting the refractive index so as to fit the actually measured light reflectance data was specified using thin film calculation software (Essential Macleod) (Sigma Koki Co., Ltd.).
 図1は、本発明の誘電体多層膜の構成の一例を示す模式図である。但し、これに限定されるものではない。また、図では、交互積層部を形成する高屈折率層を、高屈折率層-1及び高屈折率層-2の異なる2層としたが、さらに複数の層としてもよい。 FIG. 1 is a schematic diagram showing an example of the structure of the dielectric multilayer film of the present invention. However, it is not limited to this. Further, in the figure, the high-refractive index layers forming the alternately laminated portions are two different layers, that is, the high-refractive index layer-1 and the high-refractive index layer-2, but a plurality of layers may be further provided.
 光反射率を制御する機能を有する誘電体多層膜1は、例えば、シースルー型画像表示装置に具備されるコンバイナーを構成する樹脂製プリズムに用いる基板2上に、例えば、屈折率の異なる高屈折率層-1(H1)及び高屈折率層-2(H2)が交互に複数積層されている交互積層部3と、前記高屈折率層-1(H1)及び高屈折率層-2(H2)よりも低い屈折率を有する低屈折率層4とを有する。これら高屈折率層の交互積層部と、その間に低屈折率層とが適宜積層された多層構造を有することが好ましい。図1においては、交互積層部3-1、3-2及び3-3の間に低屈折率層4-1及び4-2が配置されている。 The dielectric multilayer film 1 having a function of controlling the light reflectance is formed on, for example, a substrate 2 used for a resin prism that constitutes a combiner included in a see-through type image display device, for example, a high refractive index having a different refractive index. The alternating laminated portion 3 in which a plurality of layers-1 (H1) and high refractive index layers-2 (H2) are alternately laminated, and the high refractive index layer-1 (H1) and the high refractive index layer-2 (H2) And a low refractive index layer 4 having a lower refractive index. It is preferable to have a multi-layer structure in which alternating layers of these high refractive index layers and low refractive index layers are appropriately laminated between them. In FIG. 1, the low refractive index layers 4-1 and 4-2 are arranged between the alternating laminated portions 3-1, 3-2 and 3-3.
 「誘電体多層膜の総層厚」とは、図1において、高屈折率層-1(H1)の基板2に接する面から誘電体多層膜の最上層である高屈折率層-2(H2)の表面までの厚さをいう。 The “total layer thickness of the dielectric multilayer film” refers to the high refractive index layer-2 (H2) which is the uppermost layer of the dielectric multilayer film from the surface of the high refractive index layer-1 (H1) in contact with the substrate 2 in FIG. ) Refers to the thickness up to the surface.
 「交互積層部のそれぞれの層厚」は、図1において、高屈折率層-1(H1)の基板側の面又は低屈折率層4側の面から高屈折率層-2(H2)の基板とは反対側の面までの厚さをいう。 The “layer thickness of each of the alternating laminated portions” is the thickness of the high refractive index layer-2 (H2) from the surface of the high refractive index layer-1 (H1) on the substrate side or the low refractive index layer 4 side in FIG. The thickness up to the surface opposite to the substrate.
 「低屈折率層が複数あるときに、当該低屈折率層の間隔」とは、図1において、低屈折率層4-1の基板とは反対側の面から、低屈折率層4-2の基板側の面までの距離をいう。
 具体的な層構成は、実施例の項で説明する。
“When there are a plurality of low-refractive-index layers, the interval between the low-refractive-index layers” refers to the low-refractive-index layer 4-2 from the surface of the low-refractive-index layer 4-1 on the side opposite to the substrate in FIG. The distance to the surface of the substrate side.
A specific layer structure will be described in the section of Examples.
 本発明の誘電体多層膜は具備される画像表示装置からの要求性能として以下の特性を満たすことが好ましい。 The dielectric multilayer film of the present invention preferably satisfies the following characteristics as required performance from the image display device provided.
 (a)光学特性:光入射角10°において、465nm、520nm、及び635nm(それぞれ±5nm)において反射帯のピーク波長を有する。ピーク反射率60%以上であり、視感度透過率70%以上であることが好ましい。前記入射角0~10°におけるピーク波長のシフトは635nmにおいて6nm以下であることが好ましい。 (A) Optical characteristics: It has a peak wavelength of a reflection band at 465 nm, 520 nm, and 635 nm (each ±5 nm) at a light incident angle of 10°. It is preferable that the peak reflectance is 60% or more and the luminous transmittance is 70% or more. The shift of the peak wavelength at the incident angle of 0 to 10° is preferably 6 nm or less at 635 nm.
  図2に、上記光学特性を満たす誘電体多層膜の光反射特性のグラフを示す。 Figure 2 shows a graph of the light reflection characteristics of a dielectric multilayer film that satisfies the above optical characteristics.
 (b)形状変化:誘電体多層膜成膜前後で前記樹脂製プリズム端で6μm以下の変化であることが好ましい。 (B) Change in shape: It is preferable that the change is 6 μm or less at the end of the resin prism before and after the formation of the dielectric multilayer film.
 (c)初期外観:誘電体多層膜のクラックの発生や膜浮きが観察されないこと。 (C) Initial appearance: No cracking or film lifting of the dielectric multilayer film is observed.
 (d)信頼性:高温高湿(60℃・90%RH、240h)保存、及び、ヒートショック試験(-20~70℃間を30サイクル)にて、クラックの発生や膜浮きが観察されないことが好ましく、前記ピーク波長シフト2nm以下であることが好ましい。 (D) Reliability: No cracking or film floating is observed in high temperature and high humidity (60°C/90%RH, 240h) storage and heat shock test (30 cycles between -20 and 70°C). Is preferable, and the peak wavelength shift is preferably 2 nm or less.
 また、ここで、膜応力の定義として、基板が膜を内側にして反る(膜が縮もうとする)場合を膜内に引張応力があるといい符号を+とする。反対に、膜を外側にして反る(膜が伸びようとする)場合を圧縮応力があるとし符号を-で表す。本発明に係る低屈折率層及び高屈折率層の単位層厚当たりの応力が、圧縮方向に0~500MPaの範囲内であることが好ましいが、「圧縮方向に0~500MPa」とは、「膜応力として0~-500MPa」と同義である。 Also, here, as the definition of the film stress, when the substrate warps with the film inside (the film tries to shrink), the sign that there is a tensile stress in the film is +. On the contrary, when the film is warped with the film outside (the film is about to expand), the compressive stress is assumed and the symbol is represented by −. The stress per unit layer thickness of the low refractive index layer and the high refractive index layer according to the present invention is preferably in the range of 0 to 500 MPa in the compression direction, but "0 to 500 MPa in the compression direction" means " It is synonymous with “0 to −500 MPa as film stress”.
 膜応力は、具体的には、X線回折による方法や、赤外線測定による方法で測定することができる。また、非特許文献1に記載されているようなレーザー光を用いて、基板の反りを測長し下記式に代入する方法で、圧縮応力を測定することが可能である。この場合、50×10mm、厚さ0.1mmの薄板ガラスに各材料をそれぞれ単層で、光学膜厚λ/4(λ=550nm)で成膜した試料を用いて測定する。光学膜厚は物理膜厚dに屈折率nを掛けたndの値である。 Specifically, the film stress can be measured by a method using X-ray diffraction or a method using infrared measurement. Further, it is possible to measure the compressive stress by a method of measuring the warp of the substrate and substituting it in the following equation using a laser beam as described in Non-Patent Document 1. In this case, the measurement is performed using a sample in which each material is formed as a single layer on a thin glass plate having a thickness of 50×10 mm and a thickness of 0.1 mm to form an optical film thickness λ/4 (λ=550 nm). The optical film thickness is the value of nd obtained by multiplying the physical film thickness d by the refractive index n.
 例えば、成膜した薄膜の膜応力によって基板は撓む。このとき、自由端の変位δを測定すると、膜応力σは次式で近似される。 For example, the substrate will bend due to the film stress of the formed thin film. At this time, when the displacement δ at the free end is measured, the film stress σ is approximated by the following equation.
 σ=(Eb2)/{3(1-ν)l2d}×δ
 ここで、E:基板のヤング率、b:基板の厚さ、l:基板の長さ、ν:基板のポアソン比、d:薄膜の厚さを表す。
σ=(Eb 2 )/{3(1-ν)l 2 d}×δ
Here, E: Young's modulus of the substrate, b: substrate thickness, l: substrate length, ν: substrate Poisson's ratio, d: thin film thickness.
 上記測定法を用いて、基板上に単層成膜を行った試料から、応力の向きや大きさを知ることができる。 Using the above measurement method, it is possible to know the direction and magnitude of stress from a sample in which a single layer is formed on a substrate.
 以下、本発明の誘電体多層膜の詳細について説明する。 The details of the dielectric multilayer film of the present invention will be described below.
 〔1〕誘電体多層膜の構成
 本発明の誘電体多層膜は、前述のとおり、複数の高屈折率層で構成される交互積層部と、その間に低屈折率層とを有することが特徴である。これら高屈折率層と、低屈折率層とが交互に積層された多層構造を有することが好ましい。層数に関しては特に制限されるものではないが、80層以内であることが高い生産性を維持して所望の反射防止層を得る観点から、好ましい。すなわち、積層数は、要求される光学性能によるが、おおむね20~40層程度の積層をすることで、可視域の特定光波長体の反射率を大きくすることができる。上限数としては80層以下であることが、膜全体の応力が大きくなって膜が剥がれたりすることを防止できる点でも好ましい。
[1] Configuration of Dielectric Multilayer Film As described above, the dielectric multilayer film of the present invention is characterized in that it has the alternating laminated portions composed of a plurality of high refractive index layers and the low refractive index layers between them. is there. It is preferable to have a multilayer structure in which these high refractive index layers and low refractive index layers are alternately laminated. The number of layers is not particularly limited, but it is preferably 80 or less from the viewpoint of maintaining high productivity and obtaining a desired antireflection layer. That is, although the number of layers depends on the required optical performance, the reflectance of the specific light wavelength body in the visible region can be increased by stacking the layers of about 20 to 40 layers. It is preferable that the upper limit is 80 layers or less from the viewpoint that the stress of the entire film becomes large and the film can be prevented from peeling off.
 本発明に係る誘電多層膜は、可視光域の特定波長領域で可視光反射能が発現するように、離散的な光波長範囲内でスペクトルの透過及び反射機能を利用するものである。例えば、入射光が、異なる屈折率を有する2つの材料間、例えば、高屈折率層-1と高屈折率層-2間の界面を横切る場合、入射光経路が、それぞれを構成する材料の屈折率の差に応じて変化する。その屈折率差が大きければ大きいほど、入射光の屈折が大きくなるため、異なる屈折率を有する層を利用することによって、優れた反射効果を得ることができる。 The dielectric multilayer film according to the present invention utilizes the spectral transmission and reflection functions within a discrete light wavelength range so that the visible light reflection ability is exhibited in a specific wavelength range of the visible light range. For example, when incident light traverses between two materials having different refractive indices, for example, an interface between the high refractive index layer-1 and the high refractive index layer-2, the incident light path has a refraction of each material. It changes according to the difference in rates. The larger the difference in refractive index, the larger the refraction of incident light. Therefore, by using the layers having different refractive indexes, an excellent reflection effect can be obtained.
 本発明においては、少なくとも隣接した高屈折率層である高屈折率層-1及び高屈折率層-2の屈折率差が0.2以上であることが好ましい。上限には特に制限はないが通常0.6以下であることが好ましい。 In the present invention, it is preferable that the refractive index difference between the high refractive index layer-1 and the high refractive index layer-2, which are high refractive index layers adjacent to each other, be 0.2 or more. The upper limit is not particularly limited, but is usually preferably 0.6 or less.
 この屈折率差と、必要な層数とについては、市販の薄膜計算ソフト(Essential Macleod)(シグマ光機株式会社)を用いてシミュレーション又は計算することができる。例えば、635nmの光反射率60%以上を得るためには、屈折率差が0.1より小さいと200層以上の積層が必要になり、生産性が低下するだけでなく、積層界面での散乱が大きくなり、透明性が低下し、故障なく製造することも非常に困難になる場合がある。したがって、上記屈折率差を有するように設計することが実技上必要である。 The difference in refractive index and the required number of layers can be simulated or calculated by using commercially available thin film calculation software (Essential Macleod) (Sigma Optical Co., Ltd.). For example, in order to obtain a light reflectance of 60% or more at 635 nm, if the refractive index difference is smaller than 0.1, it is necessary to stack 200 layers or more, which not only lowers the productivity but also scatters at the stacking interface. May become large, the transparency may deteriorate, and it may be very difficult to manufacture without failure. Therefore, it is practically necessary to design to have the above-mentioned difference in refractive index.
 上記隣接した層界面での反射は、層間の屈折率比に依存するので、この屈折率比が大きいほど反射率が高まる。また、単層膜で見たとき、層表面における反射光と、層底部における反射光の光路差を、n・d=波長/4、で表される関係にすると、位相差により反射光を強め合うよう制御でき、反射率を上げることができる。ここで、nは屈折率、dは層の物理層厚である。この光路差を利用することで、反射を制御できる。この関係を利用して、各層の屈折率と層厚を制御して、紫外光、可視光や近赤外光の反射を制御することができる。 Since the reflection at the interface between the adjacent layers depends on the refractive index ratio between the layers, the larger the refractive index ratio, the higher the reflectance. Further, when viewed as a single-layer film, if the optical path difference between the reflected light on the layer surface and the reflected light on the layer bottom is represented by n·d=wavelength/4, the reflected light is strengthened by the phase difference. It can be controlled to match and the reflectance can be increased. Here, n is the refractive index and d is the physical layer thickness of the layer. The reflection can be controlled by utilizing this optical path difference. By utilizing this relationship, the refractive index and layer thickness of each layer can be controlled to control the reflection of ultraviolet light, visible light, or near infrared light.
 すなわち、各層の屈折率、各層の層厚、及び各層の積層の態様により、特定波長領域の反射率を高くすることができる。 That is, the reflectance in a specific wavelength region can be increased depending on the refractive index of each layer, the layer thickness of each layer, and the stacking mode of each layer.
 誘電体多層膜全体の光波長550nmにおける平均屈折率は、1.95以上であることが好ましい。 The average refractive index of the entire dielectric multilayer film at a light wavelength of 550 nm is preferably 1.95 or more.
 高屈折率層の光波長550nmに対する屈折率は、1.9~2.50の範囲内であることが好ましく、低屈折率層の光波長550nmに対する屈折率は、1.3~1.6の範囲内であることが、好ましい。 The refractive index of the high refractive index layer for the light wavelength of 550 nm is preferably in the range of 1.9 to 2.50, and the refractive index of the low refractive index layer for the light wavelength of 550 nm is 1.3 to 1.6. It is preferably within the range.
 本発明に係る誘電体多層膜(高屈折率層、低屈折率層)に用いられる材料としては、前記高屈折率層に含有される材料が、Nb25、TiO2、Ti35、Ta25、及びLaTiO3から選択される少なくとも1種であるか、又はこれらから選択される材料の混合物であり、かつ、前記低屈折率層に含有される材料が、SiO2、LaSiO、Al23、及びLa2xAl2y3(x+Y)(式中、xとyはいずれも0.3~0.7の範囲を表す。)から選択される少なくとも1種であるか、又はこれらから選択される材料の混合物であることが、誘電体多層膜の屈折率を制御する観点で好ましい。 As the material used for the dielectric multilayer film (high refractive index layer, low refractive index layer) according to the present invention, the materials contained in the high refractive index layer are Nb 2 O 5 , TiO 2 , and Ti 3 O 5 , Ta 2 O 5 and LaTiO 3 , or a mixture of materials selected from these, and the material contained in the low refractive index layer is SiO 2 , LaSiO. , Al 2 O 3 , and La 2x Al 2y O 3(x+Y) (wherein x and y each represent a range of 0.3 to 0.7). Or, a mixture of materials selected from these is preferable from the viewpoint of controlling the refractive index of the dielectric multilayer film.
 前記高屈折率層は、例えば、Taの酸化物とTiの酸化物の混合物や、その他、Tiの酸化物、Taの酸化物、Laの酸化物とTiの酸化物の混合物などであることが好ましい。本発明においては、Ta25やTiO2であることが好ましく、より好ましくはTa2O5である。 The high refractive index layer may be, for example, a mixture of Ta oxide and Ti oxide, or a mixture of Ti oxide, Ta oxide, La oxide and Ti oxide, and the like. preferable. In the present invention, Ta 2 O 5 or TiO 2 is preferable, and Ta 2 O 5 is more preferable.
 また、前記低屈折率層は、SiO2、MgF2、又はAl23や、SiO2とAl23の混合物などであることが光反射率の観点から好ましい。 Further, the low refractive index layer, SiO 2, MgF 2, or and Al 2 O 3, it is preferable from the viewpoint of the light reflectance is such as a mixture of SiO 2 and Al 2 O 3.
 誘電体多層膜の厚さ(複数層積層した場合は全体の厚さ)は、2μm以上であり、好ましくは、2~8μmの範囲内である。厚さが2μm以上であれば、反射防止の光学特性を発揮させることができ、厚さが8μm以下であれば、多層膜自体の膜応力による面変形が発生するのを防止することができる。 The thickness of the dielectric multilayer film (the total thickness when a plurality of layers are laminated) is 2 μm or more, preferably within the range of 2 to 8 μm. When the thickness is 2 μm or more, antireflection optical characteristics can be exhibited, and when the thickness is 8 μm or less, surface deformation due to film stress of the multilayer film itself can be prevented.
 高屈折率層が複数積層される交互積層部の厚さは、1.5μm以下であることが好ましい。その際の高屈折率層の個々の層厚は、前述のシミュレーション又は計算によって、適宜決定される。 The thickness of the alternate laminated portion in which a plurality of high refractive index layers are laminated is preferably 1.5 μm or less. The individual layer thickness of the high refractive index layer at that time is appropriately determined by the above-mentioned simulation or calculation.
 また、その間に配置される低屈折率層の層厚は8nm以上であることが、高屈折率層の柱状成長を抑止する観点から好ましい。好ましくは、10nm以上の範囲である。 Further, it is preferable that the layer thickness of the low refractive index layer arranged between them is 8 nm or more from the viewpoint of suppressing columnar growth of the high refractive index layer. The range is preferably 10 nm or more.
 また、前記誘電体多層膜の総膜厚が3μm以上であり、前記低屈折率層が複数あるときに、当該低屈折率層の間隔が1.2μm以下であり、かつ、前記複数の高屈折率層の各層厚がそれぞれ500nm以下であることが、好ましい。前記低屈折率層の間隔は、好ましくは、1.0μm以下の範囲である。前記複数の高屈折率層の各層厚は、それぞれ好ましくは、0~300nmの範囲である。 Further, when the total thickness of the dielectric multilayer film is 3 μm or more, and when there are a plurality of the low refractive index layers, the interval between the low refractive index layers is 1.2 μm or less, and the plurality of the high refractive index layers have a high refractive index. It is preferable that each layer of the index layers has a thickness of 500 nm or less. The distance between the low refractive index layers is preferably 1.0 μm or less. The thickness of each of the plurality of high refractive index layers is preferably in the range of 0 to 300 nm.
 〔2〕誘電体多層膜の製造方法
 まず、誘電体多層膜に用いられる樹脂基材は、可視光域において透明樹脂基材であることが好ましく、特に限定されるものではない。
[2] Method for Producing Dielectric Multilayer Film First, the resin base material used for the dielectric multilayer film is preferably a transparent resin base material in the visible light range, and is not particularly limited.
 透明樹脂基材として使用できる樹脂としては特に制限はなく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、変性ポリエステル等のポリエステル系樹脂、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、シクロオレフィン(COP)等のポリオレフィン系樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルフォン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド樹脂、アクリル樹脂、トリアセチルセルロース(TAC)等が挙げられる。中でも、シクロオレフィン(COP)、ポリカーボネート(PC)又はアクリル樹脂などが好ましい。これらの樹脂は、単独で使用してもよいし、複数を併用してもよい。 The resin that can be used as the transparent resin substrate is not particularly limited, and examples thereof include polyester resins such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and modified polyester, polyethylene (PE), polypropylene (PP), polystyrene ( PS), cycloolefin (COP) and other polyolefin resins, polyvinyl chloride, polyvinylidene chloride and other vinyl resins, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate ( PC), polyamide, polyimide resin, acrylic resin, triacetyl cellulose (TAC) and the like. Of these, cycloolefin (COP), polycarbonate (PC), acrylic resin and the like are preferable. These resins may be used alone or in combination.
 樹脂基材の厚さ、種類は、本発明の誘電体多層膜を具備するデバイスの可視光線透過率の特性を満たす範囲で選択されるものであれば、特に限定されるものではない。 The thickness and type of the resin base material are not particularly limited as long as they are selected within a range that satisfies the characteristics of visible light transmittance of the device including the dielectric multilayer film of the present invention.
 樹脂基材の厚さは、1~10mm程度が好ましい。樹脂基材は、後述する光学シースルー型の画像表示装置に具備される、樹脂プリズムあってもよく、この際、樹脂プリズムの凹面接合部、若しくは凸面接合部が、本発明に用いられる樹脂基板となる。 The thickness of the resin base material is preferably about 1 to 10 mm. The resin base material may be a resin prism, which is provided in an optical see-through type image display device described later, and in this case, the concave surface joint portion or the convex surface joint portion of the resin prism is the same as the resin substrate used in the present invention. Become.
 また、樹脂基材は、JIS R 3106:1998で示される可視光領域の透過率としては85%以上であることが好ましく、特に90%以上であることが好ましい。樹脂基材が上記透過率以上であることは、誘電体多層膜の法線方向での視感度透過率を、80%以上に調整しやすくする観点から、好ましい。 The resin base material preferably has a transmittance of 85% or more, particularly 90% or more, in the visible light region shown in JIS R 3106:1998. It is preferable that the resin base material has the above transmittance or more from the viewpoint of easily adjusting the luminous transmittance in the normal direction of the dielectric multilayer film to 80% or more.
 基板上に金属酸化物等の薄膜を形成して誘電体多層膜を製造する方法として、蒸着系では真空蒸着法、イオンビーム蒸着法、イオンプレーティング法等、スパッタ系ではスパッタリング法、イオンビームスパッタリング法、マグネトロンスパッタリング法等が知られているが、本発明の誘電体多層膜を形成する成膜方法としては、IADを採用することが、高密度な薄膜を形成する観点から、好ましい。 As a method for forming a dielectric multilayer film by forming a thin film of metal oxide or the like on a substrate, a vapor deposition system includes a vacuum vapor deposition method, an ion beam vapor deposition method, an ion plating method, and a sputtering system includes a sputtering method and an ion beam sputtering. Although a method, a magnetron sputtering method and the like are known, it is preferable to use IAD as a film forming method for forming the dielectric multilayer film of the present invention from the viewpoint of forming a high density thin film.
 IADは、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高める方法であり、例えばイオンビームによる方法は、イオンソースから照射されるイオン化されたガス分子により被着材料を加速し、基板表面に成膜する方法である。IADは、「イオンビームアシスト法」ともいう。 IAD is a method of applying a high kinetic energy of ions during film formation to form a dense film or enhancing the adhesion of the film. For example, an ion beam method is an ionized gas irradiated from an ion source. This is a method of accelerating the deposition material by molecules and forming a film on the substrate surface. IAD is also called "ion beam assist method".
 図3は、IADを用いた真空蒸着装置の一例を示す模式図である。 FIG. 3 is a schematic diagram showing an example of a vacuum vapor deposition apparatus using IAD.
 IADを用いた真空蒸着装置10(以下、本発明ではIAD蒸着装置ともいう。)は、チャンバー12内にドーム13を具備し、ドーム13に沿って基板14が配置される。蒸着源15は蒸着物質を蒸発させる電子銃、又は抵抗加熱装置を具備し、蒸着源15から蒸着物質16が、基板14に向けて飛散し、基板14上で凝結、固化する。その際、IADイオンソース17より基板に向けてイオンビーム18を照射し、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高めたりする。 A vacuum vapor deposition apparatus 10 using IAD (hereinafter, also referred to as an IAD vapor deposition apparatus in the present invention) includes a dome 13 inside a chamber 12, and a substrate 14 is arranged along the dome 13. The vapor deposition source 15 includes an electron gun or a resistance heating device that evaporates the vapor deposition material, and the vapor deposition material 16 scatters from the vapor deposition source 15 toward the substrate 14 and is condensed and solidified on the substrate 14. At that time, the ion beam 18 is irradiated from the IAD ion source 17 toward the substrate, and the high kinetic energy of the ions is applied during the film formation to form a dense film or enhance the adhesion of the film.
 ここで基板14は、樹脂としてポリカーボネート樹脂(PC)、シクロオレフィン樹脂(COP)又はアクリル樹脂等が好ましく用いられる。 Here, the substrate 14 is preferably made of polycarbonate resin (PC), cycloolefin resin (COP), acrylic resin, or the like.
 チャンバー12の底部には、複数の蒸着源15が配置されうる。ここでは、蒸着源15として1個の蒸着源を示しているが、蒸着源15の個数は複数あってもよい。蒸着源15の成膜材料(蒸着材料)を電子銃によって蒸着物質16を発生させ、チャンバー12内に設置される基板14(例えば樹脂成形プリズム)に成膜材料を飛散、付着させることにより、成膜材料からなる層(例えば、低屈折率素材である、SiO2、MgF2、又はAl23層や、高屈折率素材である、LaTiO3、Ta25やTiO2など)が基板14上に成膜される。 A plurality of vapor deposition sources 15 may be arranged at the bottom of the chamber 12. Here, one evaporation source is shown as the evaporation source 15, but the number of the evaporation sources 15 may be plural. The film-forming material (vapor-depositing material) of the vapor-deposition source 15 is generated by an electron gun to generate a vapor-depositing substance 16, and the film-forming material is scattered and adhered to the substrate 14 (for example, a resin-molded prism) installed in the chamber 12, thereby forming the material. A layer made of a film material (for example, a low refractive index material such as SiO 2 , MgF 2 or Al 2 O 3 layer and a high refractive index material such as LaTiO 3 , Ta 2 O 5 or TiO 2 ) is a substrate. A film is formed on 14.
 また、チャンバー12には、図示しない真空排気系が設けられており、これによってチャンバー12内が真空引きされる。チャンバー内の減圧度は、通常1×10-4~1×10-1Pa、好ましくは1×10-3~1×10-2Paの範囲である。 Further, the chamber 12 is provided with a vacuum exhaust system (not shown), so that the inside of the chamber 12 is evacuated. The degree of reduced pressure in the chamber is usually in the range of 1×10 −4 to 1×10 −1 Pa, preferably 1×10 −3 to 1×10 −2 Pa.
 ドーム13は、基板14を保持するホルダー(不図示)を、少なくとも1個保持するものであり、蒸着傘とも呼ばれる。このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心を通り、その弦に垂直な軸を回転対称軸として回転する回転対称形状となっている。ドーム13が軸を中心に例えば一定速度で回転することにより、ホルダーを介してドーム13に保持された基板14は、軸の周りに一定速度で公転する。 The dome 13 holds at least one holder (not shown) that holds the substrate 14, and is also called a vapor deposition umbrella. The dome 3 has an arcuate cross section, and has a rotationally symmetric shape in which the dome 3 passes through the center of a chord connecting both ends of the arc and rotates about an axis perpendicular to the chord as a rotational symmetry axis. When the dome 13 rotates about the axis at a constant speed, for example, the substrate 14 held by the dome 13 via the holder revolves around the axis at a constant speed.
 このドーム13は、複数のホルダーを回転半径方向(公転半径方向)及び回転方向(公転方向)に並べて保持することが可能である。これにより、複数のホルダーによって保持された複数の基板14上に同時に成膜することが可能となり、素子の製造効率を向上させることができる。 The dome 13 can hold a plurality of holders arranged side by side in the rotation radius direction (revolution radius direction) and the rotation direction (revolution direction). As a result, it becomes possible to simultaneously form a film on the plurality of substrates 14 held by the plurality of holders, and it is possible to improve the manufacturing efficiency of the element.
 IADイオンソース17は、本体内部にアルゴンや酸素ガスを導入してこれらをイオン化させ、イオン化されたガス分子(イオンビーム18)を基板14に向けて照射する機器である。アルゴンガスや酸素ガスは、イオン銃から照射された正のイオンが基板に蓄積することにより、基板全体が正に帯電する現象(いわゆる、チャージアップ)を防止するため、基板に蓄積した正の電荷を電気的に中和するニュートラライザーとしても用いられる。
イオン源としては、カウフマン型(フィラメント)、ホローカソード型、RF型、バケット型、デュオプラズマトロン型等を適用することができる。IADイオンソース17から上記のガス分子を基板14に照射することにより、例えば複数の蒸発源から蒸発する成膜材料の分子を基板14に押し付けることができ、密着性及び緻密性の高い膜を基板14上に成膜することができる。IADイオンソース7は、チャンバー12の底部において基板14に対向するように設置されているが、対向軸からずれた位置に設置されていても構わない。
The IAD ion source 17 is a device that introduces argon or oxygen gas into the main body to ionize them and irradiates the ionized gas molecules (ion beam 18) toward the substrate 14. Argon gas or oxygen gas has a positive charge accumulated on the substrate in order to prevent the phenomenon that the whole substrate is positively charged (so-called charge-up) due to the accumulation of positive ions irradiated from the ion gun on the substrate. It is also used as a neutralizer that electrically neutralizes.
As the ion source, a Kauffman type (filament), a hollow cathode type, an RF type, a bucket type, a duoplasmatron type, or the like can be applied. By irradiating the substrate 14 with the above-mentioned gas molecules from the IAD ion source 17, for example, molecules of the film forming material that are evaporated from a plurality of evaporation sources can be pressed against the substrate 14, and a film having high adhesion and denseness can be formed on the substrate. A film can be formed on 14. Although the IAD ion source 7 is installed so as to face the substrate 14 at the bottom of the chamber 12, it may be installed at a position offset from the facing axis.
 IADで用いるイオンビームは、イオンビームスパッタリング法で用いられるイオンビームよりは、低真空度で用いられ、加速電圧も低い傾向にある。例えば加速電圧が100~2000Vのイオンビーム、加速電流100~2000mAの範囲、ニュートラライザーバイアス電流が100~2000mAの範囲内のイオンビームを用いることができる。成膜工程において、イオンビームの照射時間は例えば1~800秒とすることができ、またイオンビームの粒子照射数は例えば1×1013~5×1017個/cm2とすることができる。成膜工程に用いられるイオンビームは、酸素のイオンビーム、アルゴンのイオンビーム、又は酸素とアルゴンの混合ガスのイオンビームとすることができる。例えば、酸素導入量20~60sccm、アルゴン導入量0~15sccmの範囲内とすることが好ましい。「SCCM」は、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。 The ion beam used in IAD is used at a lower degree of vacuum and the acceleration voltage tends to be lower than the ion beam used in the ion beam sputtering method. For example, an ion beam having an accelerating voltage of 100 to 2000 V, an accelerating current of 100 to 2000 mA, and a neutralizer bias current of 100 to 2000 mA can be used. In the film forming step, the irradiation time of the ion beam can be set to, for example, 1 to 800 seconds, and the irradiation number of particles of the ion beam can be set to, for example, 1×10 13 to 5×10 17 particles/cm 2 . The ion beam used in the film formation step can be an oxygen ion beam, an argon ion beam, or an oxygen/argon mixed gas ion beam. For example, it is preferable that the oxygen introduction amount is within a range of 20 to 60 sccm and the argon introduction amount is within a range of 0 to 15 sccm. “SCCM” is an abbreviation for standard cc/min, and is a unit indicating how many cc flows per minute at 0° C. and 1 atm (atmospheric pressure 1013 hPa).
 モニターシステム(不図示)は、真空成膜中に各蒸着源15から蒸発して自身に付着する層を監視することにより、基板14上に成膜される層の波長特性を監視するシステムである。このモニターシステムにより、基板14上に成膜される層の光学特性(例えば分光透過率、分光反射率、光学層厚など)を把握することができる。また、モニターシステムは、水晶層厚モニターも含んでおり、基板14上に成膜される層の物理層厚を監視することもできる。このモニターシステムは、層の監視結果に応じて、複数の蒸発源15のON/OFFの切り替えやIADイオンソース17のON/OFFの切り替え等を制御する制御部としても機能する。 The monitor system (not shown) is a system that monitors the wavelength characteristics of the layer formed on the substrate 14 by monitoring the layer evaporated from each evaporation source 15 and attached to itself during vacuum film formation. .. With this monitor system, the optical characteristics of the layer formed on the substrate 14 (for example, spectral transmittance, spectral reflectance, optical layer thickness, etc.) can be grasped. The monitoring system also includes a crystal layer thickness monitor, which can also monitor the physical layer thickness of the layer deposited on the substrate 14. The monitor system also functions as a control unit that controls ON/OFF switching of the plurality of evaporation sources 15 and ON/OFF switching of the IAD ion source 17 according to the monitoring result of the layer.
 また、本発明の誘電体多層膜をIADで行う際には、加熱(例えば、300℃以上)しながら行うことができるが、基板の熱応力を調整する観点からは、加熱は行わず室温(25℃)に調整しながら行うことが好ましい。 Further, when the dielectric multilayer film of the present invention is performed by IAD, it can be performed while heating (for example, 300° C. or higher), but from the viewpoint of adjusting the thermal stress of the substrate, heating is not performed at room temperature ( The temperature is preferably adjusted to 25°C).
 〔3〕画像表示装置
 本発明の画像表示装置は、映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であり、前記映像を表示する表示素子と、当該表示素子からの映像光と前記外界風景からの外界光とを同時に観察者に導くコンバイナーと、当該コンバイナーを構成する2枚の樹脂プリズムと、を有し、前記2枚の樹脂プリズムは互いに接合されており、接合面がプリズム凸面とプリズム凹面とからなり、当該凸面又は凹面に本発明の誘電体多層膜が形成されていることを特徴とする。
[3] Image Display Device The image display device of the present invention is an optical see-through type image display device that displays an image by superimposing it on an external landscape and displaying it on an observer's eye, and a display element for displaying the image and the display element. A combiner that simultaneously guides the image light from the outside scene and the outside light from the outside scene to the observer, and two resin prisms that constitute the combiner, and the two resin prisms are joined to each other. The joining surface is composed of a prism convex surface and a prism concave surface, and the dielectric multilayer film of the present invention is formed on the convex surface or the concave surface.
 図4に、光学シースルー型の画像表示装置の一例を示す。 FIG. 4 shows an example of an optical see-through type image display device.
 図4において、画像表示装置20は、画像表示素子21から入出射される画像情報を上プリズム22及び下プリズム23の接合面に具備される誘電体多層膜24によって光反射する成分25と外界風景から入射する透過光成分26を重ねて、観察者27が視認することができる。 In FIG. 4, the image display device 20 includes a component 25 that reflects the image information input and output from the image display element 21 by the dielectric multilayer film 24 provided on the joint surface of the upper prism 22 and the lower prism 23, and the external scenery. An observer 27 can visually recognize the transmitted light component 26 that is incident from above.
 表示装置の一つとして、頭部装着型表示装置(ヘッドマウントディスプレイ、以降HMD)が知られている。HMDはコンパクトでありながら、実質的に大画面の画像を視聴可能であることや、頭部に装着することができることから、ハンズフリーであるなどの利点がある。かかるHMD装置においては、通常画像表示素子から出射された光がハーフミラー材などを含んだ透明基材からなるコンバイナーによって、透過、及び反射されるようになっている。従って観察者は、コンバイナー越しの一定距離離れた遠方に表示された虚像としての情報を取得するとともに、コンバイナーを透過して視認される外界情報を同時に取得することができる。 A head-mounted display device (head-mounted display, hereafter HMD) is known as one of the display devices. Although the HMD is compact, it has a merit of being hands-free because it can substantially view an image on a large screen and can be worn on the head. In such an HMD device, light emitted from an image display element is normally transmitted and reflected by a combiner made of a transparent base material including a half mirror material and the like. Therefore, the observer can acquire information as a virtual image displayed at a distance away from the combiner by a certain distance, and at the same time acquire external environment information that is visually recognized through the combiner.
 前述のハンズフリー性と、虚像と外界情報を同時に取得できる特徴を利用して、作業中の指示表示として使用することができる。具体的には、両手を使用した作業を行っている作業者に、作業手順などの指示をHMD画面に出力することによって、両手を使った作業を中断することなく、指示を確認しながらの作業を行うことができるようになる。  By utilizing the above-mentioned hands-free property and the feature that virtual images and external information can be acquired at the same time, it can be used as an instruction display during work. Specifically, by outputting instructions such as a work procedure to an HMD screen to an operator who is performing work using both hands, work while confirming the instructions without interrupting work using both hands Will be able to do.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, "parts" or "%" are used, but unless otherwise specified, "parts by mass" or "mass%" are shown.
 以下、本実施形態に係る誘電体多層膜の具体的な実施例について説明する。なお、以下の誘電体多層膜を作製するうえで、成膜装置(BIS-1300)(株式会社シンクロン製)を用いた。 Specific examples of the dielectric multilayer film according to this embodiment will be described below. A film forming apparatus (BIS-1300) (manufactured by Syncron Co., Ltd.) was used for manufacturing the following dielectric multilayer film.
 最初に、誘電体多層膜を構成する材料をガラス板上に単層成膜したときの、IADパワーの変化と屈折率及び応力の関係を求めた。 First, we calculated the relationship between the change in IAD power and the refractive index and stress when a single layer of the material forming the dielectric multilayer film was formed on the glass plate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表Iより、IADパワーを変化することにより、個々の材料の屈折率と応力が変化することが分かった。これによって、実施例における屈折率と応力について、それぞれの所望の設計値をIADパワーを変化させることで制御した。 From Table I, it was found that changing the IAD power changes the refractive index and stress of each material. Thus, the desired design values of the refractive index and the stress in the example were controlled by changing the IAD power.
 〔誘電体多層膜比較例1の作製〕
 樹脂基板として、シクロオレフィン樹脂系、厚さ5mmのZEONEX E48R(日本ゼオン株式会社)上に、TiO2及びSiO2(いずれも、メルクパフォーマンスマテリアルズ(株)製)を用いて、以下条件で、表IIに記載の多層膜を成膜し、誘電体多層膜比較例1を作製した。
[Production of Dielectric Multilayer Film Comparative Example 1]
As a resin substrate, using TiO 2 and SiO 2 (both manufactured by Merck Performance Materials, Inc.) on ZEONEX E48R (Nippon Zeon Co., Ltd.) having a thickness of 5 mm as a cycloolefin resin system under the following conditions: The multilayer film shown in Table II was formed into a dielectric multilayer film comparative example 1.
 <成膜条件>
 (チャンバー内条件)
 加熱温度   25℃
 開始真空度  1.5×10-3Pa
 (成膜材料の蒸発源)
  電子銃
 <材料1(層1)、材料2(層2)の形成>
 材料1:TiO2:屈折率2.40
 第1蒸発源に前記成膜材料を装填し、成膜速度3nm/secで蒸着し、上記基板上に厚さが13.7nmの高屈折率層を形成した。当該高屈折率層の形成は、IADによって行った。
<Film forming conditions>
(Conditions in chamber)
Heating temperature 25℃
Starting vacuum degree 1.5×10 -3 Pa
(Evaporation source of film forming material)
Electron Gun <Formation of Material 1 (Layer 1) and Material 2 (Layer 2)>
Material 1: TiO 2 : Refractive index 2.40
The film forming material was loaded in the first evaporation source and vapor deposition was performed at a film forming rate of 3 nm/sec to form a high refractive index layer having a thickness of 13.7 nm on the substrate. The high refractive index layer was formed by IAD.
 IADは、加速電圧700V、加速電流700mA、中和電流700mAで、オプトラン社RFイオンソース「OIS One」の装置を用いた。IAD導入ガスはO250sccmは電子銃に、Arガス10sccmはニュートラライザーの導入の条件で行った。 As the IAD, an accelerating voltage of 700 V, an accelerating current of 700 mA and a neutralizing current of 700 mA were used, and an apparatus of RF ion source “OIS One” manufactured by Optolan Corporation was used. As for the IAD introduction gas, O 2 50 sccm was introduced into the electron gun, and Ar gas 10 sccm was introduced into the neutralizer.
 材料2:SiO2:屈折率1.42
 次いで、材料1を成膜した基板に、第2蒸発源に材料2を装填し、IADパワー0設定で、成膜速度7nm/secで蒸着し、材料1上に厚さが211.9nmの低屈折率層を形成した。
Material 2: SiO 2 : Refractive index 1.42
Next, the substrate on which the material 1 was deposited was loaded with the material 2 in the second evaporation source, and vapor deposition was performed at a deposition rate of 7 nm/sec with the IAD power set to 0, and a low thickness of 211.9 nm was deposited on the material 1. A refractive index layer was formed.
 続いて、表II記載のように、材料1及び材料2を層3~層23まで同様な条件にて積層し、誘電体多層膜比較例1を得た。 Subsequently, as shown in Table II, Material 1 and Material 2 were laminated under the same conditions from Layer 3 to Layer 23 to obtain a dielectric multilayer film comparative example 1.
 誘電体多層膜比較例1の材料1:TiO2は総層厚1378.6nm、材料2:SiO2は、総層厚1256.2nm、及び誘電体多層膜1の総層厚は2634.8nm、平均屈折率1.93であった。 In the dielectric multilayer film comparative example 1, the material 1:TiO 2 has a total layer thickness of 1378.6 nm, the material 2:SiO 2 has a total layer thickness of 1256.2 nm, and the dielectric multilayer film 1 has a total layer thickness of 2634.8 nm. The average refractive index was 1.93.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、各層の層厚(膜厚)及び屈折率は以下の方法によって測定した。 The layer thickness (film thickness) and refractive index of each layer were measured by the following methods.
 (層厚の測定)
 (1)あらかじめ白板ガラス基板上に、TiO2、H4、及びSiO2を1/4λ(λ=550nm)の膜厚で成膜し、光反射率を測定しておく。
 (2)(1)で形成したとTiO2、H4、及びSiO2膜に上記成膜条件で各層を成膜し、光反射率を測定して、その変化量から当該層の屈折率と層厚を計算する。
 光反射率の測定は、オリンパス社製顕微分光測定機USPM-RU IIIにて、光波長550nmで測定した。
(Measurement of layer thickness)
(1) TiO 2 , H 4, and SiO 2 are formed in advance in a film thickness of ¼λ (λ=550 nm) on a white glass substrate, and the light reflectance is measured.
(2) When formed in (1), each layer is formed on the TiO 2 , H 4, and SiO 2 film under the above-mentioned film forming conditions, the light reflectance is measured, and the refractive index of the layer and the layer are calculated from the change amount. Calculate the thickness.
The light reflectance was measured with a microspectrophotometer USPM-RU III manufactured by Olympus at a light wavelength of 550 nm.
 なお、H4は、メルクパフォーマンスマテリアルズ(株)製の商品名「H4」:LaTiO3である。 H4 is a trade name “H4”: LaTiO 3 manufactured by Merck Performance Materials, Inc.
 (屈折率の測定)
 屈折率は、多層膜の個々の層を単層で成膜し、日立ハイテクノロジーズ社製分光光度計U-4100を用いた光波長550nmでの光反射率測定を行うことで算出した。薄膜計算ソフト(Essential Macleod)(シグマ光機株式会社)を用いて、実測した光反射率データに対してフィットするように屈折率を調整することで得られた層の屈折率を特定した。
(Measurement of refractive index)
The refractive index was calculated by forming each layer of the multilayer film as a single layer and measuring the light reflectance at a light wavelength of 550 nm using a spectrophotometer U-4100 manufactured by Hitachi High Technologies. The refractive index of the obtained layer was specified by adjusting the refractive index so as to fit the actually measured light reflectance data using thin film calculation software (Essential Macleod) (Sigma Optical Co., Ltd.).
 誘電体多層膜全体の平均屈折率は以下の式によって求めた。
 平均屈折率=(n1×d1+n22+n33・・・・)/(d1+d2+d3・・・・)
 但し、n1、n2、n3・・は個々の層の屈折率を表す。d1、d2、d3・・は個々の層の厚さを表す。
The average refractive index of the entire dielectric multilayer film was obtained by the following formula.
Average refractive index=(n 1 ×d 1 +n 2 d 2 +n 3 d 3 ...)/(d 1 +d 2 +d 3 ...)
However, n 1 , n 2 , n 3... Represent the refractive index of each layer. d 1, d 2, d 3 ·· represents the thickness of the individual layers.
 (応力の測定)
 下記測定法によって得られる応力は、+は引張方向、-は圧縮方向を表す。いずれも単位層厚当たりの応力値である
 応力測定は、非特許文献1に記載の手法で求めた。50×10mm、厚さ0.1mmの薄板ガラスに各材料をそれぞれ単層で成膜し、レーザー光を用いて、薄板ガラスの反りを解析して圧縮応力を算出した。
(Measurement of stress)
Regarding the stress obtained by the following measuring method, + represents the tensile direction and − represents the compression direction. Both are stress values per unit layer thickness. The stress measurement was obtained by the method described in Non-Patent Document 1. Each material was formed into a single layer on a thin glass plate having a thickness of 50×10 mm and a thickness of 0.1 mm, and the warp of the thin glass plate was analyzed using laser light to calculate the compressive stress.
 薄膜の膜応力によって基板は撓む。このとき、自由端の変位δを測定すると、膜応力σは次式で近似される。
 σ=(Eb2)/{3(1-ν)l2d}×δ
 ここで、E:基板のヤング率、b:基板の厚さ、l:基板の長さ、ν:基板のポアソン比、d:薄膜の厚さをそれぞれ表す。
The substrate is bent by the film stress of the thin film. At this time, when the displacement δ at the free end is measured, the film stress σ is approximated by the following equation.
σ=(Eb 2 )/{3(1-ν)l 2 d}×δ
Here, E is the Young's modulus of the substrate, b is the thickness of the substrate, l is the length of the substrate, ν is the Poisson's ratio of the substrate, and d is the thickness of the thin film.
 〔誘電体多層膜比較例2~4の作製〕
 誘電体多層膜比較例1の作製において、下記材料とIADパワーを変化させて、表1記載の構成で、総層数23の誘電体多層膜比較例2~4をそれぞれ作製した。
[Fabrication of Comparative Examples 2 to 4 of Dielectric Multilayer Film]
In the preparation of the dielectric multilayer film comparative example 1, the following materials and IAD power were changed, and the dielectric multilayer film comparative examples 2 to 4 having the total number of layers of 23 were prepared with the configurations shown in Table 1.
 比較例2:材料1:TiO2 ADパワー700設定により屈折率2.4。
      材料2:SiO2 IADパワー700設定により屈折率を1.45。
Comparative Example 2: Material 1: TiO 2 AD Refractive index 2.4 at 700 power setting.
Material 2: The refractive index is 1.45 by setting the SiO 2 IAD power to 700.
 比較例3:材料1:TiO2 ADパワー300設定により屈折率2.2。
      材料2:H4(メルクパフォーマンスマテリアルズ(株)製の商品名「H4」(LaTiO3))IADパワー300設定により屈折率を1.95。なお、H4の成膜レートは4nm/secとした。
Comparative Example 3: Material 1: TiO 2 AD Refractive index 2.2 by setting power 300.
Material 2: H4 (trade name “H4” (LaTiO 3 ), manufactured by Merck Performance Materials, Inc.) IAD power of 300, and a refractive index of 1.95. The H4 film formation rate was 4 nm/sec.
 比較例4:材料1:TiO2 ADパワー1000設定により屈折率2.5。
      材料2:H4 IADパワー1000設定により屈折率を2.1。
Comparative Example 4: Material 1: TiO 2 AD The refractive index was 2.5 when the power was set to 1000.
Material 2: H4 IAD power 1000 setting, refractive index 2.1.
 〔誘電体多層膜実施例1の作製〕
 表IIIの構成で、複数の高屈折率層を交互積層部として形成し、その間に低屈折率層を形成した誘電体多層膜実施例1を作製した。
[Production of Dielectric Multilayer Film Example 1]
A dielectric multilayer film Example 1 in which a plurality of high-refractive index layers were formed as alternating laminated portions and a low-refractive index layer was formed between them in the configuration of Table III was produced.
 樹脂基板として、シクロオレフィン樹脂系、厚さ5mmのZEONEX E48R(日本ゼオン株式会社)上に、H4(屈折率2.1)及びTiO2(屈折率2.4)を複数積層することによって積層交互部を形成し、低屈折率層材料であるSiO2を当該積層交互部の間に形成し、表III記載の層厚条件で成膜し、誘電体多層膜実施例1を作製した。 As the resin substrate, a cycloolefin resin, on 5mm thick of ZEONEX E48R (Nippon Zeon Co., Ltd.), H4 stacked alternately by laminating a plurality of (refractive index 2.1) and TiO 2 (refractive index 2.4) Part was formed, SiO 2 which is a low refractive index layer material was formed between the laminated alternating parts, and the film was formed under the layer thickness conditions shown in Table III to prepare a dielectric multilayer film Example 1.
 誘電体多層膜実施例1は、TiO2は総層厚512.9nm、H4は総層厚1558.4nm、及び低屈折率層SiO2は、総層厚8.0nmであり、誘電体多層膜の総膜厚2079.3nm、平均屈折率は2.17であった。 The dielectric multilayer film Example 1 has a total layer thickness of 512.9 nm for TiO 2, a total layer thickness of 1558.4 nm for H 4, and a total layer thickness of 8.0 nm for the low refractive index layer SiO 2. Had a total film thickness of 2079.3 nm and an average refractive index of 2.17.
 〔誘電体多層膜実施例2~9の作製〕
 誘電体多層膜実施例1の作製において、表III、表IV、表V及び表VIの層構成になるように、IADによって、誘電体多層膜実施例2~9を作製した。なお、実施例5で用いたTiO2bとは、IADパワーを300に設定し、TiO2の屈折率を2.2に変更したものである。
[Production of Dielectric Multilayer Film Examples 2 to 9]
In the preparation of the dielectric multilayer film Example 1, the dielectric multilayer films Examples 2 to 9 were prepared by IAD so as to have the layer constitutions of Table III, Table IV, Table V and Table VI. The TiO 2 b used in Example 5 was obtained by setting the IAD power to 300 and changing the refractive index of TiO 2 to 2.2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 なお、誘電体多層膜比較例1~4及び実施例1~9で用いた材料の、種類、屈折率、応力、低屈折率層の最小層厚及び高屈折率層の交互積層部の層厚を、後述する表VIIに一覧で示した。 The types of materials used in Comparative Examples 1 to 4 and Examples 1 to 9 of dielectric multilayer film, refractive index, stress, minimum layer thickness of low refractive index layers, and layer thickness of alternate laminated portions of high refractive index layers. Are listed in Table VII below.
 以上作製した誘電体多層膜試料について以下の評価を行った。 The following evaluations were performed on the dielectric multilayer film samples prepared above.
 ≪評価≫
 (1)視認性
 定義:入射角10°の光学特性。光反射率、光透過率の規定を同時に満たすことで画像と外界の視認性を両立できる。
 測定:成膜された凹面プリズムと成膜なしの凸面プリズムを接着剤で接合した状態で測定。大塚電子(株)のマルチチャンネル分光器MCPD-3000で透過率を測定。
 反射率は(100%-透過率)の値を計算した。
<<Evaluation>>
(1) Visibility Definition: Optical characteristics at an incident angle of 10°. By simultaneously satisfying the requirements for the light reflectance and the light transmittance, it is possible to achieve both visibility of the image and the outside world.
Measurement: Measured with the concave prism formed and the convex prism without film bonded with an adhesive. Transmittance is measured with a multi-channel spectroscope MCPD-3000 manufactured by Otsuka Electronics Co., Ltd.
For the reflectance, the value of (100%-transmittance) was calculated.
 判定:○:下記2つの項目を満たす
    ×:いずれかもしくは両方の項目が満たされていない
 ・波長465nm、520nm、及び635nmの光反射率が全て60%以上。
 ・可視光域において、規格化された等色関数と誘電体多層膜の透過率を波長1nmピッチで掛け算する。
 「波長ごとに計算されたその値の和」/「波長ごとに規格化された等色関数の和」が、光透過率70%以上。
Judgment: ◯: The following two items are satisfied x: Either or both items are not satisfied ・The light reflectances at wavelengths of 465 nm, 520 nm, and 635 nm are all 60% or more.
-In the visible light range, the standardized color matching function is multiplied by the transmittance of the dielectric multilayer film at a wavelength of 1 nm pitch.
"Sum of values calculated for each wavelength"/"Sum of color matching functions standardized for each wavelength" has a light transmittance of 70% or more.
 (2)波長シフト量
 定義:入射角0°から10°と変化したときに光反射率ピークの波長シフト量。
 可視光域の3つの反射ピークの中で、最も長波長側にあるピーク(635nm付近)で評価した。
 成膜された凹面プリズムと成膜なしの凸面プリズムを接着剤で接合した状態で測定。
 測定は、いずれの入射角も大塚電子(株)のマルチチャンネル分光器MCPD-3000で透過率を測定し、シフト量を計算した。
(2) Wavelength shift amount Definition: The wavelength shift amount of the light reflectance peak when the incident angle changes from 0° to 10°.
Of the three reflection peaks in the visible light region, the peak on the longest wavelength side (around 635 nm) was evaluated.
Measured with the concave prism formed and the convex prism without film bonded with an adhesive.
In the measurement, the transmittance was measured with a multi-channel spectroscope MCPD-3000 manufactured by Otsuka Electronics Co., Ltd. at any incident angle, and the shift amount was calculated.
 判定 ○:6nm以下
    ×:6nmを超える
Judgment: 6 nm or less x: 6 nm or more
 (3)形状変化
 定義:前記画像表示装置の樹脂プリズム凹面全面に成膜したときの先端の変形量をいう。これは、一例であって、前記画像表示装置に限定されるものではない。測定は、パナソニック(株)の高精度三次元測定機UA3Pで成膜前後のプリズム形状を測定し、変形量を計算した。
(3) Shape change Definition: The amount of deformation of the tip when a film is formed on the entire concave surface of the resin prism of the image display device. This is an example, and the present invention is not limited to the image display device. The measurement was performed by measuring the prism shape before and after film formation with a high-precision three-dimensional measuring machine UA3P manufactured by Panasonic Corporation, and calculating the amount of deformation.
 判定 ○:4μm未満
    ×:4μm以上
Judgment ○: Less than 4 μm ×: 4 μm or more
 (4)外観
 定義:誘電体多層膜もしくは樹脂基板から発生する膜のクラックの有無を評価した。
 測定は、Ledlenser社のハンディライトP5Rで成膜したプリズムを照射しながら目視で観察した。
(4) Appearance Definition: The presence or absence of cracks in the dielectric multilayer film or the film generated from the resin substrate was evaluated.
The measurement was visually performed while irradiating a prism formed with a Handylight P5R manufactured by Ledlenser.
 判定 ○:クラックなし
    △:クラック1本以上、クラック5本未満
    ×:クラック5本以上
 以上の評価結果を表VII及び表VIIIに示す。
Judgment ◯: No cracks Δ: 1 or more cracks, less than 5 cracks X: 5 or more cracks The above evaluation results are shown in Tables VII and VIII.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 比較例1は、圧縮方向と引張方向の交互層は層界面に応力が溜まるのでクラックが発生する。 In Comparative Example 1, the alternating layers in the compression direction and the tensile direction generate stress at the layer interface, and thus cracks occur.
 比較例2は、SiO2の屈折率が低いため、入射角シフトによる光学特性の波長シフトが大きい。 In Comparative Example 2, since the refractive index of SiO 2 is low, the wavelength shift of the optical characteristics due to the incident angle shift is large.
 比較例3は、積層すると膜応力が引張方向になり、熱応力と逆向きに力が作用するのでクラックが発生する。 In Comparative Example 3, when laminated, the film stress is in the tensile direction, and a force acts in the direction opposite to the thermal stress, so cracks occur.
 比較例4は、膜応力と熱応力(IADが高パワーにより高温になる。)が圧縮方向に強く作用するので樹脂基板の形状変化が大きい
 以上の比較例に対して、本発明に係る実施例1~実施例9の誘電体多層膜は、視認性、波長シフト量、形状変化及び外観において優れる評価であり、本発明の構成の優位性が明らかである。
In Comparative Example 4, since the film stress and the thermal stress (IAD becomes high temperature due to high power) strongly act in the compression direction, the shape change of the resin substrate is large. The dielectric multilayer films of Examples 1 to 9 are excellent in visibility, wavelength shift amount, shape change and appearance, and the superiority of the constitution of the present invention is clear.
 また、表VIIIから、実施例1~実施例9は、465nm、520nm及び635nmの光反射率ピークが60%以上(>R60%)であり、かつ、視感度透過率が70%以上(>T70%)であり、本発明の誘電体多層膜の仕様を満足していることが分かる。 Further, from Table VIII, in Examples 1 to 9, the light reflectance peaks at 465 nm, 520 nm and 635 nm are 60% or more (>R60%), and the luminous transmittance is 70% or more (>T70). %), which means that the specifications of the dielectric multilayer film of the present invention are satisfied.
 図5は、実施例2で得られた誘電体多層膜の分光特性を示したグラフである。入射角10°において光反射率、光透過率の仕様を同時に満たすことで画像と外界の視認性を両立できることが分かる。特に、視感度透過率に優れていることが明らかである。 FIG. 5 is a graph showing the spectral characteristics of the dielectric multilayer film obtained in Example 2. It can be seen that the visibility of the image and the outside world can be compatible by simultaneously satisfying the specifications of the light reflectance and the light transmittance at an incident angle of 10°. In particular, it is clear that the luminous transmittance is excellent.
 また、実施例1及び2の外観が△という評価は、交互積層部のそれぞれの層厚が、1.5μmを超えているためであり、当該層厚を1.5μm以下に調整することで発明の効果が大きくなる。 In addition, the evaluation that the appearances of Examples 1 and 2 are Δ is because the layer thickness of each of the alternately laminated portions exceeds 1.5 μm, and the invention is achieved by adjusting the layer thickness to 1.5 μm or less. The effect of becomes large.
 なお、上記実施例は、簡易化のため低屈折率層を複数設ける場合に、その構成において全て同じ膜厚にしているが、請求項1から請求項6を満たす範囲内であれば、当該層厚は一定でなくてもよい。また、簡易化のため材料1と材料2の層厚比がほとんどの実施例で同じだが、この層厚比は発明とは関係なく制限されない。 In the above example, when a plurality of low refractive index layers are provided for the sake of simplification, all the layers have the same film thickness in the structure. The thickness does not have to be constant. Further, the layer thickness ratios of the material 1 and the material 2 are the same in most of the examples for simplification, but this layer thickness ratio is not limited regardless of the invention.
 また、高屈折率層に含有される材料として、TiO2及びH4の代わりに、Nb25、Ti35又はTa25をそれぞれ用い、かつ、低屈折率層に含有される材料として、SiO2の代わりに、LaSiO、Al23又はLa2xAl2y3(x+y)(式中、xとyはそれぞれ0.3~0.7の範囲の数字を表す。)をそれぞれ用いたところ、同様に誘電体多層膜の形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性向上の本発明に係る効果が得られた。 Further, as a material contained in the high refractive index layer, Nb 2 O 5 , Ti 3 O 5 or Ta 2 O 5 is used instead of TiO 2 and H 4, respectively, and a material contained in the low refractive index layer. As a substitute for SiO 2 , LaSiO, Al 2 O 3 or La 2x Al 2y O 3(x+y) (wherein x and y each represent a number in the range of 0.3 to 0.7). When each of the above is used, the effects according to the present invention of suppressing the shape change of the dielectric multilayer film, preventing cracks, improving the optical characteristics (oblique light incidence characteristics) and improving the productivity are similarly obtained.
 本発明の誘電体多層膜は、形状変化の抑制、クラック防止、光学特性(斜光入射特性)及び生産性を兼ね備えた、樹脂基板上に形成された誘電体多層膜であることから、映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置用に好適に利用される。 Since the dielectric multilayer film of the present invention is a dielectric multilayer film formed on a resin substrate, which has both shape change suppression, crack prevention, optical characteristics (oblique light incidence characteristics) and productivity, the image can be displayed outside It is preferably used for an optical see-through type image display device that projects and displays it on a viewer's eye by superimposing it on a landscape.
 1 誘電体多層膜
 2 基板
 3-1、3-2 交互積層部
 4-1、4-2 低屈折率層
 H1、H2 高屈折率層
 10 IAD蒸着装置
 12 チャンバー
 13 ドーム
 14 基板
 15 蒸着源
 16 蒸着物質
 17 IADイオンソース
 18 イオンビーム
 20 画像表示装置
 21 画像表示素子
 22 上プリズム
 23 下プリズム
 24 誘電体多層膜
 25 光反射する成分
 26 外界風景から入射する透過光成分
 27 観察者
DESCRIPTION OF SYMBOLS 1 Dielectric multilayer film 2 Substrate 3-1 and 3-2 Alternately laminated part 4-1 and 4-2 Low refractive index layer H1 and H2 High refractive index layer 10 IAD vapor deposition apparatus 12 Chamber 13 Dome 14 Substrate 15 Vapor deposition source 16 Vapor deposition Material 17 IAD ion source 18 Ion beam 20 Image display device 21 Image display device 22 Upper prism 23 Lower prism 24 Dielectric multilayer film 25 Light-reflecting component 26 Transmitted light component incident from the outside scene 27 Observer

Claims (11)

  1.  樹脂基板上に少なくとも一層の低屈折率層と複数の高屈折率層が具備した誘電体多層膜であって、
     前記誘電体多層膜の総膜厚が2μm以上であり、
     前記複数の高屈折率層の光波長550nmにおける屈折率が1.9以上で互いに異なっており、当該複数の高屈折率層が交互に積層された交互積層部を有し、かつ、
     前記交互積層部の間に、光波長550nmにおける屈折率が1.9未満である前記低屈折率層が配置されたことを特徴とする誘電体多層膜。
    A dielectric multilayer film comprising at least one low refractive index layer and a plurality of high refractive index layers on a resin substrate,
    The total thickness of the dielectric multilayer film is 2 μm or more,
    The plurality of high refractive index layers have different refractive indices at a light wavelength of 550 nm of 1.9 or more, and have a plurality of high refractive index layers alternately laminated, and
    A dielectric multilayer film, wherein the low refractive index layer having a refractive index of less than 1.9 at a light wavelength of 550 nm is arranged between the alternating laminated portions.
  2.  前記交互積層部のそれぞれの層厚が、1.5μm以下あることを特徴とする請求項1に記載の誘電体多層膜。 The dielectric multilayer film according to claim 1, wherein the layer thickness of each of the alternating laminated portions is 1.5 μm or less.
  3.  前記複数の高屈折率層の屈折率差が0.2以上であり、かつ前記複数の高屈折率層に含有される材料は同じでも異なってもよいことを特徴とする請求項1又は請求項2に記載の誘電体多層膜。 The refractive index difference between the plurality of high refractive index layers is 0.2 or more, and the materials contained in the plurality of high refractive index layers may be the same or different. 2. The dielectric multilayer film according to 2.
  4.  前記誘電体多層膜の光波長550nmにおける平均屈折率が、1.95以上であることを特徴とする請求項1から請求項3までのいずれか一項に記載の誘電体多層膜。 The dielectric multilayer film according to any one of claims 1 to 3, wherein the average refractive index of the dielectric multilayer film at a light wavelength of 550 nm is 1.95 or more.
  5.  前記低屈折率層の層厚が、8nm以上であることを特徴とする請求項1から請求項4までのいずれか一項に記載の誘電体多層膜。 The dielectric multilayer film according to any one of claims 1 to 4, wherein the layer thickness of the low refractive index layer is 8 nm or more.
  6.  前記低屈折率層及び高屈折率層の単位層厚当たりの応力が、圧縮方向に0~500MPaの範囲内であることを特徴とする請求項1から請求項5までのいずれか一項に記載の誘電体多層膜。 The stress per unit layer thickness of the low refractive index layer and the high refractive index layer is in the range of 0 to 500 MPa in the compression direction, according to any one of claims 1 to 5. Dielectric multilayer film.
  7.  前記高屈折率層に含有される材料が、Nb25、TiO2、Ti35、Ta25、及びLaTiO3から選択されるか、又はこれらから選択される材料の混合物であり、かつ、
     前記低屈折率層に含有される材料が、SiO2、LaSiO、Al23、及びLa2xAl2y3(x+y)(式中、xとyはそれぞれ0.3~0.7の範囲の数字を表す。)から選択されるか、又はこれらから選択される材料の混合物であることを特徴とする請求項1から請求項6までのいずれか一項に記載の誘電体多層膜。
    The material contained in the high refractive index layer is selected from Nb 2 O 5 , TiO 2 , Ti 3 O 5 , Ta 2 O 5 and LaTiO 3 , or a mixture of materials selected from these. ,And,
    The material contained in the low refractive index layer is SiO 2 , LaSiO, Al 2 O 3 , and La 2x Al 2y O 3(x+y) (wherein x and y are 0.3 to 0.7, respectively ). It represents a numeral in the range of 1), or is a mixture of materials selected from these. 7. The dielectric multilayer film according to any one of claims 1 to 6. ..
  8.  前記誘電体多層膜の総膜厚が3μm以上であり、前記低屈折率層が複数あるときに、当該低屈折率層の間隔が1.2μm以下であり、かつ、前記複数の高屈折率層の各層厚がそれぞれ500nm以下であることを特徴とする請求項1から請求項7までのいずれか一項に記載の誘電体多層膜。 When the total thickness of the dielectric multilayer film is 3 μm or more and the plurality of low refractive index layers are present, the interval between the low refractive index layers is 1.2 μm or less, and the plurality of high refractive index layers are provided. The dielectric multilayer film according to any one of claims 1 to 7, wherein each layer thickness is 500 nm or less.
  9.  光波長635nmにおいて、光入射角が0°から10°に変化したときのブルーシフト量が、6nm以下であることを特徴とする請求項1から請求項8までのいずれか一項に記載の誘電体多層膜。 9. The dielectric according to any one of claims 1 to 8, wherein the amount of blue shift when the incident angle of light changes from 0° to 10° at a light wavelength of 635 nm is 6 nm or less. Body multilayer film.
  10.  請求項1から請求項9に記載の誘電体多層膜を製造する誘電体多層膜の製造方法であって、当該誘電体多層膜をイオンアシスト蒸着によって形成する工程を有することを特徴とする誘電体多層膜の製造方法。 A method of manufacturing a dielectric multilayer film according to claim 1, wherein the dielectric multilayer film is manufactured by ion-assisted vapor deposition. Method for manufacturing multilayer film.
  11.  映像を外界風景に重ねて観察者眼に投影表示する光学シースルー型の画像表示装置であって、
     前記映像を表示する表示素子と、当該表示素子からの映像光と前記外界風景からの外界光とを同時に観察者に導くコンバイナーと、当該コンバイナーを構成する2枚の樹脂プリズムと、を有し、
     前記2枚の樹脂プリズムは互いに接合されており、接合面がプリズム凸面とプリズム凹面とからなり、かつ、
     前記接合面に請求項1から請求項9までのいずれか一項に記載の誘電体多層膜を具備することを特徴とする画像表示装置。
    An optical see-through type image display device for projecting and displaying an image on an external landscape by projecting it to an observer's eye,
    A display element that displays the image, a combiner that simultaneously guides image light from the display element and external light from the external scene to an observer, and two resin prisms that form the combiner,
    The two resin prisms are bonded to each other, and the bonding surface includes a prism convex surface and a prism concave surface, and
    An image display device, comprising the dielectric multilayer film according to any one of claims 1 to 9 on the bonding surface.
PCT/JP2019/044043 2018-12-27 2019-11-11 Dielectric multilayer film, production method therefor and image display device equipped with same WO2020137195A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-243994 2018-12-27
JP2018243994A JP2022031999A (en) 2018-12-27 2018-12-27 Dielectric multilayer, method for manufacturing the same, and image display device

Publications (1)

Publication Number Publication Date
WO2020137195A1 true WO2020137195A1 (en) 2020-07-02

Family

ID=71128989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044043 WO2020137195A1 (en) 2018-12-27 2019-11-11 Dielectric multilayer film, production method therefor and image display device equipped with same

Country Status (2)

Country Link
JP (1) JP2022031999A (en)
WO (1) WO2020137195A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727907A (en) * 1993-07-09 1995-01-31 Matsushita Electric Ind Co Ltd Optical multilayer film and forming method therefor
JP2005298833A (en) * 2002-10-22 2005-10-27 Asahi Glass Co Ltd Multilayer film-coated substrate and its manufacturing method
JP2008139693A (en) * 2006-12-04 2008-06-19 Pentax Corp Infrared cut filter
JP2012246540A (en) * 2011-05-30 2012-12-13 Panasonic Corp Sputtering method
JP2017502350A (en) * 2013-12-23 2017-01-19 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Head mounted display with filter function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727907A (en) * 1993-07-09 1995-01-31 Matsushita Electric Ind Co Ltd Optical multilayer film and forming method therefor
JP2005298833A (en) * 2002-10-22 2005-10-27 Asahi Glass Co Ltd Multilayer film-coated substrate and its manufacturing method
JP2008139693A (en) * 2006-12-04 2008-06-19 Pentax Corp Infrared cut filter
JP2012246540A (en) * 2011-05-30 2012-12-13 Panasonic Corp Sputtering method
JP2017502350A (en) * 2013-12-23 2017-01-19 エシロール アンテルナシオナル (コンパニー ジェネラル ドプティック) Head mounted display with filter function

Also Published As

Publication number Publication date
JP2022031999A (en) 2022-02-24

Similar Documents

Publication Publication Date Title
US20080049431A1 (en) Light emitting device including anti-reflection layer(s)
CN111183373B (en) Antireflection film, method for producing same, and polarizing plate with antireflection layer
CN111796353B (en) Optical filter and method of forming the same
JP2021530752A (en) 3D identification filter
JPWO2014065371A1 (en) Antireflection multilayer film
US20090316262A1 (en) Transmission type polarizing element, and composite polarizing plate using the element
JP6918208B2 (en) Anti-reflective coating and optics
WO2014171149A1 (en) Transparent conductive material and method for manufacturing same
JP2008260978A (en) Method for forming reflection film
JP4804830B2 (en) Multilayer film forming method and film forming apparatus
WO2020137195A1 (en) Dielectric multilayer film, production method therefor and image display device equipped with same
WO2021111813A1 (en) Optical member and production method therefor
TWI588517B (en) Optical element
KR102151947B1 (en) Optical filter and sensor system having the same, and halogenated amorphous silicon film manufacturing method for optical filter
JP2010266605A (en) Substrate for liquid crystal projector, liquid crystal projector liquid crystal panel using the same, and liquid crystal projector
JP2008112032A (en) Optical filter
JP4760011B2 (en) Optical member
US20200165716A1 (en) Film forming method and film forming apparatus
JPH11337733A (en) Double refractive plate and its manufacture
JP2022072420A (en) Optical element, optical system, and optical device
JP2007041194A (en) Antireflection film and optical film
JP2000171607A (en) Highly dense multilayered thin film and its film forming method
JP2010271404A (en) Antireflection film
JP2018036371A (en) Optical filter
JP7483097B1 (en) Reflectance adjustment film, laminate, and method for manufacturing reflectance adjustment film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP