JPH11337733A - Double refractive plate and its manufacture - Google Patents

Double refractive plate and its manufacture

Info

Publication number
JPH11337733A
JPH11337733A JP10147834A JP14783498A JPH11337733A JP H11337733 A JPH11337733 A JP H11337733A JP 10147834 A JP10147834 A JP 10147834A JP 14783498 A JP14783498 A JP 14783498A JP H11337733 A JPH11337733 A JP H11337733A
Authority
JP
Japan
Prior art keywords
solid substrate
film
films
birefringent
birefringent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10147834A
Other languages
Japanese (ja)
Inventor
Kenzo Maejima
研三 前島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP10147834A priority Critical patent/JPH11337733A/en
Publication of JPH11337733A publication Critical patent/JPH11337733A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To function plural diagonally vapor deposited films as a wavelength plate in a wide band of visible rays by laminating these films and utilizing the formability of a phase difference and to ameliorate the peeling at an adjacent boundary by the internal stress of the films themselves generated by the thickness increase accompanying the same. SOLUTION: Dielectric materials are deposited by evaporation on a solid substrate 23 from a direction diagonal with the normal 26 of the substrate surface 23, by which the diagonally vapor deposited films 21, 22 are formed. The diagonally vapor deposited films 21, 22 are formed on the opposite two surfaces of the solid substrate 23 and are manufactured by using the material exhibiting high wavelength dispersion and the material exhibiting low wavelength dispersion in the phase difference respectively, forming the double refractive films 24, 25 dividedly on the opposite two surfaces of the solid substrate 23 and intersecting the vapor deposition directions of the dielectric materials of the respective layers with the solid substrate 23 orthogonally with each other in such a manner that the lagging axes of the double refractive films 24, 25 intersect orthogonally with each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円偏光、直線偏
光、楕円偏光を必要とする光学機器及び、光学素子に適
用されるものであり、広帯域で効率的に機能する複屈折
板を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to optical devices and optical elements that require circularly polarized light, linearly polarized light, and elliptically polarized light, and provides a birefringent plate that functions efficiently over a wide band. Things.

【0002】[0002]

【従来の技術】従来の複屈折板のほとんどは、無機光学
単結晶、あるいは高分子延伸フィルムにより作られてい
る。しかし、無機光学単結晶は波長板として、性能、耐
久性、信頼性に優れるものの、原材料費、加工コストが
高い。
2. Description of the Related Art Most conventional birefringent plates are made of an inorganic optical single crystal or a stretched polymer film. However, although the inorganic optical single crystal is excellent in performance, durability, and reliability as a wave plate, the raw material cost and the processing cost are high.

【0003】また高分子延伸フィルムは、熱や紫外線に
対して劣化しやすく耐久性に問題があるという欠点を有
している。
[0003] Further, the stretched polymer film has a disadvantage that it is easily deteriorated by heat and ultraviolet rays and has a problem in durability.

【0004】一方、斜め柱状構造をもつ斜方蒸着膜は、
原理的に膜厚を調整することによって任意の位相差を設
定でき、大面積化が比較的容易であると共に、大量生産
により低コスト化の可能性がある。
On the other hand, an oblique deposition film having an oblique columnar structure is:
Arbitrary phase difference can be set by adjusting the film thickness in principle, and it is relatively easy to increase the area, and there is a possibility of cost reduction by mass production.

【0005】しかし従来の単一材料で構成された斜方蒸
着膜は、位相差の波長分散特性が可視光域において、入
射光波長が長波長側になるにしたがって概ね単調減少の
曲線となるため、ある特定の単一波長に対してのみ波長
板として機能していた。
However, in the conventional obliquely deposited film made of a single material, the wavelength dispersion characteristic of the phase difference generally becomes a monotonically decreasing curve as the incident light wavelength becomes longer in the visible light region. However, it functioned as a wave plate only for a specific single wavelength.

【0006】これを改善するために特願平09−174
909号として出願されている発明は、斜方蒸着法を用
い複屈折性をする斜方蒸着膜を複数種類蒸着し積層する
ことによって複屈折板を形成し、位相差の加成性を利用
することにより、広帯域で効率的に機能するものであ
る。
In order to improve this, Japanese Patent Application No. 09-174 discloses
The invention filed as Japanese Patent No. 909 uses a diagonal vapor deposition method to form a birefringent plate by vapor-depositing and laminating a plurality of types of birefringent diagonally vapor-deposited films, and utilizes the additive property of a phase difference. Thereby, it functions efficiently over a wide band.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、たとえ
ば可視光線の広帯域において1/4波長板としての機能
を得るには、複数種類の斜方蒸着膜を積層し少なくとも
5〜6μm程度の蒸着膜を必要とするものであり、厚膜
を形成しなければならない。
However, in order to obtain a function as a quarter-wave plate in a wide band of visible light, for example, a plurality of types of obliquely deposited films are laminated and a deposited film of at least about 5 to 6 μm is required. And a thick film must be formed.

【0008】厚膜形成においては、膜自身の内部応力に
より固体基板との界面および蒸着膜相互の隣接界面で剥
離が生じ、特に斜方蒸着法によって形成される斜め柱状
構造膜においては、一層目に形成された斜め柱状構造膜
の上に、固体基板に対する蒸着方向を直交させて斜方蒸
着を行うと、その界面で付着力が低下し剥離しやすいと
いう課題を有していた。
In the formation of a thick film, peeling occurs at the interface with the solid substrate and at the adjacent interface between the deposited films due to the internal stress of the film itself. In particular, in the case of the oblique columnar structure film formed by the oblique deposition method, the first layer is formed. When oblique deposition is performed on the oblique columnar structure film formed on the solid substrate with the deposition direction orthogonal to the solid substrate, the adhesive force is reduced at the interface and the subject is easily peeled off.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、固体基板を介して対向する2面に複屈折性を有する
誘電体材料が形成された複屈折板において、複屈折率Δ
nの波長分散値α(α=Δn(450nm)/Δn(650nm))の
関係が、αA>αB(誘電体材料Aの波長分散値:αA
誘電体材料Bの波長分散値:αB)である誘電体材料A
及びBが該固体基板の対向する2面にそれぞれ形成さ
れ、位相差RがRA<RB(誘電体材料Aによる位相差:
A、誘電体材料Bによる位相差:RB)の関係を有し、
かつ複屈折性を有する該誘電体材料の各遅相軸が直交し
ていることを特徴とし、該誘電体材料が該固体基板面法
線に対して斜め方向から蒸着されることにより形成され
た斜方蒸着膜からなることを特徴とする。
In order to solve the above problems, a birefringent plate having a birefringent dielectric material formed on two surfaces opposed to each other with a solid substrate interposed therebetween has a birefringence Δ
n (α = Δn (450 nm) / Δn (650 nm) ) is expressed as α A > α B (wavelength dispersion of dielectric material A: α A ,
Dielectric material A having wavelength dispersion value of dielectric material B: α B )
And B are respectively formed on two opposing surfaces of the solid substrate, and the phase difference R is R A <R B (the phase difference due to the dielectric material A:
R A , which has a relationship of phase difference due to the dielectric material B: R B ),
And each slow axis of the dielectric material having birefringence is characterized by being orthogonal, and the dielectric material is formed by being deposited obliquely with respect to the solid substrate surface normal. It is characterized by comprising an obliquely deposited film.

【0010】その作製方法においては、固体基板を介し
て形成される誘電体材料A及びBの該固体基板に対する
蒸着粒子の入射面を直交させて作製することを特徴とす
るものである。
The manufacturing method is characterized in that the dielectric materials A and B formed via the solid substrate are manufactured so that the incident surfaces of the vapor-deposited particles on the solid substrate are orthogonal to each other.

【0011】また誘電体材料が金属酸化物、金属フッ化
物及び金属硫化物のうち少なくとも1つであり、更に固
体基板両面上に誘電体材料を介して、反射防止膜が少な
くとも1つの面に成膜形成されていることを特徴とす
る。
The dielectric material is at least one of a metal oxide, a metal fluoride and a metal sulfide, and an antireflection film is formed on at least one surface of the solid substrate via the dielectric material on both surfaces. It is characterized in that a film is formed.

【0012】[0012]

【発明の実施の形態】前記斜方蒸着によって形成される
複屈折板は、固体基板に対して斜め方向から粒子を蒸着
することによって斜め柱状構造膜を形成し、その固体基
板に垂直に入射する光線に対して複屈折性を有するもの
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The birefringent plate formed by the oblique vapor deposition forms an oblique columnar structure film by evaporating particles from a diagonal direction with respect to a solid substrate, and vertically enters the solid substrate. It has birefringence to light rays.

【0013】斜方蒸着では、蒸着の初期段階においてよ
く知られているような核形成がなされるが、核が成長し
ある程度の高さをもつようになると、図5のように斜め
方向から蒸着物質が飛来してくるために、蒸着物質の入
射方向から見て核の後ろ側に、蒸着物質が直接付着でき
ない陰ができる。これは一般にセルフ・シャドーイング
効果と呼ばれ(文献:薄膜作製応用ハンドブック、
(株)エヌ・ティー・エス、1995年 参照)、斜方
蒸着膜が特異な形態を示す主要因の一つである。
In oblique deposition, nuclei are formed in a well-known manner in the initial stage of deposition. However, when the nuclei grow and have a certain height, the nuclei are deposited obliquely as shown in FIG. Since the material comes flying, behind the nucleus when viewed from the incident direction of the deposition material, there is a shadow to which the deposition material cannot directly adhere. This is generally called the self-shadowing effect.
(Refer to NTT Co., Ltd., 1995)), which is one of the main factors in which the obliquely deposited film exhibits a unique form.

【0014】このセルフ・シャドーイング効果によって
固体基板面法線から測って蒸着角θをより小さい角度α
で傾斜した柱状組織が成長する。この柱状組織は粒子の
入射面と平行な方向に粗く、垂直な方向に密に分布して
いるため、前者方向で屈折率が最小、後者方向で屈折率
が最大となり、蒸着粒子の入射方向から見て光学的異方
性媒質を形成している。これにより固体基板面法線方向
から入射する光線に対しても、屈折率楕円体の断面は楕
円体となり、該斜方蒸着膜に複屈折性が生じるものであ
る。(以下、該斜方蒸着膜を複屈折膜と称する。)
Due to this self-shadowing effect, the deposition angle θ is reduced from the normal to the solid substrate surface by a smaller angle α.
As a result, the inclined columnar structure grows. Since this columnar structure is coarse in the direction parallel to the incident surface of the particles and densely distributed in the perpendicular direction, the refractive index is the smallest in the former direction, the refractive index is the largest in the latter direction, and from the incident direction of the deposited particles. Seemingly, it forms an optically anisotropic medium. As a result, the cross section of the refractive index ellipsoid becomes an ellipsoid even for a light beam incident from the normal direction of the solid substrate surface, and the obliquely deposited film has birefringence. (Hereinafter, the obliquely deposited film is referred to as a birefringent film.)

【0015】更に広帯域性を実現するために、位相差の
波長分散特性の異なる材料を用い、該複屈折膜の遅相軸
を固体基板表面で直交するように形成し、多層構造に積
層する。ここで遅相軸は該複屈折媒体の光学軸、つまり
該固体基板に対する蒸着方向と一致するため、遅相軸を
直交させるためには該固体基板表面で蒸着方向を直交さ
せて斜方蒸着を行い、複屈折膜を形成すれば良い。しか
し多層構造による厚膜の形成においては、膜自身の内部
応力によって固体基板との界面および蒸着膜相互の隣接
界面で剥離をおこし易くなる。このような剥離を回避す
るために、図2および図3に示すように固体基板の対向
する2面に分割して複屈折膜を形成し、その際に前記の
ように蒸着方向を直交させて斜方蒸着を行うことによっ
て、各複屈折膜の遅相軸を直交させて形成する。つまり
図4において蒸発源41で所望の膜厚を斜方蒸着により
形成した後、続いて蒸発源44から異なる材料を用い
て、所望の膜厚を同様に形成することによって複屈折板
を作製する。
Further, in order to realize a wide band, materials having different wavelength dispersion characteristics of the phase difference are used, the slow axes of the birefringent films are formed so as to be orthogonal to each other on the surface of the solid substrate, and are laminated in a multilayer structure. Here, since the slow axis coincides with the optical axis of the birefringent medium, that is, the deposition direction with respect to the solid substrate, in order to make the slow axis orthogonal, the evaporation direction is made orthogonal to the solid substrate surface by oblique evaporation. Then, a birefringent film may be formed. However, in the formation of a thick film having a multilayer structure, peeling easily occurs at the interface with the solid substrate and at the adjacent interface between the deposited films due to the internal stress of the film itself. In order to avoid such peeling, a birefringent film is formed by dividing the solid substrate into two opposing surfaces as shown in FIGS. 2 and 3, and at this time, the deposition directions are orthogonalized as described above. By performing oblique deposition, the birefringent films are formed with their slow axes orthogonal to each other. That is, in FIG. 4, a desired film thickness is formed by the evaporation source 41 by oblique evaporation, and then a desired film thickness is similarly formed using a different material from the evaporation source 44 to produce a birefringent plate. .

【0016】このように、蒸着材料の異なる複屈折膜を
固体基板の両面に分割して形成することにより、界面で
の付着力が向上し、更に位相差の加成性を利用すること
により、該複屈折膜の波長分散特性を改善した広帯域波
長板を実現することが可能となる。
As described above, by forming the birefringent films of different vapor deposition materials on both sides of the solid substrate, the adhesive force at the interface is improved, and by utilizing the additive property of the phase difference, It is possible to realize a broadband wavelength plate with improved wavelength dispersion characteristics of the birefringent film.

【0017】つまり本発明は、波長板機能の広帯域化に
よる厚膜化によって生ずる蒸着膜の剥離という問題点
を、固体基板を介して対向する2面に分割して形成する
ことによって斜め柱状構造膜同士の界面を解消し、複屈
折膜の付着強度を改善するものである。
That is, the present invention solves the problem of peeling of a vapor deposition film caused by thickening due to widening of the wavelength plate function by dividing the vapor deposition film into two opposing surfaces via a solid substrate, thereby forming an oblique columnar structure film. The purpose is to eliminate the interface between them and improve the adhesion strength of the birefringent film.

【0018】尚、各蒸着膜(複屈折膜)の膜厚、蒸着角
(基板表面に対する法線と蒸着粒子の飛来する方向との
なす角)は、該蒸着膜(複屈折膜)に要求される位相差
により異なり、所望の波長板として機能するように最適
化する必要がある。
The thickness of each deposited film (birefringent film) and the deposition angle (the angle between the normal to the substrate surface and the direction in which the deposited particles fly) are required for the deposited film (birefringent film). It needs to be optimized to function as a desired wave plate, depending on the phase difference.

【0019】[0019]

【実施例】以下、具体的な実施例により本発明を説明す
る。図1は、本発明に用いられる蒸着装置の一例を示す
真空蒸着装置の側面図である。
The present invention will be described below with reference to specific examples. FIG. 1 is a side view of a vacuum evaporation apparatus showing an example of an evaporation apparatus used in the present invention.

【0020】図1に示す真空蒸着装置について説明する
と、この真空蒸着装置は図示していない排気ポンプによ
り内部を真空に排気されるベルジャー16と、各種蒸着
材料を蒸発させるための蒸発源15と、その上部に設け
られた基板ホルダー12等から構成されている。尚、蒸
発源15に関しては、その種類を問わず抵抗加熱や、電
子ビーム、レ―サ゛―ビーム等を用いて局部的に加熱する
ものを用いてもかまわない。
The vacuum vapor deposition apparatus shown in FIG. 1 will be described. The vacuum vapor deposition apparatus has a bell jar 16 whose inside is evacuated by an exhaust pump (not shown), an evaporation source 15 for evaporating various evaporation materials, and It is composed of a substrate holder 12 and the like provided on the upper part. Regarding the evaporation source 15, regardless of its type, a source that is locally heated using resistance heating, an electron beam, a laser beam, or the like may be used.

【0021】また、ベルジャー16の内部は、排気孔1
4を介して図示していない排気ポンプと連結されてお
り、排気ポンプによって10-6Torrオーダーまで排気で
きるようになっている。
The inside of the bell jar 16 is provided with the exhaust hole 1.
The pump 4 is connected to an exhaust pump (not shown) through the pump 4 so that the exhaust pump can exhaust air to the order of 10 -6 Torr.

【0022】図1に示す装置を用い、固体基板11に蒸
着材料である金属化合物を加熱し蒸発させ、適切な蒸着
角度を設定することによって、斜方蒸着膜による複屈折
板を作製する。
By using the apparatus shown in FIG. 1, a metal compound as a vapor deposition material is heated and evaporated on the solid substrate 11 and an appropriate vapor deposition angle is set, thereby producing a birefringent plate with an oblique vapor deposited film.

【0023】以下に示す実施例では、誘電体材料として
五酸化タンタル(Ta25)とフッ化ランタン(LaF
3)を用いたが、これらは可視光に対して透明な材料で
あればよく、その他にCeO2、WO3、Bi23、Sn
2、ZnS、NdF3等を用いることができるが、各蒸
着膜の位相差の波長分散特性を考慮した上で、位相差の
加成性を利用し最適化可能な誘電体材料を選ばなければ
ならない。
In the embodiments described below, tantalum pentoxide (Ta 2 O 5 ) and lanthanum fluoride (LaF) are used as dielectric materials.
Although 3 ) was used, these may be any material that is transparent to visible light, and may be CeO 2 , WO 3 , Bi 2 O 3 , Sn
O 2 , ZnS, NdF 3, etc. can be used. However, in consideration of the wavelength dispersion characteristics of the phase difference of each vapor-deposited film, a dielectric material that can be optimized by using the additivity of the phase difference must be selected. Must.

【0024】また固体基板としては、透明性に優れ、屈
折率が1.40〜1.60であり、低複屈折率、かつ耐
熱性に優れたものであれば、厚さ、材質については特に
限定されるものではなく、ガラス基板やプラスチック基
板等が挙げられ、反射防止膜の材料としてはMgF2や
SiO2等が好適である。
The thickness and material of the solid substrate are not particularly limited as long as the substrate has excellent transparency, a refractive index of 1.40 to 1.60, a low birefringence and excellent heat resistance. The material is not limited, and examples thereof include a glass substrate and a plastic substrate. As a material of the antireflection film, MgF2, SiO2, or the like is preferable.

【0025】以下具体的な実施例を説明する。尚本実施
例では、その製造方法の一例について述べるものであ
り、本発明はこれに限るものではない。 (実施例1)図1において、固体基板11にガラス基板
を用い、該ガラス基板に対して蒸着粒子が傾き角θ=7
0゜で入射するように設定した。蒸着材料にはTa25
(五酸化タンタル)を用いた。蒸発物質Ta25の波長
分散値:αA(=Δn(450nm)/Δn(650nm))は、1.
18であった。蒸発物質Ta25を抵抗加熱用ボートに
電流を流すことによって加熱して蒸発させ、 Ta25
の薄膜を入射光波長λ=550nmでの位相差RA(550nm)
=137.5nmになるように、膜厚1.7μm形成し、
更に該蒸着膜上に、MgF2蒸着膜を約0.1μm形成
し反射防止膜とすることによって、図2に示す上層複屈
折膜21を得た。
A specific embodiment will be described below. In this embodiment, an example of the manufacturing method is described, and the present invention is not limited to this. (Example 1) In FIG. 1, a glass substrate was used as the solid substrate 11, and the deposition particles had an inclination angle θ = 7 with respect to the glass substrate.
It was set to enter at 0 °. Ta 2 O 5
(Tantalum pentoxide) was used. The wavelength dispersion value of the evaporant Ta 2 O 5 : α A (= Δn (450 nm) / Δn (650 nm) ) is 1.
It was 18. The evaporating substance Ta 2 O 5 is heated and evaporated by passing a current through a resistance heating boat, and Ta 2 O 5
Phase difference R A (550 nm) at an incident light wavelength λ = 550 nm
= 137.5 nm, a film thickness of 1.7 μm is formed,
Further, an MgF 2 evaporated film was formed to a thickness of about 0.1 μm on the evaporated film to form an antireflection film, thereby obtaining an upper birefringent film 21 shown in FIG.

【0026】次に、該ガラス基板の対向する面において
蒸着粒子の入射面が基板面において、前記入射面に垂直
になるように設置し(図4参照)、傾き角θ=70゜で
入射するように設定した。蒸着材料にはLaF3(フッ
化ランタン)を用いた。蒸発物質LaF3の波長分散
値:αB=Δn(450nm)/ Δn(650nm)は、1.04であ
った。蒸発物質LaF3を抵抗加熱用ボートに電流を流
すことによって加熱して蒸発させ、 LaF3の薄膜を入
射光波長λ=550nmでの位相差RB(550nm)=275nm
になるように、膜厚4.0μm形成した。
Next, the glass substrate is set so that the incident surface of the vapor-deposited particles is perpendicular to the incident surface on the substrate surface on the opposing surface of the glass substrate (see FIG. 4), and is incident at an inclination angle θ = 70 °. Was set as follows. LaF 3 (lanthanum fluoride) was used as a vapor deposition material. The wavelength dispersion value of the evaporating substance LaF 3 : α B = Δn (450 nm) / Δn (650 nm) was 1.04. The evaporating substance LaF 3 is heated and evaporated by passing an electric current through a resistance heating boat, and the LaF 3 thin film is made to have a phase difference R B (550 nm) at an incident light wavelength λ = 550 nm of 275 nm.
Was formed to a thickness of 4.0 μm.

【0027】更に該蒸着膜上に、MgF2蒸着膜を約
0.1μm形成し反射防止膜とすることによって、図2
に示す下層複屈折膜22を作製し該複屈折板を得た。尚
図3は、該複屈折板の断面図である。このようにして構
成された複屈折板は、1/4波長板として機能するもの
である。
Further, an MgF 2 evaporated film is formed to a thickness of about 0.1 μm on the evaporated film to form an anti-reflection film.
Was produced to obtain the birefringent plate. FIG. 3 is a sectional view of the birefringent plate. The birefringent plate configured as described above functions as a quarter-wave plate.

【0028】(比較例1)実施例1と同様にして、固体
基板11にガラス基板を用い、該ガラス基板に対して蒸
着粒子が傾き角θ=70゜で入射するように設定し、蒸
発物質Ta25を抵抗加熱用ボートに電流を流すことに
よって加熱して蒸発させ、Ta25の薄膜を入射光波長
λ=550nmでの位相差RA(550nm)=137.5nmにな
るように膜厚1.7μm形成することにより、Ta25
を単一材料として用い、斜方蒸着膜1層のみからなる1
/4波長板を得た。
Comparative Example 1 In the same manner as in Example 1, a glass substrate was used as the solid substrate 11, and the evaporation particles were set to enter the glass substrate at an inclination angle θ = 70 °. Ta 2 O 5 is heated and evaporated by passing a current through a resistance heating boat so that the thin film of Ta 2 O 5 has a phase difference RA (550 nm) at an incident light wavelength λ = 550 nm of 137.5 nm. By forming a film having a thickness of 1.7 μm, Ta 2 O 5
Is used as a single material and consists of only one layer of obliquely deposited film.
A / 4 wavelength plate was obtained.

【0029】(比較例2)実施例1と同様に、固体基板
11にガラス基板を用い、該ガラス基板に対して蒸着粒
子が傾き角θ=70゜で入射するように設定した。蒸着
材料にはTa25を用いた。蒸発物質Ta25を抵抗加
熱用ボートに電流を流すことによって加熱して蒸発さ
せ、 Ta25の薄膜を入射光波長λ=550nmでの位
相差RA(550nm)=137.5nmになるように、膜厚1.
7μm形成した。
Comparative Example 2 In the same manner as in Example 1, a glass substrate was used as the solid substrate 11, and the vapor deposition particles were set to enter the glass substrate at an inclination angle θ = 70 °. Ta 2 O 5 was used as an evaporation material. The evaporating substance Ta 2 O 5 is heated and evaporated by passing an electric current through the resistance heating boat, and the Ta 2 O 5 thin film is made to have a phase difference RA (550 nm) of 137.5 nm at an incident light wavelength λ = 550 nm. So that the film thickness is 1.
7 μm was formed.

【0030】次に、該ガラス基板を蒸着粒子の入射面が
基板面において、前記入射面に垂直になるように設置
し、傾き角θ=70度に設定した。蒸着材料にLaF3
を入れ、同様に抵抗加熱用ボートによって加熱して蒸発
させ、 LaF3の薄膜を入射光波長λ=550nmでの位
相差RB(550nm)=275nmになるように、4.0μm積
層した。更に該蒸着膜上に、MgF2蒸着膜を約0.1
μm形成し反射防止膜とした。このようにして積層構造
で作製された複屈折板は、1/4波長板として機能す
る。
Next, the glass substrate was set so that the incident surface of the vapor deposition particles was perpendicular to the incident surface on the substrate surface, and the tilt angle θ was set to 70 °. LaF 3 for evaporation material
, And similarly heated and evaporated by a resistance heating boat, and a LaF 3 thin film was laminated to a thickness of 4.0 μm so that the phase difference R B (550 nm) at an incident light wavelength λ = 550 nm = 275 nm. Further, an MgF 2 deposited film was formed on the
μm to form an antireflection film. The birefringent plate thus manufactured with a laminated structure functions as a quarter-wave plate.

【0031】(実施例の効果)実施例1および比較例1
により作製した波長板の波長分散特性を図6及び図7に
示す。図7において、理想的な広帯域1/4波長板とし
て機能するためには、各波長に対してΔnd/λが0.
25となれば良い。ここで実施例1と比較例1を比べる
と、青色の波長(λ=480nm)において、0.31→
0.28となり、約50%、また赤色の波長(λ=65
6nm)においては、0.20→0.21となり、約20
%それぞれ改善され、広帯域で機能性に優れた1/4波
長板として提供することができる。
(Effects of Example) Example 1 and Comparative Example 1
6 and 7 show the wavelength dispersion characteristics of the wavelength plate manufactured by the method described above. In FIG. 7, in order to function as an ideal wide-band quarter-wave plate, Δnd / λ is set to 0.
It should be 25. Here, comparing Example 1 with Comparative Example 1, it was found that at blue wavelength (λ = 480 nm), 0.31 →
0.28, which is about 50%, and the red wavelength (λ = 65
6 nm), 0.20 → 0.21 and about 20
%, Respectively, and can be provided as a quarter-wave plate having excellent functionality over a wide band.

【0032】次に実施例1と比較例2において斜方蒸着
膜の付着性を比較する。付着性の評価を行うために、日
本工業規格(JIS)に基づく碁盤目テープ法を実施し
た。実施内容を説明すると、所定の規格により該複屈折
板表面にすきま間隔5mm、ます目を9個とする碁盤目
上の切り傷を付け、所定の規格のセロハン粘着テープを
はり付け、消しゴムで擦ることによりテープを付着させ
た後、テープの一端をもって付着面に対して直角に保ち
瞬間的に引き剥がし、碁盤目の付着状態を目視によって
評価するものである。
Next, the adhesion of the obliquely deposited film is compared between Example 1 and Comparative Example 2. In order to evaluate the adhesion, a grid tape method based on Japanese Industrial Standards (JIS) was performed. Explaining the contents of implementation, according to a predetermined standard, a cut is made on the surface of the birefringent plate with a clearance of 5 mm and 9 squares on a grid, glued with a cellophane adhesive tape of a predetermined standard, and rubbed with an eraser. After the tape is adhered, one end of the tape is held at a right angle to the surface to which the tape is adhered, and the tape is instantaneously peeled off.

【0033】実施例1により提供される複屈折板では、
複屈折板の両表面において碁盤目テープ法を実施した。
テープを剥がした後の蒸着膜の付着状態を目視した結
果、実施例1による複屈折板は両表面において一目一目
に剥がれはなく良好な状態を維持していた。
In the birefringent plate provided by Example 1,
The grid tape method was performed on both surfaces of the birefringent plate.
As a result of visual observation of the adhered state of the deposited film after the tape was peeled off, the birefringent plate of Example 1 did not peel off at both surfaces at a glance and maintained a good state.

【0034】一方比較例2による複屈折板を同様に碁盤
目テープ法を実施した結果、切り傷による剥がれの幅は
広く、欠損部の面積は全正方形面積の15〜35%に及
び、蒸着膜の剥離が確認された。これにより、比較例2
により提供される複屈折板は広帯域で機能性に優れた1
/4波長板として提供することができるが、付着強度に
ついては実施例1による複屈折板と比べて劣るものであ
り、本発明による複屈折板はこれらを両立するものとし
て提供することができる。
On the other hand, when the birefringent plate according to Comparative Example 2 was similarly subjected to the cross-cut tape method, the width of peeling due to cuts was wide, the area of the defective portion was 15 to 35% of the total square area, and Peeling was confirmed. Thereby, Comparative Example 2
Plate with high functionality over a wide band
Although it can be provided as a 波長 wavelength plate, the adhesive strength is inferior to that of the birefringent plate according to Example 1, and the birefringent plate according to the present invention can be provided as compatible with both.

【0035】[0035]

【発明の効果】以上本発明は、位相差の波長分散特性が
異なる誘電体材料を用いた斜方蒸着膜を利用する複屈折
板であって、固体基板の対向する2面に複屈折膜が形成
され、各遅相軸が直交していることを特徴とするもので
ある。
As described above, the present invention relates to a birefringent plate using an obliquely deposited film using dielectric materials having different wavelength dispersion characteristics of retardation, wherein the birefringent film is formed on two opposing surfaces of a solid substrate. And the slow axes are orthogonal to each other.

【0036】実施例に詳述したように、本発明の複屈折
板を用いた波長板は、従来の機能を維持しながらも、単
一波長に対する波長板としての機能だけでなく、広帯域
においても効率的に機能すると同時に、固体基板の対向
する2面に斜方蒸着膜を形成することによって斜め柱状
構造膜同士の界面を解消し、斜方蒸着膜の付着強度が改
善されたものである。
As described in detail in the embodiments, the wave plate using the birefringent plate of the present invention not only functions as a wave plate for a single wavelength but also in a wide band while maintaining the conventional function. At the same time as functioning efficiently, the oblique deposition films are formed on the two opposing surfaces of the solid substrate to eliminate the interface between the oblique columnar structure films, thereby improving the adhesion strength of the oblique deposition films.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の複屈折板の製造方法を実施するため
の真空蒸着装置の1例を示す側面図である。
FIG. 1 is a side view showing one example of a vacuum evaporation apparatus for carrying out a method of manufacturing a birefringent plate of the present invention.

【図2】本発明の実施例1の複屈折板の構成を示す斜視
図である。
FIG. 2 is a perspective view illustrating a configuration of a birefringent plate according to the first embodiment of the present invention.

【図3】本発明の実施例1の複屈折板の構成を示す断面
図である。
FIG. 3 is a cross-sectional view illustrating a configuration of a birefringent plate according to the first embodiment of the present invention.

【図4】本発明の実施例1の複屈折板の蒸発源と基板の
位置関係を示す図である。
FIG. 4 is a diagram showing a positional relationship between an evaporation source of a birefringent plate and a substrate according to the first embodiment of the present invention.

【図5】本発明の蒸着角θと柱状構造の傾斜角αの関係
を示す図である。
FIG. 5 is a diagram showing a relationship between a deposition angle θ and an inclination angle α of a columnar structure according to the present invention.

【図6】本発明の実施例1および比較例1の波長板の波
長分散特性を示す図である。
FIG. 6 is a diagram showing the wavelength dispersion characteristics of the wave plates of Example 1 and Comparative Example 1 of the present invention.

【図7】本発明の実施例1および比較例1の波長板の機
能性の波長分散特性を示す図である。
FIG. 7 is a diagram showing the wavelength dispersion characteristics of the functionalities of the wave plates of Example 1 and Comparative Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

11 :固体基板 12 :基板ホルダー 13 :加熱用電源 14 :排気孔 15 :蒸発源 16 :ベルジャー 17 :蒸着材料 21 :上層複屈折膜(斜方蒸着膜) 22 :下層複屈折膜(斜方蒸着膜) 23 :固体基板 24 :上層複屈折膜の遅相軸 25 :下層複屈折膜の遅相軸 26 :基板面法線 31 :固体基板 32 :複屈折膜 41 :蒸発源 42 :固体基板 43 :斜方蒸着膜 44 :蒸発源 45 :斜方蒸着膜 46 :蒸発源41の蒸着粒子入射面 47 :蒸発源44の蒸着粒子入射面 51 :固体基板 52 :入射角θ 53 :柱状組織の傾斜角α 54 :蒸着物質の入射方向 55 :柱状組織の傾斜方向 56 :基板面法線 57 :斜方蒸着膜 11: Solid substrate 12: Substrate holder 13: Power supply for heating 14: Exhaust hole 15: Evaporation source 16: Bell jar 17: Evaporation material 21: Upper birefringent film (oblique evaporation film) 22: Lower birefringent film (oblique evaporation) 23: solid substrate 24: slow axis of upper birefringent film 25: slow axis of lower birefringent film 26: substrate surface normal 31: solid substrate 32: birefringent film 41: evaporation source 42: solid substrate 43 : Oblique evaporation film 44: Evaporation source 45: Oblique evaporation film 46: Evaporation particle incidence surface of evaporation source 41 47: Evaporation particle incidence surface of evaporation source 44 51: Solid substrate 52: Incident angle θ 53: Inclination of columnar structure Angle α 54: Incident direction of deposition material 55: Inclination direction of columnar structure 56: Normal to substrate surface 57: Oblique deposition film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 固体基板を介して対向する2面に複屈折
性を有する誘電体材料が形成された複屈折板において、
複屈折率Δnの波長分散値α(α=Δn(450nm)/Δn
(650nm))の関係が、αA>αBである誘電体材料A及び
Bが該固体基板の対向する2面にそれぞれ形成され、位
相差RがRA<RBの関係を有し、かつ複屈折性を有する
該誘電体材料の各遅相軸が直交していることを特徴とす
る複屈折板。
1. A birefringent plate in which a dielectric material having birefringence is formed on two surfaces facing each other via a solid substrate,
Wavelength dispersion value of the birefringence Δn α (α = Δn (450 nm) / Δn
Relationship (650 nm)) is, alpha A> alpha dielectric materials A and B is B are respectively formed on two opposing surfaces of the solid substrate, the phase difference R has a relation of R A <R B, A birefringent plate, wherein the slow axes of the birefringent dielectric material are orthogonal to each other.
【請求項2】 該誘電体材料が該固体基板面法線に対し
て斜め方向から蒸着されることにより形成された斜方蒸
着膜からなる請求項1記載の複屈折板。
2. The birefringent plate according to claim 1, wherein said dielectric material comprises an obliquely deposited film formed by being deposited from an oblique direction with respect to a normal to said solid substrate surface.
【請求項3】 請求項1または2記載の複屈折板におい
て、固体基板を介して形成される誘電体材料A及びBの
該固体基板に対する蒸着粒子の入射面を直交させて作製
することを特徴とする複屈折板の作製方法。
3. The birefringent plate according to claim 1, wherein the surfaces of the dielectric materials A and B formed via the solid substrate are perpendicular to the incident surfaces of the vapor-deposited particles on the solid substrate. Method for producing a birefringent plate.
【請求項4】 該誘電体材料が金属酸化物、金属フッ化
物及び金属硫化物のうち少なくとも1つであることを特
徴とする請求項1または2記載の複屈折板。
4. The birefringent plate according to claim 1, wherein said dielectric material is at least one of a metal oxide, a metal fluoride and a metal sulfide.
【請求項5】 固体基板両面上に誘電体材料を介して、
反射防止膜が少なくとも1つの面に成膜形成されている
ことを特徴とする請求項1記載の複屈折板。
5. A method according to claim 1, further comprising the steps of:
2. The birefringent plate according to claim 1, wherein the antireflection film is formed on at least one surface.
JP10147834A 1998-05-28 1998-05-28 Double refractive plate and its manufacture Pending JPH11337733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10147834A JPH11337733A (en) 1998-05-28 1998-05-28 Double refractive plate and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10147834A JPH11337733A (en) 1998-05-28 1998-05-28 Double refractive plate and its manufacture

Publications (1)

Publication Number Publication Date
JPH11337733A true JPH11337733A (en) 1999-12-10

Family

ID=15439309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10147834A Pending JPH11337733A (en) 1998-05-28 1998-05-28 Double refractive plate and its manufacture

Country Status (1)

Country Link
JP (1) JPH11337733A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234757A (en) * 2003-01-30 2004-08-19 Asahi Glass Co Ltd Optical head device
JP2005164957A (en) * 2003-12-02 2005-06-23 Nippon Oil Corp Circularly polarizing plate and liquid crystal display element
WO2005103840A1 (en) * 2004-04-26 2005-11-03 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
WO2005103841A1 (en) * 2004-04-26 2005-11-03 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
US8345527B2 (en) 2008-08-29 2013-01-01 Canon Kabushiki Kaisha Optical phase controller and optical phase control method
CN113215534A (en) * 2021-05-07 2021-08-06 业成科技(成都)有限公司 Optical element and method for manufacturing the same
CN113488603A (en) * 2021-07-07 2021-10-08 业成科技(成都)有限公司 Method for manufacturing optical display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234757A (en) * 2003-01-30 2004-08-19 Asahi Glass Co Ltd Optical head device
JP2005164957A (en) * 2003-12-02 2005-06-23 Nippon Oil Corp Circularly polarizing plate and liquid crystal display element
WO2005103840A1 (en) * 2004-04-26 2005-11-03 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
WO2005103841A1 (en) * 2004-04-26 2005-11-03 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
KR100855292B1 (en) * 2004-04-26 2008-08-29 가부시키가이샤 엔.티.티.도코모 Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
KR100855291B1 (en) * 2004-04-26 2008-08-29 가부시키가이샤 엔.티.티.도코모 Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
US7800035B2 (en) 2004-04-26 2010-09-21 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
US8022344B2 (en) 2004-04-26 2011-09-20 Ntt Docomo, Inc. Optical wavefront control pattern generating apparatus and optical wavefront control pattern generating method
US8345527B2 (en) 2008-08-29 2013-01-01 Canon Kabushiki Kaisha Optical phase controller and optical phase control method
CN113215534A (en) * 2021-05-07 2021-08-06 业成科技(成都)有限公司 Optical element and method for manufacturing the same
CN113488603A (en) * 2021-07-07 2021-10-08 业成科技(成都)有限公司 Method for manufacturing optical display device
CN113488603B (en) * 2021-07-07 2023-08-25 业成科技(成都)有限公司 Method for manufacturing optical display device

Similar Documents

Publication Publication Date Title
US7440204B2 (en) ND filter of optical film laminate type with carbon film coating
JP2003315552A (en) Integrated optical element
KR20040018190A (en) Display panel and multilayer plates for production of this display panel
JPH11337733A (en) Double refractive plate and its manufacture
WO2005059610A1 (en) Optical filter
US20130308193A1 (en) Optical multilayer band pass filter
JPH1123840A (en) Double refractive plate
JP2007310052A (en) Wavelength plate
WO2019102902A1 (en) Optical element and projection-type image display apparatus
JPH08254611A (en) Beam splitter
JPH075316A (en) Diffraction grating type polarizer and its production
JPH06273621A (en) Polarizer and its production
JP2001074903A (en) Antireflection film and optical device
JP2741731B2 (en) Polarizer
JPH08122523A (en) Phase difference plate
WO2022040912A1 (en) Low-angle shift optical filter
JP2002286932A (en) Method for manufacturing polarizing film or protective film for polarizer
JP3113371B2 (en) Multi-layer anti-reflective coating
CN113917573B (en) Amorphous infrared film structure and preparation method thereof
TWI797616B (en) Optical device and method of manufacturing the same
KR100968208B1 (en) Circularly polarized light conversion element and brightness enhancing element and the fabrication method thereof
JP2815949B2 (en) Anti-reflective coating
JP2001108802A (en) Antireflection film
JP3113376B2 (en) Multi-layer anti-reflective coating
JPH10232312A (en) Optical branching filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304