JP2004234757A - Optical head device - Google Patents

Optical head device Download PDF

Info

Publication number
JP2004234757A
JP2004234757A JP2003022095A JP2003022095A JP2004234757A JP 2004234757 A JP2004234757 A JP 2004234757A JP 2003022095 A JP2003022095 A JP 2003022095A JP 2003022095 A JP2003022095 A JP 2003022095A JP 2004234757 A JP2004234757 A JP 2004234757A
Authority
JP
Japan
Prior art keywords
resin
head device
optical head
phase plate
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003022095A
Other languages
Japanese (ja)
Other versions
JP4222042B2 (en
Inventor
Koichi Murata
浩一 村田
Masahiko Tada
真彦 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003022095A priority Critical patent/JP4222042B2/en
Publication of JP2004234757A publication Critical patent/JP2004234757A/en
Application granted granted Critical
Publication of JP4222042B2 publication Critical patent/JP4222042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a phase plate whose wave front aberration is small even under conditions of high temperature and high humidity and to make an optical head device to be an optical head device whose optical characteristics are excellent even under conditions of high temperature and high humidity by mounting the phase plate in the optical head device. <P>SOLUTION: The phase plate is formed by stacking respectively resin birefringent layers 201 and 202 having respectively a high-molecular liquid crystal layer between contiguous glass substrates of glass substrates 101, 102 and 103 which are optically isotropic substrates and this phase plate is installed in an optical path existing among the light sources and the objective lens of the optical head device. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光ヘッド装置に関し、特に光源からのレーザ光の偏光状態を制御するための位相板を搭載した光ヘッド装置に関する。
【0002】
【従来の技術】
光ディスクおよび光磁気ディスクなどの光記録媒体に光学的情報を書き込んだり、光記録媒体から光学的情報を読み取ったりするのに光ヘッド装置が用いられる。光ヘッド装置は、例えば図6の本発明の光ヘッド装置の概念図に示したように、ディスク状の光記録媒体(以下、光ディスク3という)の記録面上に光源5または6である半導体レーザの出射光を、光源6の場合ビームスプリッタプリズム4により進行方向を変えた後、対物レンズ2を用いて集光して、情報の書き込み・読み取りを行う。ここで、受光系は簡単のため省略した。
【0003】
この光源である半導体レーザとして、2種類の光ディスクであるCDおよびDVDでは、それぞれ790nmおよび660nmの2つの異なる波長を出射する半導体レーザが必要となる。光源5および6が出射する2つの異なる波長の光が通過する共通の光路中の、本発明における積層位相板1の位置に1/4波長板を配置する必要がある。従来このような配置で用いる波長板として、複屈折性を有する2枚の位相板を光軸方向を異ならせて(交差させて)積層することで、2つの異なる波長でともに1/4波長板として機能する広帯域波長板が提案されていた。
【0004】
【特許文献1】
特開平11−149015号公報
【0005】
【発明が解決しようとする課題】
この従来例では、波長板は図5に示すように、2枚のガラス基板109とガラス基板110との間に、2つの複屈折フィルム209、210を3つの接着層307、308、309を介して張り合わせた構造を有していた。しかしながら、複屈折フィルムが樹脂で作製されていた場合には、2枚のガラス基板の間に2つの樹脂フィルムと3層の接着層があり、樹脂層の厚さが合計して大きくなる。
【0006】
このように、ガラス基板に樹脂層を厚く挟みこんだ場合には、3つの問題点があった。第1の問題点は、信頼性の問題で、この波長板を高温高湿下で保管すると、この樹脂層が厚いことにより大量の水分を含むことになる。これにより、素子(波長板)の透過波面収差が劣化する。第2の問題点は、これらの樹脂層を接着剤で積層する際にひずみが生じ波面収差を劣化させ生産歩留まりの低下を招いた。第3の問題点は、この素子(波長板)を切断したり、他の光学部品とともに積層する際に、柔らかい樹脂層が厚いために素子にひずみが入りやすく波面収差を劣化させた。
【0007】
これら第2および第3の問題点は、比較的やわらかい樹脂層が厚くて、歪みやすいためと考えられる。本発明は、これら従来技術の課題を解決するためになされた。
【0008】
【課題を解決するための手段】
本発明は、光源と、光源から出射するレーザ光を光記録媒体へ集光する対物レンズと、光記録媒体によって反射されたレーザ光を検出する光検出器と、光源と対物レンズとの間、または光検出器と対物レンズとの間の光路中にレーザ光の偏光状態を制御する位相板を備える光ヘッド装置において、位相板は光学軸方向を交差させた2つ以上の樹脂製複屈折層が積層されており、積層された樹脂製複屈折層の層間には、透明でかつ樹脂製複屈折層よりも透湿性の低い光学的等方性基板が配置されていることを特徴とする光ヘッド装置を提供する。
【0009】
また、前記樹脂製複屈折層と前記光学的等方性基板とが交互に積層されて積層体が構成され、積層体の両外側が前記光学的等方性基板にて構成されている上記の光ヘッド装置を提供する。
【0010】
また、前記樹脂製複屈折層のうちの少なくとも1つが、高分子液晶膜である上記の光ヘッド装置を提供する。
【0011】
さらに、2つの前記樹脂製複屈折層が3枚の前記光学的等方性基板であるガラス基板と、接着性材料を介さずに交互に積層されている上記の光ヘッド装置を提供する。
【0012】
【発明の実施の形態】
本発明の光ヘッド装置における位相板は、光学軸方向が異なる、すなわち光学軸方向が交差した複数の樹脂製複屈折層が積層されている例として、2つの波長の光に対してそれぞれ1/4波長板として機能する広帯域波長板を説明する。
【0013】
図6に示す本発明の光ヘッド装置では、光源5および6から出射するレーザ光は波長が異なる、例えば2つレーザ光であり、光源5と対物レンズ2との間に例えば2つのレーザ光の位相状態を制御する広帯域用の積層位相板1が設置されている。この広帯域用の積層位相板は、2枚の複屈折を有する樹脂製複屈折層がそれぞれの光軸を交差するように重ねられていて、レーザ光が第1に入射する樹脂製複屈折層のリタデーション値Rdが第2に入射する樹脂製複屈折層のリタデーション値Rdより大きく、それらのリタデーション値の比、すなわちRd/Rdが1.8〜2.2であるように構成されている。
【0014】
ここで、リタデーション値の代わりに位相差としても比を採れば同じ値となる。すなわち、位相差は、リタデーション値Rdと波長λを用いてRd×2π/λと表すことができる。
【0015】
このように構成することにより、広帯域位相板は透過するいずれの波長の直線偏光のレーザ光に対してもほぼ1/4波長板として機能し、直線偏光をほぼ円偏光とできる。
【0016】
本発明においては、さらに例えば2枚の樹脂製複屈折層の間に、透明でかつ樹脂製複屈折層よりも透湿性の低い光学的等方性基板が配置されている。ここで、材料の透湿性は、例えば材料の吸水率の測定で知ることができる。すなわち、材料サンプルの質量を測定し、次に材料サンプルを一定温度、一定時間蒸留水に浸漬し含水させたのち再度質量測定を行い、浸漬前後の質量変化から吸水量を知る。この質量変化(吸水量)と浸漬前の材料サンプルの質量との比から、吸水率が求まる。
【0017】
積層位相板1に用いる樹脂製複屈折材料としては、液晶を配向させた状態で重合させた高分子液晶や、延伸により複屈折性を持たせた、例えばポリカーボネートフィルムがよい。さらに、延伸により複屈折性を有する有機系高分子フィルムも使用できる。
【0018】
さらに、透明でかつ樹脂製複屈折層と比べて透湿性の低い光学的等方性基板としては、樹脂の例えばエポキシ系、ポリエステル系、フッ素系や熱可塑性ウレタン樹脂などの樹脂基板が好ましく用いられる。さらに好ましくは、ガラス基板を用いることであり、透湿性は樹脂製複屈折層に比べて非常に低く、また平滑性も確保しやすい。以下、光学的等方性基板としてガラス基板を用いる場合を説明する。
【0019】
本発明の光ヘッドに用いる位相板の積層断面構造の1例を図4に示す。この例は樹脂製複屈折材料としてポリカーボネートなどの樹脂フィルムを用いた場合について説明する。図4に示すように、3枚のガラス基板106、107、108の隣合う基板間に接着層303、位相板207、接着層304および接着層305、位相板208、接着層306をそれぞれ積層した。このとき2つの接着層を含む樹脂層の厚さは1層が約80μmである。
【0020】
2つの樹脂製複屈折層のそれぞれの光学軸は貼り合わせ角度で調整でき、所望の位相差を有するフィルムの樹脂製複屈折層を用いることで位相差を調整し、積層後の位相板の特性を調整できる。
【0021】
このようにフィルムの樹脂製複屈折層を用いた、従来の構成例は図5のように2枚のガラス基板109、110の間に接着層307、フィルム209、接着層308、フィルム210、接着層309を積層する構造であった。この構造では接着層を含む樹脂製複屈折層の厚さが約160μmと非常に厚いものであった。以下、樹脂製複屈折層を複屈折層と略すことがある。
【0022】
このように厚いと、高温高湿下での保管後などに水分を吸収し、透過光の波面収差を劣化させたり、作成時に樹脂製複屈折層の歪みによる波面収差歩留まりが非常に低くコスト高となっていた。また、このように厚い複屈折層を切断したり、他の光学部品に貼り付けるなどの加工をすることにより位相板が歪みやすい問題があった。
【0023】
本発明者らの実験によると、高温高湿下での保管後の波面収差の劣化は、2つの樹脂製複屈折層の間にガラス基板を挿入することで、約1/2程度に改善されることがわかった。本発明の図4の構成と従来の図5の構成とでは全体の複屈折層の厚さはほとんど同じであるものの、複屈折層を2つに分割し中間にガラス基板を配することでガラス基板が透湿バリヤ層の役割を果たし、複屈折層に入る水分の量が減ったためと考えられる。
【0024】
また、図3に示すように図4における構成の両側のガラス基板106、108をはずした構成であってもよい。この場合、位相板の全体の厚さを薄くでき、かつ軽量化できるので好ましい。また、樹脂製複屈折層205、206の表面に無反射コート(ARコート)を行うことで表面反射が低減できて好ましい。なお、105はガラス基板、301および302は接着層である。
【0025】
次に、樹脂製複屈折層の材料として高分子液晶を用いた例を説明する。図1に示すように3枚のガラス基板101、102、103の隣接する基板間に高分子液晶層201、202が、それぞれ挟まれた構造をしている。高分子液晶層は表面に配向処理をした2枚のガラス基板の間に低分子の液晶を注入し、UV光などで光重合することで高分子化できる。
【0026】
図1に示す例では中央のガラス基板102の両面を配向処理を行い、両側の2枚のガラス基板101、103の液晶層に対向する面に配向処理を行った。この配向処理の方向に液晶分子が配向する。この配向方向を所望の角度に設定することにより、2つの液晶層の光軸の為す角度を変えることができる。ここで配向処理は例えばポリイミドをガラス基板表面に塗布し薄膜とし、ラビングしてもよいし、ポリイミドの薄膜を作成せず直接ガラス基板をラビングしてもよい。
【0027】
前述のように配向処理を行った3枚のガラス基板101、102、103を大きさが数μmのスペーサーを介して張り合わせてその2つの間隙に液晶を注入し、UV光で光重合し高分子化することで2層の樹脂製複屈折層201、202をガラス基板を介して接着層を用いずに積層してもよい。
【0028】
それぞれの複屈折層の位相差2π(Δn×d)/λは、液晶層の厚さ(d)を調整することや、樹脂製複屈折層の複屈折量(Δn)を変えることで所望の位相差を得ることができる。
【0029】
図1に示すように接着層を用いずに2層の高分子液晶の複屈折層201、202を積層することで、複屈折層の厚さを最小限にすることができる。この位相板は、複屈折層が薄いため従来の問題点であった高温高湿下での保管後の波面収差の劣化や、波面収差による歩留まりの低下、位相板切断や他の光学部品への貼り付けに伴うひずみが発生しにくいので最も好ましい。
【0030】
また、図1に示す位相板の両側の2枚のガラス基板101、103をはずすことで、図2に示すようにガラス基板104の両側に高分子液晶の樹脂製複屈折層203、204を積層した構造としてもよい。この場合、位相板の全体の厚さを薄くでき軽量化できるので好ましい。また、樹脂製複屈折層203、204の表面には無反射コート(ARコート)を施すことで表面反射が低減できて好ましい。
また、2枚の樹脂製複屈折層の組み合わせとして、一方を高分子液晶、他方をフィルムの複屈折層としてもよい。
【0031】
これらの位相板の位相差と光軸方向との関係は、前述のように2つの異なる波長で1/4波長板として直線偏光を円偏光に変換するには、直線偏光入射側の樹脂製複屈折層の位相差は使用する2つの波長の平均の概ね1/2で、出射側の樹脂製複屈折層の位相差の約2倍として、それぞれの光学軸方向の角度を入射偏光方向に対して、例えば約15度と例えば約75度とすることにより実現できる。
【0032】
また、例えば、DVD用の660nm帯およびCD用の790nm波長帯の2種の直線偏光を透過させて用いる2波長用位相板において、660nm波長帯の直線偏光に対し偏光方向を45°回転させ、790nm波長帯の直線偏光に対し直線偏光を円偏光化する2波長用位相板は次のようにする。すなわち、2つの樹脂製複屈折層の光軸方向が19〜29°の範囲にある角度で交差させ、一方の樹脂製複屈折層は533〜652nmの範囲にある位相差を有し、他方の樹脂製複屈折層は356〜434nmの範囲にある位相差を与えることで実現できる。
【0033】
このように、2種類の光軸方向の異なる樹脂製複屈折層を組み合わせることで、各波長での偏光制御を行うことができる。
【0034】
【実施例】
図1に示すように2層の高分子液晶の樹脂製複屈折層201、202の間にガラス基板102を挟んだ位相板を用いた光ヘッド装置について説明する。
2枚のガラス基板101、103の片面、およびガラス基板102の両面にポリイミドを塗布し、ラビングにより配向処理を行った。ラビング方向は入射偏光方向に対して、対向する面同士は同じとしそれぞれ75度と15度とした。このガラス基板101と102の間隔は約3μm、ガラス基板102と103は約6μmの間隙を空けて張り合わせた。この間隙は球状のスペーサを用いることで維持した。
【0035】
この間隙に重合前の液晶を注入し、UV光で光重合することで高分子化し複屈折性をもつ、厚さの2倍異なる高分子液晶の樹脂製複屈折層201、202を3枚のガラス基板の隣接する基板間に接着剤や粘着材を用いることなく積層して、位相板を作成した。
【0036】
この位相板の波面収差は概ね0.01λrms以下で、良好な波面収差の位相板を歩留まりよく得ることができた。
この位相板に660nmと790nmの2つの波長の直線偏光をガラス基板103側から入射した。その結果、両波長の光とも楕円率が0.95の良好な円偏光を得ることができ、この位相板は上記の2つの波長で1/4波長板として充分に機能することが確かめられた。
【0037】
この1/4波長板を、図6の模式図で示した光ヘッド装置の積層位相板1の位置に搭載して記録・再生の実験を行った結果DVD、CDとも良好な記録・再生特性を示した。
【0038】
また、1/4波長板の高温高湿下での試験を行った結果、波面収差の変化は0.003λrms以下で実用上問題のないレベルであることが確かめられた。
【0039】
【発明の効果】
以上説明したように、本発明における位相板は、複数の樹脂製複屈折層をガラス基板の間に挟めて積層してあるため、高温高湿の条件下で使用しても、水分の吸収を抑えることができる。したがって、水分の吸収に伴って発生する樹脂製複屈折層の透過光の波面収差を低減できる。さらに、水分の吸収が抑えられるので、不良品数が低減し生産歩留まりが向上する。
【0040】
したがって、この位相板を他の光学部品と組み合わせて、光ヘッド装置を構成すると、波面収差の少ない良好な光学特性を有する光ヘッド装置が得られる。さらに、光ヘッド装置の生産歩留まりも向上する。
【図面の簡単な説明】
【図1】本発明における、ガラス基板を3枚用いた位相板の1例を示す断面図。
【図2】本発明における、ガラス基板を1枚用いた位相板の1例を示す断面図。
【図3】本発明における、ガラス基板を1枚用いた位相板の他の例を示す断面図。
【図4】本発明における、ガラス基板を3枚用いた位相板の他の例を示す
断面図。
【図5】従来の位相板の例を示す断面図。
【図6】本発明の光ヘッド装置の構成例を示す概念図。
【符号の説明】
101、102、103、104、105 、106、107、108、109、110:ガラス基板
201、202、203、204:高分子液晶層
205、206、207、208、209、210:樹脂製複屈折層
301、302、303、304、305、306、307、308、309:接着層
1:積層位相板
2:対物レンズ
3:光ディスク
4:ビームスプリッタプリズム
5、6:光源
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical head device, and more particularly to an optical head device equipped with a phase plate for controlling the polarization state of laser light from a light source.
[0002]
[Prior art]
An optical head device is used for writing optical information on an optical recording medium such as an optical disk and a magneto-optical disk and reading optical information from the optical recording medium. For example, as shown in the conceptual diagram of the optical head device of the present invention in FIG. 6, the optical head device is a semiconductor laser that is a light source 5 or 6 on a recording surface of a disk-shaped optical recording medium (hereinafter referred to as optical disk 3). In the case of the light source 6, the emitted light is changed in the traveling direction by the beam splitter prism 4, and then condensed by using the objective lens 2 to write / read information. Here, the light receiving system is omitted for simplicity.
[0003]
As the semiconductor laser that is the light source, CD and DVD that are two types of optical disks require semiconductor lasers that emit two different wavelengths of 790 nm and 660 nm, respectively. It is necessary to arrange a quarter-wave plate at the position of the laminated phase plate 1 in the present invention in a common optical path through which light of two different wavelengths emitted from the light sources 5 and 6 passes. Conventionally, as a wave plate used in such an arrangement, two phase plates having birefringence are laminated with their optical axis directions different (intersecting) to form a quarter wave plate at two different wavelengths. Broadband wave plates that function as:
[0004]
[Patent Document 1]
JP-A-11-149015 [0005]
[Problems to be solved by the invention]
In this conventional example, as shown in FIG. 5, the wave plate has two birefringent films 209 and 210 interposed between two glass substrates 109 and 110 with three adhesive layers 307, 308, and 309 interposed therebetween. And had a laminated structure. However, when the birefringent film is made of resin, there are two resin films and three adhesive layers between the two glass substrates, and the thickness of the resin layer is increased in total.
[0006]
As described above, when the resin layer is sandwiched thickly between the glass substrates, there are three problems. The first problem is reliability. When the wave plate is stored under high temperature and high humidity, a large amount of moisture is contained due to the thick resin layer. Thereby, the transmitted wavefront aberration of the element (wavelength plate) is deteriorated. The second problem is that distortion occurs when these resin layers are laminated with an adhesive, thereby deteriorating wavefront aberration and causing a reduction in production yield. The third problem is that when the element (wavelength plate) is cut or laminated together with other optical components, the soft resin layer is thick, so that the element is easily distorted and the wavefront aberration is deteriorated.
[0007]
These second and third problems are considered to be because the relatively soft resin layer is thick and easily distorted. The present invention has been made to solve these problems of the prior art.
[0008]
[Means for Solving the Problems]
The present invention includes a light source, an objective lens that condenses laser light emitted from the light source onto an optical recording medium, a photodetector that detects laser light reflected by the optical recording medium, and a light source and an objective lens. Alternatively, in an optical head device including a phase plate that controls the polarization state of laser light in the optical path between the photodetector and the objective lens, the phase plate is composed of two or more resin birefringent layers whose optical axis directions intersect each other. And an optically isotropic substrate that is transparent and has lower moisture permeability than the resin birefringent layer is disposed between the laminated resin birefringent layers. A head device is provided.
[0009]
The resin birefringent layer and the optically isotropic substrate are alternately laminated to form a laminate, and both outer sides of the laminate are constituted by the optically isotropic substrate. An optical head device is provided.
[0010]
The above-described optical head device is provided in which at least one of the resin birefringent layers is a polymer liquid crystal film.
[0011]
Furthermore, there is provided the above optical head device in which the two resin birefringent layers are alternately laminated with three glass isotropic optical substrates and no adhesive material.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The phase plate in the optical head device of the present invention is an example in which a plurality of resin birefringent layers having different optical axis directions, that is, crossing the optical axis directions are laminated. A broadband wave plate that functions as a four-wave plate will be described.
[0013]
In the optical head device of the present invention shown in FIG. 6, the laser beams emitted from the light sources 5 and 6 are, for example, two laser beams having different wavelengths, and two laser beams, for example, are disposed between the light source 5 and the objective lens 2. A broadband laminated phase plate 1 for controlling the phase state is installed. This wide-band laminated phase plate has two birefringent resin birefringent layers stacked so as to intersect their optical axes, and the resin birefringent layer on which laser light first enters is laminated. The retardation value Rd 1 is larger than the retardation value Rd 2 of the second incident birefringent resin layer, and the ratio of the retardation values, that is, Rd 1 / Rd 2 is 1.8 to 2.2. ing.
[0014]
Here, if the ratio is taken as the phase difference instead of the retardation value, the same value is obtained. That is, the phase difference can be expressed as Rd × 2π / λ using the retardation value Rd and the wavelength λ.
[0015]
With this configuration, the broadband phase plate functions as a substantially quarter-wave plate for linearly polarized laser light of any wavelength that is transmitted, and the linearly polarized light can be made substantially circularly polarized.
[0016]
In the present invention, for example, an optically isotropic substrate that is transparent and has lower moisture permeability than the resin birefringent layer is disposed between two resin birefringent layers. Here, the moisture permeability of the material can be known, for example, by measuring the water absorption rate of the material. That is, the mass of the material sample is measured, and then the material sample is immersed in distilled water for a certain period of time at a constant temperature to be hydrated. Then, the mass is measured again, and the amount of water absorption is known from the mass change before and after the immersion. The water absorption rate is obtained from the ratio between the mass change (water absorption amount) and the mass of the material sample before immersion.
[0017]
The resin birefringent material used for the laminated phase plate 1 is preferably a polymer liquid crystal polymerized in a state where liquid crystal is aligned, or a polycarbonate film having birefringence by stretching, for example. Furthermore, an organic polymer film having birefringence by stretching can also be used.
[0018]
Furthermore, as an optically isotropic substrate that is transparent and has low moisture permeability compared to the resin birefringent layer, a resin substrate such as an epoxy resin, a polyester resin, a fluorine resin, or a thermoplastic urethane resin is preferably used. . More preferably, a glass substrate is used, and the moisture permeability is much lower than that of the resin birefringent layer, and smoothness is easily secured. Hereinafter, a case where a glass substrate is used as the optically isotropic substrate will be described.
[0019]
An example of the laminated cross-sectional structure of the phase plate used in the optical head of the present invention is shown in FIG. In this example, a case where a resin film such as polycarbonate is used as the resin birefringent material will be described. As shown in FIG. 4, the adhesive layer 303, the phase plate 207, the adhesive layer 304 and the adhesive layer 305, the phase plate 208, and the adhesive layer 306 were laminated between the adjacent substrates of the three glass substrates 106, 107, and 108, respectively. . At this time, the thickness of the resin layer including the two adhesive layers is about 80 μm per layer.
[0020]
The optical axes of the two resin birefringent layers can be adjusted by the bonding angle, the phase difference is adjusted by using the resin birefringent layer of the film having the desired phase difference, and the characteristics of the phase plate after lamination Can be adjusted.
[0021]
The conventional configuration example using the resin birefringent layer of the film as described above is an adhesive layer 307, a film 209, an adhesive layer 308, a film 210, an adhesive between two glass substrates 109 and 110 as shown in FIG. The layer 309 was stacked. In this structure, the thickness of the resin birefringent layer including the adhesive layer was as extremely thick as about 160 μm. Hereinafter, the resin birefringent layer may be abbreviated as a birefringent layer.
[0022]
If it is thick, it absorbs moisture after storage under high temperature and high humidity, which degrades the wavefront aberration of the transmitted light, or the wavefront aberration yield due to distortion of the resin birefringent layer at the time of creation is very low and expensive. It was. Further, there is a problem that the phase plate is easily distorted by processing such as cutting the thick birefringent layer or attaching it to other optical components.
[0023]
According to the experiments by the present inventors, the deterioration of wavefront aberration after storage under high temperature and high humidity is improved to about 1/2 by inserting a glass substrate between two resin birefringent layers. I found out. Although the thickness of the entire birefringent layer is almost the same in the configuration of FIG. 4 of the present invention and the conventional configuration of FIG. 5, glass is obtained by dividing the birefringent layer into two and arranging a glass substrate in the middle. This is presumably because the substrate served as a moisture permeable barrier layer and the amount of moisture entering the birefringent layer was reduced.
[0024]
Moreover, as shown in FIG. 3, the structure which remove | eliminated the glass substrates 106 and 108 of the both sides of the structure in FIG. 4 may be sufficient. This is preferable because the entire thickness of the phase plate can be reduced and the weight can be reduced. In addition, it is preferable to perform antireflection coating (AR coating) on the surfaces of the resin birefringent layers 205 and 206 because surface reflection can be reduced. Reference numeral 105 denotes a glass substrate, and 301 and 302 denote adhesive layers.
[0025]
Next, an example in which a polymer liquid crystal is used as a material for the resin birefringent layer will be described. As shown in FIG. 1, polymer liquid crystal layers 201 and 202 are sandwiched between adjacent substrates of three glass substrates 101, 102, and 103, respectively. The polymer liquid crystal layer can be polymerized by injecting a low-molecular liquid crystal between two glass substrates whose surfaces are aligned and photopolymerizing with UV light or the like.
[0026]
In the example shown in FIG. 1, alignment processing is performed on both surfaces of the central glass substrate 102, and alignment processing is performed on the surfaces of the two glass substrates 101 and 103 on both sides facing the liquid crystal layer. Liquid crystal molecules are aligned in the direction of this alignment treatment. By setting this alignment direction to a desired angle, the angle formed by the optical axes of the two liquid crystal layers can be changed. Here, for example, the alignment treatment may be performed by applying polyimide to the surface of the glass substrate to form a thin film and rubbing, or rubbing the glass substrate directly without forming a polyimide thin film.
[0027]
The three glass substrates 101, 102, and 103 that have been subjected to the alignment treatment as described above are bonded together through a spacer having a size of several μm, liquid crystal is injected into the gap between the two, and polymerized by UV light to be polymerized. The two resin birefringent layers 201 and 202 may be laminated through a glass substrate without using an adhesive layer.
[0028]
The phase difference 2π (Δn × d) / λ of each birefringent layer can be obtained by adjusting the thickness (d) of the liquid crystal layer or changing the birefringence amount (Δn) of the resin birefringent layer. A phase difference can be obtained.
[0029]
As shown in FIG. 1, the thickness of the birefringent layer can be minimized by laminating two birefringent layers 201 and 202 of polymer liquid crystal without using an adhesive layer. This phase plate has a thin birefringent layer, which has been a problem in the past due to wavefront aberration degradation after storage under high temperature and high humidity, yield reduction due to wavefront aberration, phase plate cutting and other optical components. This is most preferable because distortion due to sticking hardly occurs.
[0030]
Further, by removing the two glass substrates 101 and 103 on both sides of the phase plate shown in FIG. 1, polymer birefringent resin layers 203 and 204 are laminated on both sides of the glass substrate 104 as shown in FIG. It is good also as a structure. This is preferable because the entire thickness of the phase plate can be reduced and the weight can be reduced. Further, it is preferable to apply a non-reflective coating (AR coating) to the surfaces of the resin birefringent layers 203 and 204 because surface reflection can be reduced.
Further, as a combination of two resin birefringent layers, one may be a polymer liquid crystal and the other a film birefringent layer.
[0031]
The relationship between the phase difference of these phase plates and the optical axis direction is as follows. In order to convert linearly polarized light into circularly polarized light as a quarter wavelength plate at two different wavelengths as described above, The phase difference of the refracting layer is approximately ½ of the average of the two wavelengths used, and is approximately twice the phase difference of the resin birefringent layer on the exit side. For example, it can be realized by setting the angle to about 15 degrees and for example about 75 degrees.
[0032]
Further, for example, in a two-wavelength phase plate that transmits and uses two types of linearly polarized light of 660 nm band for DVD and 790 nm wavelength band for CD, the polarization direction is rotated by 45 ° with respect to the linearly polarized light of 660 nm wavelength band, A two-wavelength phase plate that circularly polarizes linearly polarized light with respect to linearly polarized light in the 790 nm wavelength band is as follows. That is, the optical axis directions of two resin birefringent layers intersect at an angle in the range of 19 to 29 °, and one resin birefringent layer has a phase difference in the range of 533 to 652 nm, and the other The resin birefringent layer can be realized by giving a phase difference in the range of 356 to 434 nm.
[0033]
Thus, polarization control at each wavelength can be performed by combining two types of resin birefringent layers having different optical axis directions.
[0034]
【Example】
An optical head device using a phase plate in which a glass substrate 102 is sandwiched between two layers of resin birefringent layers 201 and 202 of a polymer liquid crystal as shown in FIG. 1 will be described.
Polyimide was applied to one side of the two glass substrates 101 and 103 and both sides of the glass substrate 102, and alignment treatment was performed by rubbing. The rubbing direction was the same as the incident polarization direction, and the opposing surfaces were the same, and 75 degrees and 15 degrees, respectively. The glass substrates 101 and 102 were bonded to each other with a gap of about 3 μm and the glass substrates 102 and 103 with a gap of about 6 μm. This gap was maintained by using a spherical spacer.
[0035]
Liquid crystal before polymerization is injected into this gap and polymerized by UV polymerization to form a polymer and birefringence, which is made of three layers of resin birefringent layers 201 and 202 of a polymer liquid crystal that is twice as thick. A phase plate was prepared by laminating without using an adhesive or an adhesive between adjacent substrates.
[0036]
The wavefront aberration of this phase plate is approximately 0.01 λ rms or less, and a phase plate with good wavefront aberration can be obtained with a good yield.
Linearly polarized light having two wavelengths of 660 nm and 790 nm was incident on the phase plate from the glass substrate 103 side. As a result, it was confirmed that the light of both wavelengths can obtain a good circularly polarized light having an ellipticity of 0.95, and this phase plate sufficiently functions as a quarter-wave plate at the above two wavelengths. .
[0037]
This quarter-wave plate was mounted at the position of the laminated phase plate 1 of the optical head device shown in the schematic diagram of FIG. 6, and as a result of recording / reproducing experiments, both DVD and CD showed good recording / reproducing characteristics. Indicated.
[0038]
In addition, as a result of testing the quarter-wave plate under high temperature and high humidity, it was confirmed that the change in wavefront aberration was 0.003λ rms or less, which was a practically acceptable level.
[0039]
【The invention's effect】
As described above, since the phase plate in the present invention is laminated with a plurality of resin birefringent layers sandwiched between glass substrates, it absorbs moisture even when used under high temperature and high humidity conditions. Can be suppressed. Therefore, it is possible to reduce the wavefront aberration of the transmitted light of the resin birefringent layer that occurs with the absorption of moisture. Furthermore, since moisture absorption is suppressed, the number of defective products is reduced and production yield is improved.
[0040]
Therefore, when the optical head device is configured by combining this phase plate with other optical components, an optical head device having good optical characteristics with less wavefront aberration can be obtained. Furthermore, the production yield of the optical head device is also improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a phase plate using three glass substrates in the present invention.
FIG. 2 is a cross-sectional view showing an example of a phase plate using one glass substrate in the present invention.
FIG. 3 is a cross-sectional view showing another example of a phase plate using one glass substrate in the present invention.
FIG. 4 is a cross-sectional view showing another example of a phase plate using three glass substrates in the present invention.
FIG. 5 is a cross-sectional view showing an example of a conventional phase plate.
FIG. 6 is a conceptual diagram showing a configuration example of an optical head device of the present invention.
[Explanation of symbols]
101, 102, 103, 104, 105, 106, 107, 108, 109, 110: Glass substrates 201, 202, 203, 204: Polymer liquid crystal layers 205, 206, 207, 208, 209, 210: Birefringence made of resin Layers 301, 302, 303, 304, 305, 306, 307, 308, 309: adhesive layer 1: laminated phase plate 2: objective lens 3: optical disk 4: beam splitter prism 5, 6: light source

Claims (4)

光源と、光源から出射するレーザ光を光記録媒体へ集光する対物レンズと、光記録媒体によって反射されたレーザ光を検出する光検出器と、光源と対物レンズとの間、または光検出器と対物レンズとの間の光路中にレーザ光の偏光状態を制御する位相板を備える光ヘッド装置において、位相板は光学軸方向を交差させた2つ以上の樹脂製複屈折層が積層されており、積層された樹脂製複屈折層の層間には、透明でかつ樹脂製複屈折層よりも透湿性の低い光学的等方性基板が配置されていることを特徴とする光ヘッド装置。A light source, an objective lens for condensing the laser light emitted from the light source onto the optical recording medium, a photodetector for detecting the laser light reflected by the optical recording medium, and between or between the light source and the objective lens In the optical head device having a phase plate for controlling the polarization state of the laser beam in the optical path between the objective lens and the objective lens, the phase plate is formed by laminating two or more resin birefringent layers intersecting the optical axis direction. An optical head device, wherein an optically isotropic substrate that is transparent and has a lower moisture permeability than the resin birefringent layer is disposed between the laminated resin birefringent layers. 前記樹脂製複屈折層と前記光学的等方性基板とが交互に積層されて積層体が構成され、積層体の両外側が前記光学的等方性基板にて構成されている請求項1記載の光ヘッド装置。2. The resin birefringent layer and the optically isotropic substrate are alternately laminated to constitute a laminate, and both outer sides of the laminate are constituted by the optically isotropic substrate. Optical head device. 前記樹脂製複屈折層のうちの少なくとも1つが、高分子液晶膜である請求項1または2記載の光ヘッド装置。3. The optical head device according to claim 1, wherein at least one of the resin birefringent layers is a polymer liquid crystal film. 2つの前記樹脂製複屈折層が3枚の前記光学的等方性基板であるガラス基板と、接着性材料を介さずに交互に積層されている請求項1、2または3記載の光ヘッド装置。4. The optical head device according to claim 1, wherein the two resin birefringent layers are alternately laminated with three glass substrates which are the optically isotropic substrates and without using an adhesive material. .
JP2003022095A 2003-01-30 2003-01-30 Optical head device and method for manufacturing phase plate used in optical head device Expired - Fee Related JP4222042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003022095A JP4222042B2 (en) 2003-01-30 2003-01-30 Optical head device and method for manufacturing phase plate used in optical head device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003022095A JP4222042B2 (en) 2003-01-30 2003-01-30 Optical head device and method for manufacturing phase plate used in optical head device

Publications (2)

Publication Number Publication Date
JP2004234757A true JP2004234757A (en) 2004-08-19
JP4222042B2 JP4222042B2 (en) 2009-02-12

Family

ID=32951261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003022095A Expired - Fee Related JP4222042B2 (en) 2003-01-30 2003-01-30 Optical head device and method for manufacturing phase plate used in optical head device

Country Status (1)

Country Link
JP (1) JP4222042B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122523A (en) * 1994-10-28 1996-05-17 Matsushita Electric Ind Co Ltd Phase difference plate
JPH08278407A (en) * 1995-04-05 1996-10-22 Olympus Optical Co Ltd Beam splitter and beam splitter for optical pickup
JPH1010317A (en) * 1996-06-24 1998-01-16 Toyo Ink Mfg Co Ltd Polarizing plate protective film and polarizing plate
JPH11148079A (en) * 1997-11-18 1999-06-02 Dainippon Ink & Chem Inc Liquid crystal composition and optical isomer using the same
JPH11337733A (en) * 1998-05-28 1999-12-10 Sumitomo Bakelite Co Ltd Double refractive plate and its manufacture
JP2000276766A (en) * 1999-01-19 2000-10-06 Matsushita Electric Ind Co Ltd Optical pickup, optical information recording and reproducing device equipped therewith, and variable phase type wavelength plate used therefor
JP2001101700A (en) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd Optical head device
JP2002182034A (en) * 2000-12-14 2002-06-26 Matsushita Electric Ind Co Ltd Optical element and optical pickup

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122523A (en) * 1994-10-28 1996-05-17 Matsushita Electric Ind Co Ltd Phase difference plate
JPH08278407A (en) * 1995-04-05 1996-10-22 Olympus Optical Co Ltd Beam splitter and beam splitter for optical pickup
JPH1010317A (en) * 1996-06-24 1998-01-16 Toyo Ink Mfg Co Ltd Polarizing plate protective film and polarizing plate
JPH11148079A (en) * 1997-11-18 1999-06-02 Dainippon Ink & Chem Inc Liquid crystal composition and optical isomer using the same
JPH11337733A (en) * 1998-05-28 1999-12-10 Sumitomo Bakelite Co Ltd Double refractive plate and its manufacture
JP2000276766A (en) * 1999-01-19 2000-10-06 Matsushita Electric Ind Co Ltd Optical pickup, optical information recording and reproducing device equipped therewith, and variable phase type wavelength plate used therefor
JP2001101700A (en) * 1999-09-30 2001-04-13 Asahi Glass Co Ltd Optical head device
JP2002182034A (en) * 2000-12-14 2002-06-26 Matsushita Electric Ind Co Ltd Optical element and optical pickup

Also Published As

Publication number Publication date
JP4222042B2 (en) 2009-02-12

Similar Documents

Publication Publication Date Title
TWI406018B (en) Cartesian polarizers utilizing photo-aligned liquid crystals
KR20070065317A (en) Liquid crystal diffractive lens element and optical head device
US7564504B2 (en) Phase plate and an optical data recording/reproducing device
JP3671768B2 (en) Optical head device
JP2006236549A (en) Optical head apparatus, wide band phase plate, and polarization diffraction element
JP4930084B2 (en) Broadband wave plate
JP5316409B2 (en) Phase difference element and optical head device
JP5071316B2 (en) Broadband wave plate and optical head device
KR20070048778A (en) Optical head
JP5056059B2 (en) Broadband wave plate
JP4222042B2 (en) Optical head device and method for manufacturing phase plate used in optical head device
JP4349335B2 (en) Optical head device
JP2007280460A (en) Optical head device
JP4649748B2 (en) Two-wavelength phase plate and optical head device
JP3458895B2 (en) Phase difference element, optical element and optical head device
JP5131244B2 (en) Laminated phase plate and optical head device
US8040781B2 (en) Wavelength selecting wavelength plate and optical head device using it
JP2005339595A (en) Optical head device
JP4626026B2 (en) Optical head device
JP4427877B2 (en) Aperture limiting element and optical head device
JP3968593B2 (en) Optical head device
JP3947828B2 (en) Optical head device and manufacturing method thereof
JP4419739B2 (en) Optical head device
JP4876826B2 (en) Phase difference element and optical head device
JP2001311821A (en) Phase shifter and optical head device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees