JPS6022294Y2 - Heat pump air conditioner - Google Patents

Heat pump air conditioner

Info

Publication number
JPS6022294Y2
JPS6022294Y2 JP618079U JP618079U JPS6022294Y2 JP S6022294 Y2 JPS6022294 Y2 JP S6022294Y2 JP 618079 U JP618079 U JP 618079U JP 618079 U JP618079 U JP 618079U JP S6022294 Y2 JPS6022294 Y2 JP S6022294Y2
Authority
JP
Japan
Prior art keywords
terminal
defrosting
energized
timer
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP618079U
Other languages
Japanese (ja)
Other versions
JPS55105865U (en
Inventor
雄二 雨宮
光男 瀬山
Original Assignee
三洋電機株式会社
東京三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 東京三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to JP618079U priority Critical patent/JPS6022294Y2/en
Publication of JPS55105865U publication Critical patent/JPS55105865U/ja
Application granted granted Critical
Publication of JPS6022294Y2 publication Critical patent/JPS6022294Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【考案の詳細な説明】 本案は逆サイクル方式により空気熱源側熱交換器の除霜
運転を行なう時に大型のヒートポンプ式空気調和装置に
関するもので、空気熱源側熱交換器を構成する複数の単
位熱交換器の何れにも霜残りかない万全を期した除霜運
転を行なわしめると共に除霜運転を遅滞なく確実に開始
するようにした改良装置を提供するものである。
[Detailed description of the invention] This invention relates to a large-sized heat pump type air conditioner when performing defrosting operation of an air heat source side heat exchanger using a reverse cycle method. To provide an improved device which performs a defrosting operation to ensure that no frost remains on any of the exchangers, and also ensures the start of the defrosting operation without delay.

以下本案の一実施例を図面に基づいて説明すると、第1
図の冷媒回路図に於いて1は圧縮器、2は暖房及び冷房
除霜運転時冷媒流路を正逆サイクルに切換える四方弁、
3はヘッダー、4は屋外に設置され複数列(一実施例と
して5列)の単位熱交換器4a、 4bg 4eg 4
d* 4eから成る空気熱源側熱交換器、5a、5b
、5c、5d、5eはこれらの単位熱交換器と接続され
た分流配管、6はこれら分流配管を集合する分流器、7
は膨張弁もしくはキャピラリーチューブ等の冷媒減圧素
子、8は空気熱源側熱交換器4の最下部に配設された凍
結防止用の過冷却コイル、9は屋内に設置される利用側
熱交換器、10,11は逆止弁で、これら機器からヒー
トポンプ式冷媒回路を構成している。
Below, one embodiment of the present invention will be explained based on the drawings.
In the refrigerant circuit diagram shown in the figure, 1 is a compressor, 2 is a four-way valve that switches the refrigerant flow path to a forward and reverse cycle during heating and cooling defrosting operations,
3 is a header, 4 is a unit heat exchanger 4a, 4bg 4eg 4 installed outdoors and having multiple rows (5 rows in one example).
d* Air heat source side heat exchanger consisting of 4e, 5a, 5b
, 5c, 5d, and 5e are branch pipes connected to these unit heat exchangers, 6 is a flow divider that collects these branch pipes, and 7 is a branch pipe connected to these unit heat exchangers.
8 is a refrigerant pressure reducing element such as an expansion valve or a capillary tube, 8 is a subcooling coil for anti-freezing disposed at the bottom of the air heat source side heat exchanger 4, 9 is a user side heat exchanger installed indoors, 10 and 11 are check valves, and these devices constitute a heat pump type refrigerant circuit.

12は空気熱源側熱交換器4の前方より外気を導入して
実線矢印の如く上方へ排出する送風機で、排出空気の一
部が一点鎖線矢印の如くエアーショートして再び空気熱
源側熱交換器4の最下部に位置する単位熱交換器4aへ
導入される為、この単位熱交換器4aは他の単位熱交換
器4b、4C,4dt 4eよりも熱交換効率が低化
してしまう点、及び同一パス数の伝熱管13で単位熱交
換器を5列形成しただけではパス数が冷媒循環量と比べ
て少なく、且つ単位熱交換器を6列形成すると冷媒循環
量と比べて多すぎる点から鑑み、単位熱交換器4aのみ
伝熱管13のパス数を増している。
Reference numeral 12 denotes a blower that introduces outside air from the front of the air heat source side heat exchanger 4 and discharges it upward as shown by the solid line arrow, and a part of the discharged air is short-circuited as shown by the dashed-dotted line arrow and returns to the air heat source side heat exchanger 4. 4, the heat exchange efficiency of this unit heat exchanger 4a is lower than that of the other unit heat exchangers 4b, 4C, 4dt 4e, and If only 5 rows of unit heat exchangers are formed using heat transfer tubes 13 with the same number of passes, the number of passes will be small compared to the amount of refrigerant circulation, and if 6 rows of unit heat exchangers are formed, it will be too large compared to the amount of refrigerant circulation. In view of this, only the unit heat exchanger 4a has an increased number of passes of the heat exchanger tubes 13.

又、外気は前述したように空気熱源側熱交換器4の前方
より上方へ吸排されるので送風機12と最も離れた最下
部の単位熱交換器4eが最も送風が遅く熱交換効率が劣
ることになるが、暖房運転サイクル時圧縮器1−四方弁
2−利用側熱交換器9一過冷却コイル8−逆止弁1〇−
冷媒減圧素子7−分流器6−各分流配管5a、5b、5
c、5d、5e−空気熱源側熱交換器4の各単位熱交換
器4at 4bt 4ct 4dt 4e−ヘッダー3
−四方弁2−圧縮機1と冷媒循環し、高圧液冷媒が流れ
る過冷却コイル8にて隣接する最下部の単位熱交換器4
eは加熱されるので熱交換効率が向上する為、この上段
に位置し、次に風速の遅い単位熱交換器4bが最も熱交
換効率が劣るようになる。
Furthermore, as described above, since the outside air is sucked in and discharged upward from the front of the air heat source side heat exchanger 4, the lowermost unit heat exchanger 4e, which is farthest from the blower 12, has the slowest air blowing speed and inferior heat exchange efficiency. However, during the heating operation cycle, compressor 1 - four-way valve 2 - user side heat exchanger 9 - subcooling coil 8 - check valve 10 -
Refrigerant pressure reducing element 7 - Flow divider 6 - Each branch pipe 5a, 5b, 5
c, 5d, 5e - Each unit heat exchanger 4at 4bt 4ct 4dt 4e - Header 3 of air heat source side heat exchanger 4
- Four-way valve 2 - The lowermost unit heat exchanger 4 adjacent to the compressor 1 and the subcooling coil 8 in which refrigerant circulates and high-pressure liquid refrigerant flows.
Since e is heated, the heat exchange efficiency improves, so the unit heat exchanger 4b, which is located at the upper stage and has the next slowest wind speed, has the lowest heat exchange efficiency.

上述の点から本案一実施例としてパス数の多い単位熱交
換器4aと、熱交換効率が最も劣る単位熱交換器4bと
に着眼し、何れも熱交換効率の劣る少なくとも2個の単
位熱交換器4at4bの暖房時冷媒流入側となり、且つ
除霜時冷媒流出側となる各分流配管5a、5bにポリエ
チレン樹脂チューブ等の感温遅延用の介在物14で被覆
した除霜サーモ15の感温筒16を同時に抱き合わせて
装着するようにしている。
From the above points, as an embodiment of the present invention, we focused on the unit heat exchanger 4a with a large number of passes and the unit heat exchanger 4b with the lowest heat exchange efficiency, and in both cases, at least two unit heat exchangers with poor heat exchange efficiency. Each branch pipe 5a, 5b which becomes the refrigerant inflow side during heating and the refrigerant outflow side during defrosting of the container 4at4b is provided with a temperature sensing cylinder of the defrosting thermometer 15 covered with an inclusion 14 for temperature sensing delay such as a polyethylene resin tube. 16 are attached together at the same time.

第2図は上述の除霜サーモ15並びに圧縮機1用モ一タ
電磁コイルCM、室外送風機12用モータFM四方弁2
用電磁コイルSV等の回路結線を示した電気回路図で、
DTは通電中に作動する除霜タイマー、rDlは該タイ
マーの通電時6紛間経過するとa端子より切換え投入さ
れ、且つこのタイマーの非通電時には投入保持され通電
時には1分間程の短時間でa端子に投入復帰されるb端
子を有するタイマーリレー接点、rD2はこのタイマー
DTの通電時投入され、和分経過後に自動的に開放され
るタイマーリレー接点、rCは圧縮器1用モータ電磁コ
イルCMの励磁時投入されるリレー接点、r□は一方の
リレーコイルR□の励磁時投入されるリレー接点、r2
′は同じくこのリレーコイルR2の励磁時投入されるリ
レー逆接点、17は運転スイッチ、18は冷房時開放さ
れる冷房スイッチ、19は暖房時投入される暖房スイッ
チである。
Figure 2 shows the defrosting thermometer 15 mentioned above, the motor electromagnetic coil CM for the compressor 1, and the motor FM four-way valve 2 for the outdoor blower 12.
An electrical circuit diagram showing the circuit connections of the electromagnetic coil SV, etc.
DT is a defrosting timer that operates while the timer is energized, and rDl is switched on from the a terminal after 6 minutes when the timer is energized, and is held closed when the timer is not energized, and a is turned on in a short time of about 1 minute when the timer is energized. rD2 is a timer relay contact which is turned on when the timer DT is energized and is automatically opened after integration has elapsed; Relay contact that is closed when energized, r□ is a relay contact that is closed when one relay coil R□ is energized, r2
Similarly, 17 is an operation switch, 18 is a cooling switch that is opened during cooling, and 19 is a heating switch that is closed during heating.

以上の如く構成されており、暖房運転時、冷暖房両スイ
ッチ18.19を投入した状態で運転スイッチ17を投
入すると圧縮器1用モータ電磁コイルCM、室外送風機
12用モータFM、四方弁2用電磁コイルS■が通電さ
れ、上述の暖房サイクルを形成して室内が暖房される。
The structure is as described above. During heating operation, when the operation switch 17 is turned on with both the air conditioning and heating switches 18 and 19 turned on, the motor electromagnetic coil CM for the compressor 1, the motor FM for the outdoor blower 12, and the electromagnetic coil for the four-way valve 2 are activated. Coil S■ is energized to form the above-mentioned heating cycle and heat the room.

同時に電磁コイルCMの励磁にて投入されるリレー接点
rcと、a端子に投入されているリレー接点rD工を介
して除霜タイマーDTが通電されて6吋経過後にb端子
に切換え復帰投入され、除霜サーモ15の開放時には除
霜タイマーDTへの通電が解かれてこのタイマー作動が
停止し、b端子に投入保持された状態となっている。
At the same time, the defrost timer DT is energized through the relay contact rc, which is turned on by the excitation of the electromagnetic coil CM, and the relay contact rD, which is turned on to the a terminal, and after 6 hours have passed, it is switched to the b terminal and reset and turned on. When the defrosting thermometer 15 is opened, the defrosting timer DT is de-energized and the timer operation is stopped, and the terminal b is kept connected to the defrosting timer DT.

斯かる冬期暖房運転時外気温度が低下し0℃付近に至る
と熱交換効率の劣る空気熱源側熱交換器4の単位熱交換
器4a、4bに着霜し始め、所定量着霜すると、外気と
の熱交換効率が急激に低下して低圧圧力が下がり、これ
に伴なって単位熱交換器4a*4bの分流配管5a、5
bの温度が低下するようになる。
During such winter heating operation, when the outside air temperature decreases to around 0°C, frost begins to form on the unit heat exchangers 4a and 4b of the air heat source side heat exchanger 4, which has poor heat exchange efficiency, and when a predetermined amount of frost has formed, the outside air The heat exchange efficiency with the unit heat exchanger 4a * 4b decreases rapidly, the low pressure decreases, and along with this, the branch pipes 5a, 5 of the unit heat exchanger 4a * 4b
The temperature of b begins to decrease.

然る時、分流配管5a、5bが同時に同一温度に迄低下
することは空気熱源側熱交換器4を内蔵する屋外ユニッ
トの据付状態及び外気流の強弱風状態等によりほとんど
なく、何れか一方の例えば分流配管5aの温度が一7℃
の時他方の分流配管5bの温度が一5℃とまちまちであ
り、この平均温度−6℃に至ると除霜サーモ15が投入
される。
In such a case, it is almost impossible for the temperature of the branch pipes 5a and 5b to drop to the same temperature at the same time, depending on the installation condition of the outdoor unit containing the air heat source side heat exchanger 4 and the strong and weak wind conditions of the outside air flow. For example, the temperature of the branch pipe 5a is 17°C.
At this time, the temperature of the other branch pipe 5b varies by 15°C, and when this average temperature reaches -6°C, the defrosting thermometer 15 is turned on.

尚、除霜サーモ15の感温筒16は後述するように除霜
終了時に霜残りするのを防止する為に1℃温度感知を鈍
らせる介在物14にて感温遅延させているので、除霜サ
ーモ15の投入設定温度は一5°Cとなっている。
As will be described later, the temperature sensing cylinder 16 of the defrosting thermometer 15 is delayed in temperature sensing by an inclusion 14 that dulls the temperature sensing by 1°C in order to prevent frost from remaining after the defrosting is completed. The set temperature for turning on the frost thermometer 15 is -5°C.

一方、除霜タイマーDTは6紛間経過により通電がきれ
てリレー接点rD工がb端子に投入保持された待機状態
にある為、上述の如く除霜サーモ15が投入されるとリ
レー巻線R1が励磁されてこのリレー接点r1が投入さ
れる。
On the other hand, the defrost timer DT is de-energized after 6 hours and is in a standby state where the relay contact rD is connected to the b terminal and held, so when the defrost thermometer 15 is turned on as described above, the relay winding R1 is excited and this relay contact r1 is closed.

これにより除霜タイマーDTが作動開始してリレー接点
rD2が投入されリレー巻線R2が励磁されるのでこの
リレー接点r2が投入されて自己保持されると共にこの
リレー逆接点r2が開放されるようになり、電磁コイル
SVが解磁されてこの四方弁2が反転し逆サイクル方式
による除霜運転が開始される。
As a result, the defrost timer DT starts operating, relay contact rD2 is closed, and relay winding R2 is energized, so that this relay contact r2 is closed and self-holding, and this relay reverse contact r2 is opened. Then, the electromagnetic coil SV is demagnetized, the four-way valve 2 is reversed, and defrosting operation using the reverse cycle method is started.

このようにしてリレー接点rD□をb端子に投入保持し
て除霜タイマーDTを停止状態で待機させているので、
介在物14の採用により着霜検出が遅れぎみになっても
除霜サーモ15の投入とほぼ同時に除霜開始されるよう
になり、着霜検出の遅れにより除霜タイマーDTが素通
りして所定時間経過しないと除霜運転が開始されない不
具合さを解消している。
In this way, the relay contact rD□ is connected to the b terminal and held, and the defrost timer DT is kept on standby in the stopped state.
By adopting the inclusion 14, even if frost detection is delayed, defrosting will start almost at the same time as the defrost thermostat 15 is turned on, and due to the delay in frost detection, the defrost timer DT will pass by and the defrost will continue for a predetermined period of time. This solves the problem of defrosting operation not starting until the time has elapsed.

併せて、除霜タイマーDTが作動開始するとリレー接点
rD工が1分後にa端子に投入復帰されて元の状態に戻
ると共にリレー接点rD2が投入され、このリレー接点
rD2は後述のように除霜運転を強制的に終了させる為
に投入から和分後に開放されるようになる。
At the same time, when the defrosting timer DT starts operating, the relay contact rD is turned on and returned to the a terminal after 1 minute, returning to the original state, and the relay contact rD2 is turned on, and this relay contact rD2 starts defrosting as described later. In order to forcibly terminate the operation, it will be released after integration after being turned on.

そして四方弁2が反転すると、圧縮器1から高温高圧吐
出冷媒ガスを反転した四方弁2を介してヘッダー3から
空気熱源側熱交換器4の各単位熱交換器4a、4b、4
C,4d、4eに流入させて除霜開始し、流出した凝縮
液冷媒を各分流配管5at 5bt 5eg 5d?
5e−分流器6−冷媒減圧素子7−逆止弁11−利用側
熱交換器9−四方弁2−圧縮器1と循環させる除霜サイ
クルを形成する。
When the four-way valve 2 is reversed, the high-temperature, high-pressure discharge refrigerant gas from the compressor 1 is transferred from the header 3 to each unit heat exchanger 4a, 4b, 4 of the air heat source side heat exchanger 4 through the reversed four-way valve 2.
Defrosting is started by flowing into C, 4d, and 4e, and the condensed liquid refrigerant that flows out is transferred to each branch pipe 5at 5bt 5eg 5d?
5e - flow divider 6 - refrigerant pressure reducing element 7 - check valve 11 - utilization side heat exchanger 9 - four-way valve 2 - compressor 1 to form a defrosting cycle for circulation.

斯かる除霜運転時、着霜開始が最も早く一7℃迄分流配
管5aの温度が低下した単位熱交換器4aが最も着霜量
が多く、他の単位熱交換器4c。
During such defrosting operation, the unit heat exchanger 4a which started frosting the earliest and the temperature of the branch pipe 5a decreased to 17°C has the largest amount of frost, and the other unit heat exchangers 4c.

4d、4eを含め単位熱交換器4bよりも除霜時間を長
く必要とし、最終的にこの単位熱交換器4aに霜残りの
無い完全な除霜状態にする為に必要な温度10°Cにこ
の分流配管5a温度が到達する迄除霜運転を行なうこと
になるが、この分流配管5aは前述したよに他の分流配
管5bと抱き合わせているので例えば除霜運転により分
流配管5aの温度が9°C迄しか上昇していないにもか
かわらず他の分流配管5bの温度が11′C迄上昇した
ことによりこの平均温度10℃を感知して除霜を終了す
るようにすると、単位熱交換器4aは霜残り状態のまま
暖房運転に復帰されるようになる。
Including unit heat exchangers 4d and 4e, the defrosting time is longer than that of the unit heat exchanger 4b, and ultimately the temperature is 10°C, which is necessary to bring the unit heat exchanger 4a into a complete defrost state with no frost residue. The defrosting operation will be performed until the temperature of the branch pipe 5a reaches 90°C, but since the branch pipe 5a is connected to the other branch pipe 5b as described above, for example, the temperature of the branch pipe 5a will decrease to 9. Although the temperature of the other branch pipe 5b has risen to 11'C even though the temperature has only risen to 11'C, if this average temperature of 10C is sensed and defrosting is terminated, the unit heat exchanger 4a is returned to heating operation with the remaining frost remaining.

この弊害を解消するのが本案の最も特徴とするところで
あり、前述したように感温遅延用の介在物14て感温筒
16を被覆することにより1℃温度感知を鈍らせて、平
均温度が11℃に、即ち一方の分流配管5aの温度が1
0℃、他方の分流配管5bの温度が12′C迄上昇した
時点で除霜サーモ15を開放させリレーコイルR□、R
2がが解磁してこのリレー接点r□が開放すると共にリ
レー逆接点r2′が投入されて電磁コイルSV通電によ
り四方弁2が暖房サイクル側に切換わり、且つリレー接
点r2が開放される。
Eliminating this problem is the most distinctive feature of the present invention.As mentioned above, by covering the temperature sensing tube 16 with the temperature sensing delaying inclusion 14, the temperature sensing is dulled by 1 degree Celsius, and the average temperature is reduced. 11°C, that is, the temperature of one branch pipe 5a is 1.
0℃, and when the temperature of the other branch pipe 5b rises to 12'C, the defrosting thermometer 15 is opened and the relay coils R□, R
2 is demagnetized and this relay contact r□ is opened, and at the same time, the relay reverse contact r2' is closed and the four-way valve 2 is switched to the heating cycle side by energizing the electromagnetic coil SV, and the relay contact r2 is opened.

斯かる時、除霜タイマーDTはこの一方のリレー接点r
D1を介して逓伝持続されいるので継続して作動してお
り、m分間除霜運転を行なっても仮に、分流配管5a、
5bの平均温度が10℃迄上昇しない場合は他方のリレ
ー接点rD2を開放して強性的に除霜運転を終了させる
ようにしているが、これは極めて稀な場合で、通常は4
分間程で除霜終了するのが普通である。
At this time, the defrost timer DT is connected to one of these relay contacts r.
Since the transmission is continued through D1, it continues to operate, and even if the defrosting operation is performed for m minutes, the branch pipes 5a,
If the average temperature of 5b does not rise to 10℃, the other relay contact rD2 is opened to forcefully terminate the defrosting operation, but this is an extremely rare case, and normally
Defrosting usually takes about a minute to complete.

尚、感温遅延用の介在物14は前述したように感温筒1
6を被覆する代わりに分流配管5a、5b側を被覆して
も良く、又、他の単位熱交換器5C,5d、5eのうち
特に熱交換効率が劣るものがあればこの分流配管を分流
配管5a、5bと同時に感温筒16を抱き合わせて装着
しても良い。
In addition, the inclusion 14 for temperature sensing delay is attached to the temperature sensing cylinder 1 as described above.
Instead of covering 6, the branch pipes 5a and 5b may be covered. Also, if there is a unit heat exchanger 5C, 5d, or 5e that has particularly poor heat exchange efficiency, this branch pipe may be used as a branch pipe. 5a and 5b may be attached together with the temperature-sensitive cylinder 16 at the same time.

又、必要に応じて介在物14の肉厚を変更すれば使用条
件に応じた感温遅延度合を調整することも可能である。
Further, by changing the thickness of the inclusion 14 as necessary, it is possible to adjust the degree of temperature-sensitive delay depending on the usage conditions.

次に冷房運転時は冷暖房両スイッチ18.19を開放さ
せておけば圧縮器1用モータ電磁コイルCM及び送風機
12用モータFMのみが通電され、冷房運転が行なわれ
る。
Next, during the cooling operation, if both the air conditioning and heating switches 18 and 19 are left open, only the motor electromagnetic coil CM for the compressor 1 and the motor FM for the blower 12 are energized, and the cooling operation is performed.

冷房サイクル時の冷媒流れは前述した除霜サイクルと同
一につき説明は省略する。
The refrigerant flow during the cooling cycle is the same as that in the defrosting cycle described above, so a description thereof will be omitted.

以上詳述したように本案装置は熱交換効率の劣る少なく
とも2個以上の単位熱交換器を有する大型の空気熱源側
熱交換器を対象に、何れの単位熱交換器にも霜残りが無
いように除霜サーその感温筒を感温遅延用の介在物を介
して装着するようにしたので確実に且つ完全に除霜運転
を終了でき、°且つ感温遅延用の介在物採用により反面
着霜検出が鈍くなり、除霜サーその不動作にて除霜タイ
マーが素通りして1周期6吋間経過しないと除霜運転が
開始されないといった欠点を無くす為に除霜サーモが作
動すると同時に除霜開始されるように除霜タイマーを停
止状態で待機させるようにしたので遅滞なく確実に除霜
運転を開始でき、更には除霜サーモ自体を設定温度を個
別に調整する必要もないので標準市販品の除霜サーモを
そのまま使用でき汎用性を富む等、実用上極めて有益で
ある。
As detailed above, the proposed device targets large air heat source side heat exchangers that have at least two or more unit heat exchangers with poor heat exchange efficiency, and is designed to ensure that no frost remains on any of the unit heat exchangers. Since the defrost sensor's thermosensor tube is attached via an inclusion for temperature sensing delay, the defrosting operation can be completed reliably and completely. In order to eliminate the drawback that the defrost detection becomes slow and the defrost timer passes by without the defrost thermometer not operating, and the defrosting operation does not start until one cycle of 6 hours has elapsed, the defrost is activated at the same time as the defrost thermostat is activated. Since the defrost timer is placed on standby in a stopped state, the defrost operation can be started without delay, and there is no need to individually adjust the temperature setting of the defrost thermometer itself, so it is a standard commercially available product. It is extremely useful in practical terms, as it is highly versatile and can be used as is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本案ヒートポンプ式空気調和装置の一実施例を
示す冷媒回路図、第第2図は同じくこの一実施例を示す
主要な電気回路図である。 4・・・・・・空気熱源側熱交換器、4a、 4b、
4c、 4 d、 4 e@@@−66単位熱交
換器、5av5b*5c、 5d、5e・・・・・・分
流配管、14・・・・・・介在物、15・・・・・・除
霜サーモ、16・・・・・・感温筒、DT・・・・・・
除霜タイマー。
FIG. 1 is a refrigerant circuit diagram showing one embodiment of the heat pump air conditioner according to the present invention, and FIG. 2 is a main electrical circuit diagram showing the same embodiment. 4...Air heat source side heat exchanger, 4a, 4b,
4c, 4d, 4e@@@-66 unit heat exchanger, 5av5b*5c, 5d, 5e...Diversion piping, 14...Inclusion, 15... Defrosting thermometer, 16...Temperature tube, DT...
Defrost timer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の単位熱交換器から成る空気熱源側熱交換器のうち
熱交換効率の劣る少なくとも2個以上の前記単位熱交換
器の暖房時冷媒流入側となり且つ除霜時冷媒流出側とな
る冷媒配管箇所に、感温遅延用の介在物を介して装着さ
れた除霜サーその感温筒と、タイマーリレー接点とa端
子を介して所定時間通電された後にこのリレー接点を前
記a端子からb端子へ切換え投入させてこのb端子に投
入保持させる除霜タイマーと、このb端子と接続され前
記除霜サーその投入時に励磁される2個のリレー巻線と
、この一方のリレー巻線の励磁時に暖房サイクルから除
霜サイクルに切換える弁用電磁コイルと、この他方のリ
レー巻線の励磁時に前記除霜タイマーを通電させて前記
タイマーリレー接点からa端子に投入復帰させるこのa
端子短絡用のリレー接点と、この他方のリレー巻線の励
磁時に前記す端子を短絡する自己保持用のリレー接点と
を備えたことを特徴とするヒト−ポンプ式空気調和装置
A refrigerant piping location that becomes the refrigerant inflow side during heating and the refrigerant outflow side during defrosting of at least two or more unit heat exchangers with poor heat exchange efficiency among the air heat source side heat exchangers consisting of a plurality of unit heat exchangers. After being energized for a predetermined period of time via the defrosting sensor's temperature-sensing tube, the timer relay contact, and the a-terminal, which are attached via a temperature-sensing delay intervention, the relay contact is transferred from the a-terminal to the b-terminal. A defrosting timer that is switched on and held at this B terminal, two relay windings that are connected to this B terminal and energized when the defrosting circuit is turned on, and a heating when one of the relay windings is energized. A valve electromagnetic coil that switches from a cycle to a defrost cycle, and this a that energizes the defrost timer when the other relay winding is energized and returns the timer relay contact to the a terminal.
1. A human-pump air conditioner comprising: a relay contact for terminal short-circuit; and a self-holding relay contact for short-circuiting the terminal when the other relay winding is energized.
JP618079U 1979-01-20 1979-01-20 Heat pump air conditioner Expired JPS6022294Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP618079U JPS6022294Y2 (en) 1979-01-20 1979-01-20 Heat pump air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP618079U JPS6022294Y2 (en) 1979-01-20 1979-01-20 Heat pump air conditioner

Publications (2)

Publication Number Publication Date
JPS55105865U JPS55105865U (en) 1980-07-24
JPS6022294Y2 true JPS6022294Y2 (en) 1985-07-02

Family

ID=28812724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP618079U Expired JPS6022294Y2 (en) 1979-01-20 1979-01-20 Heat pump air conditioner

Country Status (1)

Country Link
JP (1) JPS6022294Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597568B2 (en) * 2016-11-24 2019-10-30 ダイキン工業株式会社 Heat exchanger and refrigeration equipment

Also Published As

Publication number Publication date
JPS55105865U (en) 1980-07-24

Similar Documents

Publication Publication Date Title
JP3378724B2 (en) Defrosting control method for air conditioner
JPH07198236A (en) Air flow interruption detecting method in heat pump system
JPS6325471A (en) Air conditioner
JPH0743051A (en) Air conditioner
JPS6022294Y2 (en) Heat pump air conditioner
JP3050114B2 (en) Control method of ice storage type chiller
JPS59217460A (en) Refrigeration cycle of air conditioner
JPH08128762A (en) Defrosting device for outdoor unit
JPH0319457B2 (en)
JPH08285393A (en) Air conditioner for multi-room
JPH033903Y2 (en)
JPS61114042A (en) Defrosting control device of air conditioner
JPH0141105Y2 (en)
JPS6144103Y2 (en)
JPH0799298B2 (en) Defrosting method for heat pump type air conditioner
JPS5816142A (en) Controlling device for defrosting operation
JPH0350337Y2 (en)
JPH025294Y2 (en)
JPS6330939Y2 (en)
JPS5856528Y2 (en) Refrigeration equipment
JPH01121645A (en) Defrosting control device for air conditioner
JPS5850186Y2 (en) Heat pump air conditioner
JPH0579732A (en) Freezing device and defrosting operation control device therefor
JPH0225105Y2 (en)
JPH0225104Y2 (en)