JPS60220920A - Manufacture of permanent magnet - Google Patents

Manufacture of permanent magnet

Info

Publication number
JPS60220920A
JPS60220920A JP7785484A JP7785484A JPS60220920A JP S60220920 A JPS60220920 A JP S60220920A JP 7785484 A JP7785484 A JP 7785484A JP 7785484 A JP7785484 A JP 7785484A JP S60220920 A JPS60220920 A JP S60220920A
Authority
JP
Japan
Prior art keywords
powder
magnet powder
lubricant
resin
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7785484A
Other languages
Japanese (ja)
Inventor
Ryuichi Ozaki
隆一 尾崎
Tatsuya Shimoda
達也 下田
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP7785484A priority Critical patent/JPS60220920A/en
Publication of JPS60220920A publication Critical patent/JPS60220920A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/08Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/083Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enable to increase the filling amount of magnet powder as well as to improve its orientation property and to obtain a highly efficient resin-bonded magnet by a method wherein the magnet powder with its surface covered with a lubricant and a thermosetting resin are mixed and a press molding is performed on the mixture in a magnetic field. CONSTITUTION:A lubricant, such as aliphatic carboxylic acid, aliphatic family carboxylic acid ester, resin carboxylic acid amide and so forth, is coated on the surface of rare earth magnet powder consisting of a lanthanum family metal and a transition metal. At this time, the amount of the lubricant, which is used for the coating, is selected at a ratio of 0.05-0.6wt% to that of the magnet powder in consideration of strength, heat resistance and so forth, and the lubricant is coated while being made to disperse in solvent. After the coating was over, the solvent along is made to heat-evaporate. After that, 20wt% of epoxy resin is added to this magnet powder, both is mixed and the mixture is molded by press in a magnetic field. According to such a way, the friction between the powder and the resin and the friction between the powder-powder at the time of press molding are lowered, the filling amount of the magnet powder is increased and the residual magnetic flux density and the square type property are improved. Accordingly, a high energy product is obtained.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、滑剤でコーティングされた磁石粉末と熱硬化
性樹脂からなる混合物を磁場中でプレス成形することに
より得られる永久磁石の製造方法に関するものである。
[Detailed Description of the Invention] [Technical Field] The present invention relates to a method for producing a permanent magnet obtained by press-molding a mixture of magnet powder coated with a lubricant and a thermosetting resin in a magnetic field. .

〔従来技術〕[Prior art]

永久磁石にけ、大きく分けると焼結型と樹脂結合型の2
つの型がある。焼結型磁石の特徴としては高いエネルギ
ー積が挙げられる。一方樹脂結合型磁石は、結合用の樹
脂に熱硬化性樹脂を用いるか、熱可塑性樹脂を用いるか
により2つに分かれる。熱可塑性樹脂音用いた永久磁石
は、機械的強問に優れているものの、最大エネルギー積
(以下(BE >maxと略す)が希土類磁石粉末を用
い7′c場合でも′7〜8(MGoe)程度しかなく用
途が限られている。熱硬化性樹脂を用いた永久磁石は、
樹脂の情が少なくて済むため、その(BH>maxけ熱
可塑性樹脂を用いた磁石の2倍以上あり、良好な機械的
特性及び成形の容易きとも合わせて現在非常に注目これ
でいる。熱硬化性樹脂を用いた樹脂結合型永久磁石(以
後、単に樹脂結合型永久磁石と書く)は従来、適当な粒
度に粉砕した磁石粉末と熱硬化性樹脂を単に混練したも
ので、あり、その成形物は密蜜が低く、磁気性能も焼結
磁石に比べると、まだかなり低いといった欠点を有して
おり、高性能が要求される用途には使用されなかった。
Permanent magnets can be roughly divided into two types: sintered type and resin bonded type.
There are two types. A feature of sintered magnets is their high energy product. On the other hand, resin bonded magnets are divided into two types depending on whether a thermosetting resin or a thermoplastic resin is used for the bonding resin. Permanent magnets using thermoplastic resin have excellent mechanical strength, but the maximum energy product (hereinafter abbreviated as BE > max) is '7~8 (MGoe) even when rare earth magnet powder is used and is 7'c. Permanent magnets using thermosetting resin are
Because it requires less resin, its (BH > max) is more than twice that of magnets using thermoplastic resin, and it is currently attracting a lot of attention due to its good mechanical properties and ease of molding. Resin-bonded permanent magnets using curable resin (hereinafter simply referred to as resin-bonded permanent magnets) are conventionally made by simply kneading magnet powder crushed to an appropriate particle size and thermosetting resin. The material had the drawbacks of low density and magnetic performance that was still considerably lower than that of sintered magnets, so it was not used in applications that required high performance.

〔目的〕〔the purpose〕

本発明けこの様な欠点を改良するために、磁石粉末表面
に滑剤をコーティングすることにより、樹脂結合型磁石
の高性能化を計ったものである。
The present invention aims to improve the performance of the resin-bonded magnet by coating the surface of the magnet powder with a lubricant in order to improve the above drawbacks.

〔概要〕〔overview〕

磁石粉末表面に滑剤をコーティングすると、粉末表面に
できるこの潤滑層がプレス成形時に生じる粉末−樹脂間
、粉末−粉末間の摩擦を低減するため磁石粉末の充填量
が増加し、また配向性も向上するので磁石の性能が上が
る。
When a lubricant is coated on the surface of the magnet powder, this lubricant layer formed on the powder surface reduces the powder-resin and powder-powder friction that occurs during press molding, increasing the amount of magnet powder packed and improving orientation. This improves the performance of the magnet.

この磁石粉末表面にコーティングされる滑剤には脂肪族
カルボン酸、脂肪族カルボン酸エステルそして脂肪族カ
ルボン酸アミドがある。
The lubricants coated on the surface of the magnet powder include aliphatic carboxylic acids, aliphatic carboxylic acid esters, and aliphatic carboxylic acid amides.

この脂肪族カルボン酸のイヒ学式は一般にROOOHで
表わされRけ炭化水素基f表わす。Eの中にけアルキル
基のような飽和炭化水素基の他、二重結合を含んでいる
不飽和炭化水素基、炭化水素基の中の水素原子が水酸基
(−OH)で置換されたものそして環状の炭化水素基を
持ったものがある。またカルボキシル基(−000H)
f2つ持った脂肪族ジカルボン酸も含まれる。これらの
中の代表的なものとしてはカプリル酸、ペラルゴン酸、
ミリヌチン酸、パルミチン酸、ステアリン酸、ベヘン酸
、オレイン酸、エルカ酸、リノール酸、リルン酸、ゴル
リン酸、サビニン酸、リシルイン酸そしてタブシア酸な
どがある。
The Ich formula of this aliphatic carboxylic acid is generally represented by ROOOH, where R represents a hydrocarbon group f. In addition to saturated hydrocarbon groups such as alkyl groups in E, unsaturated hydrocarbon groups containing double bonds, hydrocarbon groups in which the hydrogen atom is replaced with a hydroxyl group (-OH), and Some have cyclic hydrocarbon groups. Also carboxyl group (-000H)
It also includes aliphatic dicarboxylic acids with two fs. Typical of these are caprylic acid, pelargonic acid,
These include myrinutic acid, palmitic acid, stearic acid, behenic acid, oleic acid, erucic acid, linoleic acid, linoleic acid, golulic acid, sabinic acid, lycylic acid, and tabusic acid.

脂肪族カルボン酸エステルは前4の脂肪族カルホン酸と
アルコールから合成でれ、その一般式けROOOR’と
なる。ここでR′はアルキル基を示す。
Aliphatic carboxylic acid esters can be synthesized from the above-mentioned aliphatic carbonic acids and alcohols, and have the general formula ROOOR'. R' here represents an alkyl group.

脂肪族カルボン酸エステルの種類は脂肪族カルボン酸の
メチルエステル、エチルエステルそしてブチルエステル
等があり非常に多い。代表的なものとしてラウリル酸メ
チル、ミリスチン酸エチル、ステアリン酸メチル、ステ
アリン酸三メチル、オレイン酸メチル、オレイン酸エチ
ル等がある。
There are many types of aliphatic carboxylic acid esters, including methyl esters, ethyl esters, and butyl esters of aliphatic carboxylic acids. Typical examples include methyl laurate, ethyl myristate, methyl stearate, trimethyl stearate, methyl oleate, and ethyl oleate.

脂肪族カルボン酸アミドはカルボキシル基中の水酸基(
−OH)がアミノ基(−NH2)で置換されたものであ
り、一般式けR(! ON H2で表わされる。代表的
な物質としてはカプリル酸アミド、ミリスチン酸アミド
、ステアリン酸アミド、オレイン酸アミドなどが挙げら
れる。
Aliphatic carboxylic acid amide has a hydroxyl group (
-OH) is substituted with an amino group (-NH2), and is represented by the general formula R(!ON H2. Typical substances include caprylic acid amide, myristic acid amide, stearic acid amide, and oleic acid amide. Examples include amides.

一方、使用する磁石粉末UR2TM+7系の希土類磁石
粉末であり、RけYを含むランタン系金属元素La 、
 ce 、 pr 、 Nd 、 Sm 、 zu 、
 Gd 、 Tb、 Dy 、 HO、Br。
On the other hand, the magnet powder used is a rare earth magnet powder of UR2TM+7 series, and the lanthanum metal element La containing R, Y,
ce, pr, Nd, Sm, zu,
Gd, Tb, Dy, HO, Br.

Tm 、 Yb、 Lu の1種または2種以上の組合
せ、そしてTMけ遷移金属を表わしている。このR2T
 MI7系磁石粉末けSm0oy 、アルニコ、フェラ
イト磁石粉末に比べて高い磁気性能を有するため、樹脂
結合型磁石に適しているといえる。
TM represents one type or a combination of two or more of Tm, Yb, and Lu, and TM represents a transition metal. This R2T
MI7-based magnet powder has higher magnetic performance than Sm0oy, alnico, and ferrite magnet powder, so it can be said to be suitable for resin-bonded magnets.

磁石粉末表面上にコーティングする滑剤の量は磁石粉末
に対して0.05〜0.6重量%が適当であり0.05
重量%より少ない場合は十分な滑性が得られなくなり、
0.6重量%を越えると成形品の強度や耐熱性が低下す
る。また磁石粉末表面に磁石粉末をコーティングする方
法は大別すると次の2つがある。
The appropriate amount of lubricant to be coated on the surface of the magnet powder is 0.05 to 0.6% by weight based on the magnet powder, and 0.05% by weight.
If it is less than % by weight, sufficient lubricity will not be obtained,
If it exceeds 0.6% by weight, the strength and heat resistance of the molded product will decrease. Furthermore, there are two methods for coating the surface of the magnet powder, as follows.

(α) 溶剤スラリー法 この方法は滑剤を適当な溶剤中に溶がしく液体の場合は
混合する)、その後磁石粉末をこの溶液中に分散させ、
攪拌しながら溶剤を蒸発させることにより滑剤を磁石粉
末表面にコーティングする方法。
(α) Solvent slurry method In this method, the lubricant is dissolved in a suitable solvent (if it is liquid, it is mixed), then the magnet powder is dispersed in this solution,
A method of coating the surface of magnet powder with lubricant by evaporating the solvent while stirring.

(b) 直接混線法 滑剤を磁石粉末に添加し、この系を混線機(ホイール型
温練機、ブレード型混線機等)を用いて機械的にコーテ
ィングする方法。
(b) Direct cross-mixing method A method in which a lubricant is added to magnet powder and the system is mechanically coated using a cross-mixer (wheel-type mixer, blade-type mixer, etc.).

この(a、)、(b)いずれの方法でも加熱、減圧等を
行うことにより、均一なコーティング層を速く作ること
が可能である。
In both methods (a,) and (b), it is possible to quickly form a uniform coating layer by heating, reducing pressure, etc.

本発明の永久磁石とそ、の製造方法は磁性粉末の表面に
滑剤のコーティング層を作った後、エポキシ樹脂を05
〜4.0重量%の範囲で添加し混線を行ない、この混線
物を磁場中でプレス成形して得られること全特徴とする
The permanent magnet of the present invention and its manufacturing method include forming a coating layer of a lubricant on the surface of magnetic powder, and then applying an epoxy resin to the surface of the magnetic powder.
It is characterized in that it can be obtained by adding the mixture in an amount of 4.0% by weight to cross-wire, and press-molding the cross-wire in a magnetic field.

〔実施例〕〔Example〕

以下、本発明について実施例に基うき詳細に説明する。 Hereinafter, the present invention will be explained in detail based on examples.

(実施例1) Sm(Coo、6.、 Cu(、、CnFe(、,3z
ro、o16 )7.’gの組成をした合金を高周波溶
解炉で溶解しインボラトラつくる。このインコツトに溶
体化処理をして時効処理などの熱処理を行ない、その後
このインゴットをボールミルで2〜80μ兜程度まで粉
砕する。得られた粉末に第1表に示した滑剤fO15重
量%溶剤スラリー法を用いてコーティングする。その後
この粉末にエポキシ樹脂2.0重量%添加し混線を行な
い、この混練物を磁場中でプレス成形する。この成形品
の磁気性能を第2表に示す。
(Example 1) Sm(Coo, 6., Cu(,, CnFe(,, 3z
ro, o16)7. An alloy with a composition of 'g is melted in a high-frequency melting furnace to produce Inboratora. This ingot is subjected to solution treatment and heat treatment such as aging treatment, and then this ingot is ground in a ball mill to a size of about 2 to 80 μm. The obtained powder is coated with 15% by weight of the lubricant fO shown in Table 1 using a solvent slurry method. Thereafter, 2.0% by weight of epoxy resin is added to this powder, cross-mixing is performed, and the kneaded product is press-molded in a magnetic field. The magnetic performance of this molded article is shown in Table 2.

第1表 第2表より試料1〜5は比較例にくらべ大巾に磁気性能
が向上している。これは脂肪族カルボン酸の有する滑性
により成形体の密度が増加しその結果残留磁束密度(以
下BTと略す)が向上したことと、配向度を表わす角型
性5Q(=Hに/1Hc)が向としたことによるもので
ある。この様に脂肪族カルボン酸は滑剤として樹脂結合
型永久磁石の性能向上に有効であるといえる。
From Tables 1 and 2, samples 1 to 5 have significantly improved magnetic performance compared to the comparative example. This is because the density of the compact increases due to the lubricity of the aliphatic carboxylic acid, resulting in an improvement in residual magnetic flux density (hereinafter abbreviated as BT), and squareness 5Q (=H/1Hc), which represents the degree of orientation. This is due to the fact that the Thus, it can be said that aliphatic carboxylic acids are effective as lubricants in improving the performance of resin-bonded permanent magnets.

第2表 (実施例2) 滑剤として第6表に示す脂肪族カルボン酸エステル類を
用い、実施例1と同じ方法で成形した永久磁石の磁気性
能を第4表に示す。
Table 2 (Example 2) Table 4 shows the magnetic performance of permanent magnets molded in the same manner as in Example 1 using aliphatic carboxylic acid esters shown in Table 6 as lubricants.

第4衣においても比較例にくらべ本発明磁石はBτ、S
Q共に高くなっていることが判る。脂肪族カルボン酸エ
ステルも滑剤として樹脂結合型永久磁石の性能の向上に
有効であると言える。
Also in the fourth case, compared to the comparative example, the magnet of the present invention has Bτ, S
It can be seen that both Q and Q are high. It can be said that aliphatic carboxylic acid esters are also effective as lubricants in improving the performance of resin-bonded permanent magnets.

第4表 (実施例3) 滑剤として第5衣に示す脂肪族カルボン酸アミド類を用
い、実施例1と同じ方法で成形した永久磁石の磁気性能
を第6表に示す。
Table 4 (Example 3) Table 6 shows the magnetic performance of permanent magnets molded in the same manner as in Example 1 using the aliphatic carboxylic acid amides shown in Item 5 as lubricants.

第5表 第6表より従来法にくらべ本発明磁石は高い磁気性能全
有していることが判る。脂肪族カルボン酸アミドは樹脂
結合型永久磁石の磁気性能の向上に有効であるといえる
It can be seen from Tables 5 and 6 that the magnets of the present invention have higher magnetic performance than the conventional magnets. It can be said that aliphatic carboxylic acid amide is effective in improving the magnetic performance of resin-bonded permanent magnets.

第6表 (実施例4) 滑剤にオレイン酸を用い、磁石合金に第7表の組成式で
示される合金を使い、実施例1と同じ方法で製造した永
久磁石と従来法(滑剤無し)により製造された永久磁石
の磁気性能を第1図に示す。
Table 6 (Example 4) Using oleic acid as a lubricant and using an alloy shown by the composition formula in Table 7 as a magnet alloy, permanent magnets were manufactured in the same manner as in Example 1 and by the conventional method (without lubricant). Figure 1 shows the magnetic performance of the manufactured permanent magnet.

第1図より本発明磁石は従来法にくらべ磁石合金が替っ
ても高性能を有することが判る。
From FIG. 1, it can be seen that the magnet of the present invention has higher performance than the conventional method even if the magnet alloy is changed.

〔効果〕〔effect〕

以上の説明の通り、本発明により樹脂結合型永久磁石の
欠点であった低性能が克服され、高性能樹脂結合型磁石
の量産が可能となるといえる。
As explained above, it can be said that the present invention overcomes the low performance that was a drawback of resin-bonded permanent magnets, and makes it possible to mass-produce high-performance resin-bonded magnets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は磁石合金を香気たとき、本発明法と従来法で製
造した永久磁石の磁気性能の比較。
Figure 1 compares the magnetic performance of permanent magnets manufactured by the method of the present invention and by the conventional method when the magnetic alloy is scented.

Claims (1)

【特許請求の範囲】 (1) 磁石粉末表面を滑剤で覆い、この磁石粉末と熱
硬化性樹脂を混練し、その後この混線物を磁場中でプレ
ス成形して得られる永久磁石の製造方法。 (2、特許請求の範[ffl ! (1)項において、
使用する滑剤に、脂肪族カルボン酸、脂肪族カルボン酸
エステルそして脂肪族カルボン酸アミドを用いることを
特徴とする永久磁石の製造方法。 (6) %許月青求の範囲第1項において、使用する磁
石粉末にR2TMI7系磁石粉末(RViYを含むラン
タン系金属元素の1種または2種以上、TMld遷移金
属を衣わす。)を用いることを特徴とする永久磁石の製
造方法。
[Scope of Claims] (1) A method for producing a permanent magnet obtained by covering the surface of a magnet powder with a lubricant, kneading the magnet powder and a thermosetting resin, and then press-molding the mixed wire in a magnetic field. (2. Claims [ffl! In paragraph (1),
A method for producing a permanent magnet, characterized in that the lubricant used is an aliphatic carboxylic acid, an aliphatic carboxylic acid ester, or an aliphatic carboxylic acid amide. (6) In Paragraph 1 of the scope of the % Kozuki Blue Request, it is specified that R2TMI7-based magnet powder (coated with one or more lanthanum metal elements including RViY and TMld transition metal) is used as the magnet powder. Characteristic permanent magnet manufacturing method.
JP7785484A 1984-04-18 1984-04-18 Manufacture of permanent magnet Pending JPS60220920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7785484A JPS60220920A (en) 1984-04-18 1984-04-18 Manufacture of permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7785484A JPS60220920A (en) 1984-04-18 1984-04-18 Manufacture of permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP1285014A Division JPH02161701A (en) 1989-11-02 1989-11-02 Manufacture of permanent magnet

Publications (1)

Publication Number Publication Date
JPS60220920A true JPS60220920A (en) 1985-11-05

Family

ID=13645644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7785484A Pending JPS60220920A (en) 1984-04-18 1984-04-18 Manufacture of permanent magnet

Country Status (1)

Country Link
JP (1) JPS60220920A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018041882A (en) * 2016-09-09 2018-03-15 パナソニック株式会社 Rare earth magnet powder, rare earth bond magnet, electric-motor element, and electric-motor
JP2021082826A (en) * 2015-03-24 2021-05-27 日東電工株式会社 Manufacturing method of sintered body for forming rare-earth magnet
JP2021106271A (en) * 2015-07-31 2021-07-26 日東電工株式会社 Sintered body for forming rare-earth magnet and rare-earth sintered magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726102A (en) * 1980-07-21 1982-02-12 Seiko Epson Corp Magnetic powder with lubricating layer
JPS5754304A (en) * 1980-09-19 1982-03-31 Seiko Epson Corp Manufacture of permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726102A (en) * 1980-07-21 1982-02-12 Seiko Epson Corp Magnetic powder with lubricating layer
JPS5754304A (en) * 1980-09-19 1982-03-31 Seiko Epson Corp Manufacture of permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021082826A (en) * 2015-03-24 2021-05-27 日東電工株式会社 Manufacturing method of sintered body for forming rare-earth magnet
JP2021106271A (en) * 2015-07-31 2021-07-26 日東電工株式会社 Sintered body for forming rare-earth magnet and rare-earth sintered magnet
JP2018041882A (en) * 2016-09-09 2018-03-15 パナソニック株式会社 Rare earth magnet powder, rare earth bond magnet, electric-motor element, and electric-motor

Similar Documents

Publication Publication Date Title
CN1100228A (en) Magnetically anisotropic spherical powder
JPH0348645B2 (en)
JPS60220920A (en) Manufacture of permanent magnet
JP2007088354A (en) METHOD OF MANUFACTURING Sm2Fe17N3/Nd2Fe14B ANISOTROPIC COMPOSITE MAGNET
JPH0518242B2 (en)
JPS63313807A (en) Of highly efficient permanent magnet with high-anticorrosivity, and manufacture thereof
JPH02161701A (en) Manufacture of permanent magnet
JPH08167513A (en) Bonded permanent magnet
JPH09129427A (en) Rare earth bond magnet, composite for rare earth bond magnet and manufacture of rare earth bond magnet
JP2757040B2 (en) Method for producing Nd-Fe-B bonded magnet
JP2011216641A (en) Method of manufacturing rare earth bond magnet
JP2002175909A (en) Bonded magnetic having superior thermal stability, and its manufacturing method
JPH0513207A (en) Manufacture of r-t-b-based permanent magnet
JPS63306603A (en) Material composition of permanent magnet
JPS60220907A (en) Ferromagnetic resin composition
JP3652751B2 (en) Anisotropic bonded magnet
JPH06346200A (en) Permanent magnet alloy
JP3174443B2 (en) Method for producing sintered R-Fe-B magnet by injection molding method
JPH04116101A (en) Magnetic powder for high-coercive-force anisotropic bond magnet and its production
JP2925840B2 (en) Fe-BR bonded magnet
JP3652752B2 (en) Anisotropic bonded magnet
JPH02155203A (en) Manufacture of polymer composite type rare earth magnet
JP3032385B2 (en) Fe-BR bonded magnet
JPS62261102A (en) Bonded magnet for starter motor
JPH09320876A (en) Manufacture of anisotropic bond magnet