JPS60219782A - Gas laser tube - Google Patents

Gas laser tube

Info

Publication number
JPS60219782A
JPS60219782A JP7594484A JP7594484A JPS60219782A JP S60219782 A JPS60219782 A JP S60219782A JP 7594484 A JP7594484 A JP 7594484A JP 7594484 A JP7594484 A JP 7594484A JP S60219782 A JPS60219782 A JP S60219782A
Authority
JP
Japan
Prior art keywords
tube
cathode
silicon carbide
anode
discharge path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7594484A
Other languages
Japanese (ja)
Inventor
Katsuro Takebe
武部 勝郎
Koji Hayashi
林 弘次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP7594484A priority Critical patent/JPS60219782A/en
Publication of JPS60219782A publication Critical patent/JPS60219782A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
    • H01S3/0323Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube by special features of the discharge constricting tube, e.g. capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0305Selection of materials for the tube or the coatings thereon

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain the titled tube of low cost and high quality by a method wherein a discharge path fine tube forming a discharge path is made of silicon carbide. CONSTITUTION:The fine tube made of silicon carbide forms a discharge path between the cathode 11 and the anode connected via encapsulating trays 2 and 3 respectively. Heat dissipating fins 6 are bonded to the outer periphery of the tube 1, and the heat evolving in the encapsulating trays 2, 3, and 7 and the anode 5 is dissipated via fins 6 by the air fed in from a fan not illustrated. A cathode valve 4 includes the cathode 11 and contains argon gas. Besides, a return path 9 for the argon gas connects the valve 4 with an anode valve 8.

Description

【発明の詳細な説明】 (発明の属する分野) 本発明は、ヘリウム・ネオン、アルゴン、クリプトン、
炭酸ガス等のガス放電による励起を用いてレーザ発振を
現出させるガスレーザ管に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field to which the invention pertains) The present invention relates to helium-neon, argon, krypton,
The present invention relates to a gas laser tube that produces laser oscillation using excitation by discharge of a gas such as carbon dioxide gas.

(従来の技術) 一般に、ガスレーザ管は、放電路を形成するガラスまた
はセラミックから成る放電路細管(以下細管と称する)
、両端に位置する一対の窓、陽極および陰極を主構成要
素とする円筒状の密閉管であり、その内部には、ヘリウ
ム・ネオン、アルゴン、クリプトン、炭酸ガス等が封入
されている。
(Prior Art) Generally, a gas laser tube is a discharge path thin tube (hereinafter referred to as a thin tube) made of glass or ceramic that forms a discharge path.
It is a cylindrical sealed tube whose main components are a pair of windows located at both ends, an anode, and a cathode, and the inside of the tube is filled with helium/neon, argon, krypton, carbon dioxide gas, etc.

ところで、上記ガスレーザ管の高出力化を図るには、放
電電流の密度を大きくしなければならないが、その場合
、細管管壁における放電ガスの衝突により、損失エネル
ギーが増大する。このため。
Incidentally, in order to increase the output of the gas laser tube, it is necessary to increase the density of the discharge current, but in this case, energy loss increases due to collisions of the discharge gas on the walls of the thin tube. For this reason.

細管の管壁温度が著しく上昇し、細管の破壊や発振効率
の低下を生せしめる。
The temperature of the tube wall of the capillary increases significantly, causing destruction of the capillary and a decrease in oscillation efficiency.

こうした理由により、炭酸ガスレーザやアルゴンレーザ
等の高出力レーザの場合には、ガスレーザ管とりわけ細
管部の熱放散が極めて重要な課題となる。
For these reasons, in the case of high-power lasers such as carbon dioxide lasers and argon lasers, heat dissipation in the gas laser tube, especially in the thin tube section, becomes an extremely important issue.

そこで、出力が比較的大きい場合には、耐熱性耐熱衝撃
性に優れた石英ガラス管の内部に、タングステン等の高
融点金属あるいは黒鉛を用いた導電性有孔円板を絶縁用
スペーサを介して積層して形成した細管部を配設したガ
スレーザ管と熱伝導性および気密性に優れたべ+71J
ア(酸比べIJ IJウム)セラミック製細管を外囲気
を兼ねて使用したガスレーザ管の二種類が一般的である
。いずれも外囲器は冷却水圧浸漬されている。
Therefore, when the output is relatively large, a conductive perforated disk made of a high melting point metal such as tungsten or graphite is placed inside a quartz glass tube with excellent heat resistance and thermal shock resistance via an insulating spacer. Gas laser tube with laminated thin tube parts and Be+71J with excellent thermal conductivity and airtightness
A (compared to acids) There are two common types of gas laser tubes that use a ceramic thin tube that also serves as the surrounding air. In both cases, the envelopes are immersed in cooling water pressure.

また、出力が比較的小さい場合には、ぺIJ 177セ
ラミツク製細管の外壁に放#フィンを設けたガスレーザ
管が一般的であり、ファンによシ空冷される。
In addition, when the output is relatively small, a gas laser tube is generally used, which is a thin ceramic tube made of PEIJ 177 with venting fins provided on the outer wall, and is air-cooled by a fan.

このうち、ベリリアセラミック細管は、種々の利点を備
えているが、製造上極めて重大な欠点を有している。
Among these, beryllia ceramic capillaries have various advantages, but have extremely serious drawbacks in manufacturing.

すなわち、ベリリアセラミックは、第一に法的に規制の
ある物質であシ、加工、取扱いに腐心しなければならな
いこと、第二に、極めて高価であり、長尺ものや所要の
形状のものが入手しにくいこと、第三には、機械的強度
がアルミナセラミック等に比して弱く軽量化ができない
ことなどが挙げられる。また、これらの欠点から派生す
る製造上の問題点も多く、ベリリアセラミックから他の
材質への転換がめられて来た。
Firstly, beryllia ceramic is a legally regulated substance and must be processed and handled with great care.Secondly, it is extremely expensive and cannot be manufactured in long pieces or in the required shapes. The third problem is that the mechanical strength is weaker than that of alumina ceramics and the like, and it is impossible to reduce the weight. In addition, there are many manufacturing problems derived from these drawbacks, and there have been attempts to switch from beryllia ceramic to other materials.

(発明の目的) 本発明は、従来のべIJ IJアセラミック細管を使用
したガスレーザ管の欠点を解決するために、ベリリアセ
ラミックを炭化珪素におきかえたもので。
(Object of the Invention) The present invention replaces beryllia ceramic with silicon carbide in order to solve the drawbacks of the conventional gas laser tube using ceramic capillary tubes.

法的な規制もなく、比較的安価で、高品質のガスレーザ
管を提供することにおる。
Our goal is to provide high-quality gas laser tubes that are relatively inexpensive and have no legal restrictions.

以下1本発明について詳細に説明する。The present invention will be explained in detail below.

(発明の構成および作用) 第1図は、本発明の一実施例によるアルゴンガスレーザ
管断面を示す。第1図において、1は長さ66mm。
(Structure and operation of the invention) FIG. 1 shows a cross section of an argon gas laser tube according to an embodiment of the invention. In Fig. 1, 1 has a length of 66 mm.

外径16mm、内径1.02mmの炭化珪素製細管であ
り、封入珪2および3を介して各々連結されている陰極
11および陽極5の間に放電路を形成する。
It is a thin tube made of silicon carbide with an outer diameter of 16 mm and an inner diameter of 1.02 mm, and forms a discharge path between a cathode 11 and an anode 5, which are connected via sealed silicon 2 and 3, respectively.

細管1の外周には、放熱フィン6が接合されており、細
管1.封入皿2,3.7.陽極5に生ずる熱は、ファン
(図示せず)により送り込まれる空気によって放熱フィ
ン6を介して放散される。
A radiation fin 6 is joined to the outer periphery of the thin tube 1. Enclosure dish 2, 3.7. Heat generated at the anode 5 is dissipated through the heat radiation fins 6 by air fed by a fan (not shown).

陰極バルブ4は陰極11を内包し、かつ、アルゴンガス
を溜めている。またアルゴンガスのリターンパス9が、
陰極バルブ4と、陽極バルブ8を連結している。そして
、両端には放電路の中心軸に対してプリエースタ角を成
すいわゆるブリュースタ窓10が対向して接合されてい
る。
The cathode bulb 4 includes a cathode 11 and stores argon gas. In addition, the argon gas return path 9 is
A cathode bulb 4 and an anode bulb 8 are connected. At both ends, so-called Brewster windows 10 forming a pre-aster angle with respect to the central axis of the discharge path are joined to face each other.

次に、前記構造を有するアルゴンレーザ管の製作方法に
ついて述べる。
Next, a method for manufacturing an argon laser tube having the above structure will be described.

炭化珪素は、熱伝導率も太きく、高温強度や機械的強度
が優れており、ベリリアセラミックに代置す素材として
適合性を備えている。しかし、従来炭化珪素は酸化物を
含まぬため、金属化処理ができずろう付による接合が困
難であったが、チタン合金の一種であるTi−Cu−B
eろう材により炭化珪素に金属化処理を施さず直接ろう
付施工が可能なことを確認した。
Silicon carbide has high thermal conductivity and excellent high-temperature strength and mechanical strength, making it suitable as a material to replace beryllia ceramic. However, since silicon carbide does not contain oxides, conventional silicon carbide cannot be metallized and is difficult to join by brazing.
It was confirmed that it is possible to directly braze silicon carbide using e-brazing filler metal without metallizing it.

そこで第1図に示した封入皿2.陽極5.封入皿3.細
管1.封入皿2および放熱フィン6をろう@’49Ti
−49Cu−2Beを用いて、ロウ付温度1015Cで
真空ろう付を行なった。その後、従来の公知の方法によ
り、ガラス加工を施し、アルゴンレーザ管20を完成し
た。
Therefore, the enclosure dish 2 shown in FIG. Anode 5. Enclosure dish 3. Tube 1. Braze the enclosure plate 2 and radiation fins 6 @'49Ti
Vacuum brazing was performed using -49Cu-2Be at a brazing temperature of 1015C. Thereafter, glass processing was performed using a conventionally known method to complete the argon laser tube 20.

本実施例では空冷アルゴンレーザ管について述べたが、
水冷アルゴンレーザ管も、ろう付構造は同一であるため
、前記の製作方法により容易に製作することができる。
Although this example describes an air-cooled argon laser tube,
Since the water-cooled argon laser tube has the same brazing structure, it can be easily manufactured using the above manufacturing method.

また、49Ti−49Cu−2Beの代りに純チタンを
用いても炭化珪素の真空ろう付が可能であることは言を
俟だない。
Furthermore, it goes without saying that vacuum brazing of silicon carbide is possible even if pure titanium is used instead of 49Ti-49Cu-2Be.

このようにして、チタン系ろう材を用いて、炭化珪素を
用いた細管と金員部品を真空ろう付し、気密性、耐熱衝
撃性に優れたアルゴンレーザ管を製作することができた
In this way, we were able to manufacture an argon laser tube with excellent airtightness and thermal shock resistance by vacuum brazing the thin tube made of silicon carbide and the metal parts using a titanium-based brazing material.

(効果の説明) 以上述べた如く、本発明によれば、細管として従来使用
してきたベリリアセラミックに比して、(1)取扱い上
の規制もなく、(2)細管表面に複雑な工程を要する金
属化処理を省略でき、(3)様々な機械加工ができ、(
4ン機械的強度や耐熱衝撃性が極めて大き(、(51安
価な炭化珪素を用いた高品質のカスレーザ管を提供する
ことができる。
(Explanation of Effects) As described above, according to the present invention, compared to beryllia ceramics conventionally used as thin tubes, (1) there are no restrictions on handling, and (2) complicated processes are not applied to the surface of the thin tubes. The required metallization process can be omitted, (3) various machining processes can be performed, (
4) has extremely high mechanical strength and thermal shock resistance (51) It is possible to provide a high quality Kaslas laser tube using inexpensive silicon carbide.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の詳細な説明するためのガスレーザ管の
縦断面図である。 1・・・・・・炭化珪素または炭化珪素・酸化ベリリウ
ム複合材を使用した細管、2.3.7・・・・・・封入
皿、4・・・・・・陰極バルブ、5・・・・・・陽極、
6・・・・・・放熱フィン、8・・・・・・陽極バルブ
、9・・・・・・リターンパス、10・・・・・・ブリ
ュースタ窓、11・・・・・・陰極、20・・・・・・
ガスレーザ管。
FIG. 1 is a longitudinal sectional view of a gas laser tube for explaining the present invention in detail. 1... Thin tube using silicon carbide or silicon carbide/beryllium oxide composite material, 2.3.7... Enclosure dish, 4... Cathode bulb, 5... ···anode,
6... Radiation fin, 8... Anode bulb, 9... Return path, 10... Brewster window, 11... Cathode, 20...
gas laser tube.

Claims (1)

【特許請求の範囲】[Claims] 陽極と陰極の間に放電路を形成する細管を有するガスレ
ーザ管において、前記細管の材質が炭化珪素であること
を特徴とするガスレーザ管。
1. A gas laser tube having a thin tube forming a discharge path between an anode and a cathode, characterized in that the thin tube is made of silicon carbide.
JP7594484A 1984-04-16 1984-04-16 Gas laser tube Pending JPS60219782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7594484A JPS60219782A (en) 1984-04-16 1984-04-16 Gas laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7594484A JPS60219782A (en) 1984-04-16 1984-04-16 Gas laser tube

Publications (1)

Publication Number Publication Date
JPS60219782A true JPS60219782A (en) 1985-11-02

Family

ID=13590842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7594484A Pending JPS60219782A (en) 1984-04-16 1984-04-16 Gas laser tube

Country Status (1)

Country Link
JP (1) JPS60219782A (en)

Similar Documents

Publication Publication Date Title
US3437950A (en) Ion laser having a metal tube shrink-fitted onto the ceramic discharge tube
US3936767A (en) Cold cathode gas lasers
US3427564A (en) High-power ionized gas laser structure
JPS60219782A (en) Gas laser tube
JPS60219783A (en) Gas laser tube
US4912719A (en) Ion laser tube
JPH0453010Y2 (en)
US3760213A (en) Anode for a discharge tube
JPH05275774A (en) Ion laser tube
JPS6028284A (en) Rare gas ion laser tube
JP3064588B2 (en) Laser tube
JPS6322694Y2 (en)
JPH02116182A (en) Laser fine pipe
JPH0711476Y2 (en) Ion laser tube
JPS62145788A (en) Ion laser tube
JPS62226678A (en) Ion laser pipe
JPS6181682A (en) Ion laser tube
JPS607785A (en) Rare gas ion laser tube
JPS6181683A (en) Ion laser tube
JPH05145145A (en) Ion laser tube
JPH04243174A (en) Ion laser tube
JPH04361577A (en) Ion laser tube
JPS61185984A (en) Ion laser tube
JPS607784A (en) Rare gas ion laser tube
JPS5918695Y2 (en) ion laser tube