JPS6181682A - Ion laser tube - Google Patents

Ion laser tube

Info

Publication number
JPS6181682A
JPS6181682A JP20321084A JP20321084A JPS6181682A JP S6181682 A JPS6181682 A JP S6181682A JP 20321084 A JP20321084 A JP 20321084A JP 20321084 A JP20321084 A JP 20321084A JP S6181682 A JPS6181682 A JP S6181682A
Authority
JP
Japan
Prior art keywords
disk
ceramic
tube
pipe
ion laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20321084A
Other languages
Japanese (ja)
Inventor
Taizo Oikado
老門 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP20321084A priority Critical patent/JPS6181682A/en
Publication of JPS6181682A publication Critical patent/JPS6181682A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To prevent generation of powder and eliminate difficulty in obtaining accuracy of straightness and internal diameter of fine tube by arranging in cascade many ceramic disks and fine tube block. CONSTITUTION:Since the internal wall of ceramic pipe 1 and external circumference of disk 2 are placed in contact through a cap shaped metal plate 4, it is not required to enhance the manufacturing accuracy of them and arrangement of disk for obtaining a fine type can be attained by positioning them to the arrangement holes bored with accuracy in the periphery of disk through ceramic rod. Moreover, a metal disk 4 expands with temperature rise of disk and is forced to be in contact with the internal wall of pipe 1. Therefore, good heat conductivity can be assured without giving a strong stress to the pipe 1 by defining thickness and external size at the time of design.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は大電流放電lこより高いレーザ出力を放出す
るアルゴン、クリプトンなどのガスを用いたイオンレー
ザ管の構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) This invention relates to the structure of an ion laser tube using a gas such as argon or krypton that emits a higher laser output than a large current discharge.

(従来の技術およびその問題点) 周知のごとく、アルゴン、クリプトンなどのイオン化し
たガスのエネルギーレベル間の遷移を利用してレーザ発
振を行なうイオンレーザは、高出力化のためにイオン密
度をあげる必要があり、これを達成するため内径1〜3
mの細管にIOAを越える大電流を流さなければならな
い。このような大電流に耐える縮管材料および細管の構
造には耐熱性、熱放射性等の面から種々の制約がある。
(Prior art and its problems) As is well known, ion lasers, which perform laser oscillation by utilizing the transition between energy levels of ionized gases such as argon and krypton, need to increase the ion density in order to achieve high output. To achieve this, the inner diameter is 1 to 3.
A large current exceeding IOA must be passed through the tube of m. There are various restrictions on the tube shrinking material and the structure of the thin tube that can withstand such a large current in terms of heat resistance, heat radiation, etc.

従来、この細管材料および細管の構造として、いくつか
の方式が用いられており、その中で代表的なものは中央
に細管用の穴をもつグラファイトディスクを絶縁物を介
して縦続して並べ、これを石英管の中に収納した構造を
もつもので、細管の冷却はディスクの輻射熱を石英管の
外から水で吸収する方法をとっている。また他の代表例
はBeOセラミックの細管を用いる方法で、冷却は直接
BeOセラミック管の外周を水で冷やし、BeOの高い
熱伝導性を利用するものである。
Conventionally, several methods have been used for this capillary material and structure, and the typical one is a method in which graphite disks with a hole for the capillary in the center are arranged in series with an insulator interposed between them. It has a structure in which this is housed in a quartz tube, and the thin tube is cooled by absorbing the radiant heat from the disk with water from outside the quartz tube. Another typical example is a method using a BeO ceramic tube, in which the outer periphery of the BeO ceramic tube is directly cooled with water to utilize the high thermal conductivity of BeO.

しかし、グラファイトディスク細管は使用中に粉末が出
易(、これが細管端部のブルーメタ窓について出力を減
少させることがあり1%に輸送上に制約があるなどの欠
点があった。また、BeOセラミック細管は毒性のある
Beを用いているため、供給源が限られてきており極め
て高価であるばかりでなく、細長い管を内径の棺匿と伸
直度を守って製造することが峻かしいという問題がある
However, graphite disk capillary tubes have disadvantages such as powder easily coming out during use (this can reduce the output due to the blue metal window at the end of the capillary tube, and there are restrictions on transportation at 1%).Also, BeO ceramic Since thin tubes use Be, which is toxic, supply sources are becoming limited and they are not only extremely expensive, but also difficult to manufacture while maintaining the inner diameter and straightness. There is.

最近、米国特許第437a600号明細誉にアルミナセ
ラミックパイプ内にタングステンディスクをカップ状の
銅板を介してロー付けした細管構造が開示されている。
Recently, US Pat. No. 437a600 discloses a thin tube structure in which a tungsten disk is brazed into an alumina ceramic pipe via a cup-shaped copper plate.

この細管構造は、上記粉末が出易い、毒性があるという
二種の欠点を解消しているが、ディスクの厚さがうずく
、全長に対する細管の専有率が低いため従来のレーザ管
に比べ発振効率が3割程度低いという重大な欠点がある
This thin tube structure eliminates the two drawbacks of easy powder generation and toxicity, but it has a thinner disk and a lower ratio of the thin tube to the entire length, making it more efficient in oscillation than conventional laser tubes. There is a serious drawback in that it is about 30% lower.

この発明の目的は、これら従来のイオンレーザ管の欠点
である粉末発生とか細管の伸直度、内径の精度出しの困
難さを排除し、細管部の実効長を余り落すことなく、発
振効率を低下させずに細管における冷却効率の改善を図
ったイオンレーザ管を提供することである。
The purpose of this invention is to eliminate the drawbacks of conventional ion laser tubes, such as powder generation and the difficulty in determining the straightness and inner diameter of the thin tube, and to improve the oscillation efficiency without significantly reducing the effective length of the thin tube. It is an object of the present invention to provide an ion laser tube in which cooling efficiency in a thin tube is improved without reducing the cooling efficiency.

(問題点を解決するための手段) 本発明は、細管部と、この細管部を収納するセラミック
管と、細管部の両端近傍に配置された陽極およびカソー
ドと、セラミックパイプの両側を封止する真空容器を含
み、細管部は、細管を構成する小孔を中心付近にもち、
周辺にガスリターンバスとなる複数の小孔をもつセラミ
ックディスクとこのディスクの各小孔と等しいかそれ以
上の径の孔をもち各孔位置を一攻させてディスク面に固
着された円筒状フランジ部をもつ金属板からなる細管用
ブロックを、細管用の小孔が直線状に整列するような手
段を用いて多数個縦続して並べて構成されていることを
特徴とする。この細管部は金属板の円筒状フランジが内
接するような内径をもつセラミック管に収納される。セ
ラミックディスクの材料としては、ぺIJ IJア磁鴛
、炭化ケイ素、窒化ボロン、アルミナ磁器などが適して
いる。またセラミック管は低価格、真空容器−とじて使
えるなどの点からアルミナ磁器が望ましい。
(Means for Solving the Problems) The present invention includes a capillary section, a ceramic tube housing the capillary section, an anode and a cathode disposed near both ends of the capillary section, and sealing of both sides of the ceramic pipe. It includes a vacuum container, and the capillary part has a small hole constituting the capillary near the center,
A ceramic disk with multiple small holes around the periphery that serves as a gas return bus, and a cylindrical flange that has holes with a diameter equal to or larger than each of the small holes in this disk, and is fixed to the disk surface by striking each hole position. The present invention is characterized in that it is constructed by arranging a large number of thin tube blocks made of metal plates having sections in series in series using means such that the small tube holes are aligned in a straight line. This thin tube portion is housed in a ceramic tube having an inner diameter such that the cylindrical flange of the metal plate is inscribed therein. Suitable materials for the ceramic disk include ceramic, silicon carbide, boron nitride, and alumina porcelain. Furthermore, as the ceramic tube, alumina porcelain is preferable because of its low cost and the fact that it can be used as a vacuum container.

(実施例) 第1図は本発明の一実施例を示すイオンレーザ管の断面
図である。本発明のイオンレーザ管は、セラミックディ
スク2.このディスクの両面にロー付されたキャップ状
の金属板4.8よびディスク2の中央の穴を整列するた
めのセラミック偉3から構成された細管部と、この#I
v部を収納するセラミックパイプ1と、細管部の両端部
近傍に配置されたアノード5及びカソード6と、セラミ
ックパイプ10両端に金属円筒部材7,7′を介して設
けられたガラス容器8・8′とを有する。アノード5は
細管ディスクと同様キャップ状金属板を介してセラミッ
クパイプ1内に収納される。セラミックパイプlの両端
にはロー付されたコバール金属などの金属円筒部材7,
7′を介して、ガラスなどの真空容器8,8′が融着さ
れ、それぞれに陽極のリード線10、カソードリード線
9が埋め込まれ、さらにブルーメタ窓11,11 が取
り付けられている。セラミックディスク2の材料は熱伝
導性の高いBeO= Sin、ボロンナイトライド等が
望ましいが、細管部で発生する熱は金属板4によりセラ
ミックパイプ1に伝えられるためアルミナセラミックの
ような比較的熱伝導の悪い材料でもかまわない。セラミ
ックディスクは第2図のように中央lζ細管となる大2
1周辺に整列用のセラミック棒が通る穴22及びガスリ
ターンバス用の穴23をもった形状をもつ。またセラミ
ックパイプ1の材料としては、アルミナセラミックがコ
ストが低く、真空容器として使えるため望ましい。セラ
ミックパイプ1に対し、金属板4はバネ性をもった接触
により、もしくはロー付により内壁との熱伝導性を高め
て固定される。
(Embodiment) FIG. 1 is a sectional view of an ion laser tube showing an embodiment of the present invention. The ion laser tube of the present invention includes a ceramic disk 2. This #I
A ceramic pipe 1 that accommodates the v section, an anode 5 and a cathode 6 arranged near both ends of the thin tube section, and glass containers 8 and 8 provided at both ends of the ceramic pipe 10 via metal cylindrical members 7 and 7'. ′. The anode 5 is housed in the ceramic pipe 1 via a cap-shaped metal plate similar to the capillary disk. A metal cylindrical member 7 made of Kovar metal or the like is brazed at both ends of the ceramic pipe l.
Vacuum vessels 8, 8' made of glass or the like are fused together via 7', and an anode lead wire 10 and a cathode lead wire 9 are embedded in each, and furthermore, blue metal windows 11, 11 are attached. The material of the ceramic disk 2 is preferably BeO=Sin, boron nitride, etc., which have high thermal conductivity, but since the heat generated in the thin tube section is transferred to the ceramic pipe 1 by the metal plate 4, it is preferable to use a relatively thermally conductive material such as alumina ceramic. It doesn't matter if the material is bad. As shown in Figure 2, the ceramic disc has a large central lζ tubule.
1 has a shape with a hole 22 through which a ceramic rod for alignment passes and a hole 23 for a gas return bus. Further, as the material for the ceramic pipe 1, alumina ceramic is preferable because it is low in cost and can be used as a vacuum container. The metal plate 4 is fixed to the ceramic pipe 1 by contacting with spring properties or by brazing to increase thermal conductivity with the inner wall.

セラミックパイプ内壁とディスク外周キャップ状の金属
板4を介して接触しているため、両者の加工精度を高め
る必要がなく、細管となるためのディスクの整列は、デ
ィスク周辺に位置精度よくあけられた整列用穴にセラミ
ック棒を通して位置出しすることにより達成される。ま
たキャップ状の金属板は、ディスクの温度上昇とともに
膨張し、セラミックパイプ内壁に強く接触するようにな
るから厚さと外径寸法を温度上昇度に応じて設計時に定
めれば、セラミックパイプ19強いストレスを加えるこ
となく、良好な熱伝導を確保できる。
Since the inner wall of the ceramic pipe and the disk are in contact with each other via the metal plate 4 shaped like a disk outer circumferential cap, there is no need to increase the machining precision of both, and the disks can be aligned to form a thin tube by drilling holes around the disk with high positional accuracy. This is accomplished by positioning a ceramic rod through an alignment hole. In addition, the cap-shaped metal plate expands as the temperature of the disk increases and comes into strong contact with the inner wall of the ceramic pipe. Good heat conduction can be ensured without adding heat.

以上のような構成を有するイオンレープ管はソレノイド
コイルの中に両端にOリングを配置して固定され、ソレ
ノイドコイルの内壁とセラミックパイプ1の外壁間を冷
却用の水が流される。レーザ管を共振器(図示していな
い)間に配置し陽極−カソード関に電圧を印加し、電流
を流すことによりレーザ作用が起る。通常出力4Wクラ
スのイオンレーザでは、内径2.5錦程度の細管部に3
0人前後の電流を流すため全体としてl0KW近い電力
を消耗し、この熱を細管温度をその材料がもつ耐熱温度
以上にあげることなく効率よく冷却水で取り除くことが
必要である。この発明のレーザ管にあってはディスク中
央で発生した熱はロー付された金属板に伝わり、主にこ
の金属板を通してセラミックパイプに伝導され、さらに
このパイプの壁を通して冷却水に吸収される。
The ion rape tube having the above structure is fixed in a solenoid coil with O-rings arranged at both ends, and cooling water is flowed between the inner wall of the solenoid coil and the outer wall of the ceramic pipe 1. Laser action occurs by placing a laser tube between a resonator (not shown), applying voltage to the anode-cathode junction, and causing current to flow. In an ion laser with a normal output of 4W, there are three
In order to flow a current of about 0, approximately 10KW of power is consumed as a whole, and this heat must be removed efficiently with cooling water without raising the temperature of the thin tubes above the heat-resistant temperature of the material. In the laser tube of this invention, the heat generated at the center of the disk is transmitted to the brazed metal plate, mainly through this metal plate to the ceramic pipe, and further absorbed by the cooling water through the wall of this pipe.

(発明の効果) 以上説明したように、この発明のイオンレーザ管は、グ
ラファイトディスクのような粉末の出る素材をセラミッ
クに切り換え、 BeOセラミック細管のように細(て
長い細管を精度よく作ったためのコストの上昇を、ディ
スクの整列により除去し、さらに、タングステンディス
クのような細管専有率の低さを厚みのあるセラミックデ
ィスクにより禰うなど、従来のイオンレーザ管の細管部
がもっていた欠点の全てを除去するものである。さらに
中央外囲器をセラミックパイプに構成することにより冷
却部の寸法精度をあげることができ、ソレノイドコイル
との閣の冷却層の幅をうずく、流速をあげて冷却効率を
高めることができる。また、組立方法も従来のディスク
タイプのイオンレーザ管と大差なく、ディスクへの金属
板のロー付、場合によってはセラミックパイプ内壁への
ロー付も、真空気密には無関係のため、従来のロー付方
法で、厳密なロー付工程の管理をすることなく行なうこ
とが可能であり、比較的安価−な部品を用い簡単な組立
方法で高効率のイオンレーザ管を得ることができる。
(Effects of the Invention) As explained above, the ion laser tube of the present invention has the advantage of replacing the powdery material such as the graphite disk with ceramic, and making thin and long tubes with precision such as BeO ceramic tubes. All of the disadvantages of the thin tube section of conventional ion laser tubes are eliminated, such as eliminating the increase in cost by aligning the disks, and using a thick ceramic disk to compensate for the low thin tube occupation rate of a tungsten disk. Furthermore, by configuring the central envelope as a ceramic pipe, the dimensional accuracy of the cooling section can be increased, and the width of the cooling layer between the solenoid coil and the solenoid coil can be increased, increasing the flow rate and cooling efficiency. In addition, the assembly method is not much different from that of conventional disk-type ion laser tubes, and brazing the metal plate to the disk, and in some cases brazing the inner wall of the ceramic pipe, is not related to vacuum sealing. Therefore, it is possible to perform brazing using the conventional brazing method without strict control of the brazing process, and it is possible to obtain a highly efficient ion laser tube using relatively inexpensive parts and a simple assembly method. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のイオンレーザ管の一実施例を示す断面
図、第2図はディスクの形状の一例を示す断面図である
。 1・・・・・・セラミックパイプ、2・・・・・・セラ
ミックディスク、3・・・・・・ディスク整列用セラミ
ック棒、4・・・・・・キャップ状金属板、5・・・・
・・陽極、6・・・・・・カソード、7,7′・・・・
・・金属円筒部材、8 、8’町−真空容器、9・・・
・・・カソードリード線、10・・・・・・陽ffl 
lj−ド線、11.11’・・・・・・ブルーメタ窓、
21・・・・・・細管用孔、22・・・・・・整列用孔
、23・・・・・・ガスリターンバス用孔。
FIG. 1 is a sectional view showing an embodiment of the ion laser tube of the present invention, and FIG. 2 is a sectional view showing an example of the shape of the disk. 1...Ceramic pipe, 2...Ceramic disk, 3...Ceramic rod for disk alignment, 4...Cap-shaped metal plate, 5...
...Anode, 6...Cathode, 7,7'...
...Metal cylindrical member, 8, 8'-vacuum container, 9...
... Cathode lead wire, 10... Positive ffl
lj-do line, 11.11'... Blue meta window,
21... Hole for thin tube, 22... Hole for alignment, 23... Hole for gas return bath.

Claims (1)

【特許請求の範囲】[Claims] 細管を構成する小孔を中心付近にもち、周辺にガスリタ
ーンバスとなる複数の小孔をもつセラミックディスクと
該ディスクの各小孔と等しいかそれ以上の径の穴をもち
、各穴位置を一致させてディスク面に固着された円筒状
フランジ部をもつ金属板から成る細管用ブロックを、細
管用の小孔が直線状に整列するような手段を用いて多数
個縦続して並べ、前記金属板の円筒状フランジが内接す
るような内径をもつセラミック管に収納した構造の細管
部を有することを特徴とするイオンレーザ管。
A ceramic disc with a small hole constituting a thin tube near the center and a plurality of small holes around the periphery serving as a gas return bus, and a hole with a diameter equal to or larger than each of the small holes in the disk, and each hole position A large number of capillary blocks made of metal plates having cylindrical flanges that are aligned and fixed to the disk surface are arranged in series using a method that aligns the small tube holes in a straight line. An ion laser tube characterized in that it has a thin tube portion housed in a ceramic tube having an inner diameter such that a cylindrical flange of a plate is inscribed therein.
JP20321084A 1984-09-28 1984-09-28 Ion laser tube Pending JPS6181682A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20321084A JPS6181682A (en) 1984-09-28 1984-09-28 Ion laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20321084A JPS6181682A (en) 1984-09-28 1984-09-28 Ion laser tube

Publications (1)

Publication Number Publication Date
JPS6181682A true JPS6181682A (en) 1986-04-25

Family

ID=16470285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20321084A Pending JPS6181682A (en) 1984-09-28 1984-09-28 Ion laser tube

Country Status (1)

Country Link
JP (1) JPS6181682A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373960U (en) * 1986-10-31 1988-05-17

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373960U (en) * 1986-10-31 1988-05-17

Similar Documents

Publication Publication Date Title
US3437950A (en) Ion laser having a metal tube shrink-fitted onto the ceramic discharge tube
JPS62501461A (en) Gas laser, especially ion laser
US4953172A (en) Gas Laser
US3427564A (en) High-power ionized gas laser structure
JPS6181682A (en) Ion laser tube
US4756001A (en) Gas discharge tube for an ion laser
US4912719A (en) Ion laser tube
US3624543A (en) Gas coherent radiation generator with segmented ceramic discharge tube having integral gas return paths
JPS6181683A (en) Ion laser tube
US3760213A (en) Anode for a discharge tube
US3723783A (en) Gaseous discharge high intensity lamp with fluid cooled electrode
JPH0453010Y2 (en)
JPS61168974A (en) Ion laser tube
US4821279A (en) Gas laser
JPS607785A (en) Rare gas ion laser tube
US5177761A (en) Gas discharge tube having refractory ceramic coated bore disc for ion laser
JPS61185984A (en) Ion laser tube
JPS62145788A (en) Ion laser tube
JPS5918695Y2 (en) ion laser tube
JPS6257268A (en) Ion laser tube
JPS6028284A (en) Rare gas ion laser tube
US6738400B1 (en) Large diameter lasing tube cooling arrangement
JPS633472B2 (en)
JPS6211284A (en) Ion laser tube
US1992267A (en) Glow discharge device