JPS6028284A - Rare gas ion laser tube - Google Patents

Rare gas ion laser tube

Info

Publication number
JPS6028284A
JPS6028284A JP13702883A JP13702883A JPS6028284A JP S6028284 A JPS6028284 A JP S6028284A JP 13702883 A JP13702883 A JP 13702883A JP 13702883 A JP13702883 A JP 13702883A JP S6028284 A JPS6028284 A JP S6028284A
Authority
JP
Japan
Prior art keywords
disc
small hole
small
metal
discs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13702883A
Other languages
Japanese (ja)
Inventor
Isao Kobayashi
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13702883A priority Critical patent/JPS6028284A/en
Publication of JPS6028284A publication Critical patent/JPS6028284A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To enable to use an easily obtainable and safe material with higher dimension precision by a method wherein plate-shaped metals, each having a small hole in the central part thereof, are mutually connected with an insulator having a larger inside diameter than that of the small hole in a state that vacuum airtightness is being held. CONSTITUTION:Discs 12, which are excellent in heat conduction and thermal stability, consist of an easily obtainable metal plate and respectively have a small plasma generating hole 11 in the central part thereof, are mutually connected with a ceramic disc 14, which has a larger inside diamer 13 than that of the small hole 11 and a smaller outside diameter than that of the disc 12, in such a way that the small holes 11 stand in a straight line in a state that vacuum airtightness is being held, and a fine plasma tube is formed. A laser optical axis 8 is set in the center of the fine plasma tube. The discs 12 are extended to the outside of the vacuum enclosure and each disc 12 acts as a radiating fin as well while holding insulation between its adjoining disc 12. According to this structure, heat, which generates in the small holes 11, is directly radiated by the discs 12. At this time, as the inside diameter 13 of the disc 14 is larger than that of the small hole 11, the disc 14 is hard to receive an ion bombardment and even its ceramic material, which is inferior to a beryllia porcelain in heat characteristics, is hard to be caused damage.

Description

【発明の詳細な説明】 この発明は希ガスイオンレーザ管、特に強制空冷でプラ
ズマ細管等の発熱を除去するアルゴンイオンレーザ管に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rare gas ion laser tube, and particularly to an argon ion laser tube that uses forced air cooling to remove heat generated by a plasma capillary.

希ガスイオンレーザ管は、イオン準位でのレーザ遷移を
行なわせるため、プラズマ細管に数アンペアから10ア
ンペア以上におよぶ放電電流を通ずる。空冷形アルゴン
イオンレーザでは、プラズマ細管は、レーザ利得を得る
のに0.8〜1.2 mmの細い内径で構成され、放電
電力の大部分はプラズマ細管で消費される。
In a rare gas ion laser tube, a discharge current ranging from several amperes to more than 10 amperes is passed through the plasma capillary to cause laser transition at the ion level. In an air-cooled argon ion laser, the plasma capillary has a narrow inner diameter of 0.8 to 1.2 mm to obtain laser gain, and most of the discharge power is consumed in the plasma capillary.

従ってプラズマ細管は数百ワットから1 kw以上の発
生熱に耐える材料と構造を用いる必要がある。このため
空冷形アルゴンイオンレーザ管は、べIJ IJア磁器
のような高熱伝導度、・高耐熱性の絶縁体の管を用い、
とれを真空外囲器とすると共にその外側に放熱フィンを
ロー付または機械的手段で取付け、放熱フィンを強制空
冷する構造にしである。
Therefore, it is necessary to use materials and structures for the plasma capillary that can withstand heat generated from several hundred watts to more than 1 kW. For this reason, the air-cooled argon ion laser tube uses a tube made of an insulator with high thermal conductivity and high heat resistance, such as ceramic porcelain.
This is a structure in which the tube is used as a vacuum envelope, and radiation fins are attached to the outside by brazing or mechanical means, and the radiation fins are forcedly air-cooled.

しかしながら、このように熱特性と真空気密特性を持っ
た絶縁物細管は、現在材料がべIJ IJア磁器に限定
されておシ、中心の孔の真直度と直径精度が良くて長尺
のものは製造困難であると同時に、ベリリアは原料粉末
が有害物質であって生産が限定され、極めて高価ガ物質
である。
However, the materials for insulating thin tubes with such thermal and vacuum-tight properties are currently limited to porcelain, and long tubes with good straightness and diameter accuracy of the center hole are available. At the same time, beryllia is difficult to manufacture, and the raw material powder of beryllia is a hazardous substance, which limits production and makes it an extremely expensive substance.

本発明の目的は、空冷形希ガスイオンレーザの大放電電
流に耐え、冷却効率と寸法精度が良く、入手製造が容易
なプラズマ細管を有する希ガスイオンレーザ管を提供す
ることにある。
An object of the present invention is to provide a rare gas ion laser tube having a plasma capillary that can withstand the large discharge current of an air-cooled rare gas ion laser, has good cooling efficiency and dimensional accuracy, and is easy to obtain and manufacture.

すなわち本発明は、中央部分に小孔を有する板状の金属
と、前記金属の小孔よシも大きい内径を有し、前記金属
の外形よシも小さい外形を有する絶縁物とを、小孔が一
直線状になるように、且つ金属板相互の電気絶縁と真空
気密を保ちつつ交互に接続し、プラズマ細管とすると共
に、金属板を放熱器として直接強制空冷することによっ
て、冷却効果を増大し、ベリリア磁器以外の入手容易で
安全な材料を高い寸法精度で使用することを可能にした
希ガスイオンレーザ管である。
That is, the present invention combines a plate-shaped metal having a small hole in the center portion, and an insulator having an inner diameter larger than the small hole in the metal and a smaller outer diameter than the metal. The cooling effect is increased by connecting the metal plates alternately in a straight line while maintaining electrical insulation and vacuum tightness between them to form a plasma capillary, and direct forced air cooling using the metal plates as a heat sink. , a rare gas ion laser tube that makes it possible to use easily available and safe materials other than beryllia porcelain with high dimensional accuracy.

以下図面を参照して本発明を説明する。The present invention will be explained below with reference to the drawings.

従来の空冷形希ガスイオンレーザ管は、第1図の断面図
に示すように、カソード1と、プラズマ細管を構成する
と共に真空気密容器を兼ねる1本ノヘリリア管2と、ア
ノード3と、一対のブルースタ84.4’と、リターン
バス5と、コバー金属等から成る封入皿9,9′によっ
てベリリア細管2に接続された外囲器6,6′とから成
る。外囲器6゜6′とベリリア管2の内部には、レーザ
媒質としてアルゴン々どの希ガス7が封入され、ベリリ
ア管2の中心を通してレーザ光軸8が設定される。プラ
ズマ細管2とアノード3の外側には放熱フィン10がロ
ー付またはネジ等で取つけられ、図に示されないファン
によってプラズマ細管とアノードで発生する熱を除去す
る。
A conventional air-cooled rare gas ion laser tube, as shown in the cross-sectional view of FIG. It consists of a blue star 84.4', a return bath 5, and an envelope 6, 6' connected to the beryllia tubule 2 by an enclosure plate 9, 9' made of Kovar metal or the like. A rare gas 7 such as argon is sealed as a laser medium inside the envelope 6° 6' and the beryllia tube 2, and a laser optical axis 8 is set through the center of the beryllia tube 2. Heat radiation fins 10 are attached to the outside of the plasma tube 2 and the anode 3 by brazing or screws, and heat generated in the plasma tube and the anode is removed by a fan (not shown).

プラズマ細管2は熱伝導の良いベリリア磁器で作られて
いるため発生熱は速やかに放熱フィン10を通して放熱
される。ところがベリリア磁器は高価で有害性があるう
え、真直度が良く小孔の内径精度の高い長い細管の入手
が難しい。プラズマ細管2をベリリア以外のセラミック
にしようとした場合は、どのセラミックでもベリリア磁
器よシも熱伝導特性がはるかに劣るため、細管の肉厚を
薄くして放熱を良くする必要があシ、実用的な強度を持
つレーザ管を構成することは不可能であった。このため
空冷形希ガスイオンレーザでは、ベリリア磁器以外のプ
ラズマ細管材料は考えられなかった。
Since the plasma thin tube 2 is made of beryllia porcelain with good thermal conductivity, the generated heat is quickly radiated through the heat radiation fins 10. However, beryllia porcelain is expensive and harmful, and it is difficult to obtain long thin tubes with good straightness and a highly accurate inner diameter of the small holes. If you try to use a ceramic other than Beryllia for the plasma capillary 2, the heat conduction properties of any ceramic are far inferior to Beryllia porcelain, so it is necessary to reduce the thickness of the capillary to improve heat dissipation. It was impossible to construct a laser tube with such strength. For this reason, for air-cooled rare gas ion lasers, plasma capillary materials other than beryllia porcelain could not be considered.

第2図は本発明の実施例を示す希ガスイオンレーザ管の
プラズマ細管構造の断面図である。モリブデンなどの熱
伝導と耐熱性が良く、入手容易な金属板から成シ、中央
部分にプラズマ発生小孔11を有するディスク12は、
小孔11よシも大きい内径13を持ち、ディスク12よ
シ小さい外形のアルミナ磁器等の入手容易で無害なセラ
ミックディスク14と交互にロー付等で真空気密を保っ
て、小孔11が一直線になるように接続されてプラズマ
細管を形成し、その中心にレーザ光軸8が設定される。
FIG. 2 is a sectional view of the plasma capillary structure of a rare gas ion laser tube showing an embodiment of the present invention. The disk 12 is made of an easily available metal plate with good heat conduction and heat resistance, such as molybdenum, and has a small plasma generation hole 11 in the center.
The small hole 11 also has a larger inner diameter 13, and the small hole 11 is aligned in a straight line by alternating with easily available and harmless ceramic disks 14, such as alumina porcelain, which have a smaller outer diameter than the disk 12 and maintain a vacuum seal by brazing or the like. They are connected to form a plasma capillary, and the laser optical axis 8 is set at the center of the plasma capillary.

面積を大きくとった金属ディスク12は、真空外囲器の
外まで延びて金属ディスク間で絶縁を保ちながら放熱フ
ィンとしても働く。
The metal disks 12 having a large area extend to the outside of the vacuum envelope and function as heat radiation fins while maintaining insulation between the metal disks.

この構造によると、プラズマ細管/JX孔11で発生し
た熱は、熱伝導の良い、放熱フィンを兼ねた金属ディス
ク12によシ直接熱を放散する。このとき絶縁物ディス
ク14の内径13は、金属ディスク12の内径11よシ
も大きいため、大放電電流によシ生ずるイオン衝撃を受
けに<<、ベリリア磁器よシも熱特性の劣るセラミック
材料でも損傷を起こしにくい。すなわち第1図に示す従
来構造のレーザ管のように、放熱フィンを真空外で取つ
ける構造ではなく、プラズマ細管で発生した熱は、プラ
ズマ細管の一部全形成する放熱フィンから直接放散され
るため放熱効果が大きく、金属板12およびセラミック
等から成る絶縁物ティスフ140両者共温度上昇は小さ
く、金属および、アルミナ等のべIJ IJア磁器以外
の入手容易なセラミック材料によってプラズマ細管を構
成できる。もちろん空冷で使用すれば、複数の隣接した
金属板12はお互いに絶縁され、放電動作上も全く問題
は無い。この場合、アルミナ等で作られるディスク14
は2〜3 rnmの厚さでよく、小孔13の精度を出す
ことは容易である。金属板120寸法精度が加工上容易
に得られるのはいうまでも々い。
According to this structure, the heat generated in the plasma thin tube/JX hole 11 is directly radiated to the metal disk 12, which has good heat conduction and also serves as a heat radiation fin. At this time, since the inner diameter 13 of the insulator disk 14 is larger than the inner diameter 11 of the metal disk 12, it is difficult to receive the ion bombardment caused by the large discharge current. Less likely to cause damage. In other words, unlike the conventional structure of the laser tube shown in Figure 1, the heat dissipation fins are not attached outside a vacuum, but the heat generated in the plasma tube is directly dissipated from the heat dissipation fins that form part of the plasma tube. Therefore, the heat dissipation effect is large, the temperature rise of both the metal plate 12 and the insulating tissue 140 made of ceramic or the like is small, and the plasma capillary can be constructed of metals and easily available ceramic materials other than ceramics such as alumina. Of course, if air cooling is used, the plurality of adjacent metal plates 12 will be insulated from each other, and there will be no problem in terms of discharge operation. In this case, the disk 14 made of alumina etc.
The thickness of the small hole 13 may be 2 to 3 nm, and it is easy to obtain the precision of the small hole 13. Needless to say, the dimensional accuracy of the metal plate 120 can be easily obtained in processing.

また絶縁体ディスク14と金属板12とを、精度よく一
直線に並べて同時にロー付することは、従来の電子管製
造技術の延長で容易である。
Further, it is easy to align the insulator disk 14 and the metal plate 12 in a straight line with high precision and braze them simultaneously by extending the conventional electron tube manufacturing technology.

本発明は、ブルーメタ窓を有する外部ミラー形レーザだ
けでは々く、内部ミラー形にももちろん支障なく適用で
きる。また絶縁物14、金属板12の形状・寸法は限定
され々い。金属板12の外形は円形でも角形でもよい。
The present invention can be applied not only to an external mirror type laser having a blue meta window, but also to an internal mirror type laser without any problems. Furthermore, the shapes and dimensions of the insulator 14 and the metal plate 12 are not limited. The outer shape of the metal plate 12 may be circular or square.

また金属&12と絶縁物工4の厚さはそれぞれいろいろ
な値をとることができ、限定されない、。
Further, the thicknesses of the metal 12 and the insulating material 4 can take various values, and are not limited.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空冷形希ガスイオンレーザ管を示す断面
図、第2図は本発明の実施例を示すプラズマ細管断面図
である。 l・・・・・・カソード、2・・・・・・プラズマ7I
+lLl管、3・・・・・・アノード、4,4’・・・
・・・ブルーメタ窓、5・・・°°・ガスリターンバス
、6.6’・・・・・・真空外囲器、7−・・・・・希
ガス、8・・・・・・レーザ光軸、9.9’・・・・−
・封入皿、10・・・・・・放熱フィン、11・・・・
・・金属板内径、12・・・・・・金執板、13・・・
・・・円板状絶縁物内径、14・・・・・・円板状絶縁
物。
FIG. 1 is a sectional view showing a conventional air-cooled rare gas ion laser tube, and FIG. 2 is a sectional view of a plasma capillary tube showing an embodiment of the present invention. l...Cathode, 2...Plasma 7I
+lLl tube, 3...anode, 4,4'...
...Blue meta window, 5...°°・Gas return bus, 6.6'...Vacuum envelope, 7-...Rare gas, 8...Laser Optical axis, 9.9'...-
・Enclosure plate, 10... Radiation fin, 11...
...Metal plate inner diameter, 12...Metal plate, 13...
...Disc-shaped insulator inner diameter, 14...Disc-shaped insulator.

Claims (1)

【特許請求の範囲】[Claims] 中央部分に小孔を有する板状の金属と、前記金属の小孔
よりも大きい内径を有し、前記金属の外形よシも小さい
外形を有する絶縁物とを、小孔が一直線状になるように
、且つ金属板相互の電気絶縁と真空気密を保ちつつ交互
に接続し、プラズマ細管とすると共に、金属板を放熱器
としたことを特徴とする希ガスイオンレーザ管。
A plate-shaped metal having a small hole in the center and an insulating material having an inner diameter larger than the small hole in the metal and an outer shape smaller than the outer shape of the metal so that the small hole is in a straight line. A rare gas ion laser tube characterized in that the metal plates are alternately connected to each other while maintaining mutual electrical insulation and vacuum tightness to form a plasma thin tube, and the metal plate is used as a heat sink.
JP13702883A 1983-07-27 1983-07-27 Rare gas ion laser tube Pending JPS6028284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13702883A JPS6028284A (en) 1983-07-27 1983-07-27 Rare gas ion laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13702883A JPS6028284A (en) 1983-07-27 1983-07-27 Rare gas ion laser tube

Publications (1)

Publication Number Publication Date
JPS6028284A true JPS6028284A (en) 1985-02-13

Family

ID=15189153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13702883A Pending JPS6028284A (en) 1983-07-27 1983-07-27 Rare gas ion laser tube

Country Status (1)

Country Link
JP (1) JPS6028284A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593649A1 (en) * 1986-01-27 1987-07-31 Asulab Sa GAS LASER SEALED.
EP0243674A2 (en) * 1986-05-02 1987-11-04 Siemens Aktiengesellschaft Gas laser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2593649A1 (en) * 1986-01-27 1987-07-31 Asulab Sa GAS LASER SEALED.
EP0243674A2 (en) * 1986-05-02 1987-11-04 Siemens Aktiengesellschaft Gas laser

Similar Documents

Publication Publication Date Title
US4625317A (en) Internal mirror laser
US3437950A (en) Ion laser having a metal tube shrink-fitted onto the ceramic discharge tube
JP4187658B2 (en) High output multistage depletion type collector
US3427564A (en) High-power ionized gas laser structure
JPS6028284A (en) Rare gas ion laser tube
JP3038830B2 (en) Conduction-cooled multistage collector
US4912719A (en) Ion laser tube
JPS607784A (en) Rare gas ion laser tube
JPS607785A (en) Rare gas ion laser tube
JPS6065586A (en) Rare gas ion laser tube
US4801839A (en) Mounting of a cold cathode directly to a vacuum chamber wall
JPH031585A (en) Discharge tube for laser oscillator
JPH0453010Y2 (en)
JPH02116182A (en) Laser fine pipe
JPS60219783A (en) Gas laser tube
CN219760237U (en) Air-cooled radio frequency lath carbon dioxide laser
JPS633472B2 (en)
JPS5918695Y2 (en) ion laser tube
JPS604281A (en) Ion laser device
JPS60219782A (en) Gas laser tube
JPS61180488A (en) Ion laser tube
JPS62130Y2 (en)
WO2007144645A1 (en) Light amplification device
JPH04157774A (en) Air-cooling type argon laser tube
JPS5915511Y2 (en) laser discharge tube