JPS6065586A - Rare gas ion laser tube - Google Patents

Rare gas ion laser tube

Info

Publication number
JPS6065586A
JPS6065586A JP17346583A JP17346583A JPS6065586A JP S6065586 A JPS6065586 A JP S6065586A JP 17346583 A JP17346583 A JP 17346583A JP 17346583 A JP17346583 A JP 17346583A JP S6065586 A JPS6065586 A JP S6065586A
Authority
JP
Japan
Prior art keywords
plate
small
holes
tube
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17346583A
Other languages
Japanese (ja)
Inventor
Isao Kobayashi
功 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17346583A priority Critical patent/JPS6065586A/en
Publication of JPS6065586A publication Critical patent/JPS6065586A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/032Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube
    • H01S3/0323Constructional details of gas laser discharge tubes for confinement of the discharge, e.g. by special features of the discharge constricting tube by special features of the discharge constricting tube, e.g. capillary

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a fine plasma tube which can withstand a large discharge current, have good cooling efficiency and dimensional accuracy and ready manufacture by forming small central holes of a metal plate and an insulating plate linearly, providing a gas passage between separate small holes formed at the periphery of the central small holes of both plates. CONSTITUTION:A disc 12 which is made of an insulator that can be readily obtained with good thermal conductivity such as alumina porcelain and has a plasma generating small hole 11 at the center, and a metal plate 14 of large profile larger than the disc 12 having the same as or smaller diameter 13 than the hole 11 are so laminated and connected that the holes 11, 13 are disposed linearly with vacuum airtightness such as brazing to the plate 14, a fine plasma tube is formed with the hore 13 of the plate 14, and a laser optical shaft 8 is provided at the center. Heats generated at the holes 11, 13 of the plasma tube are immediately conducted to the plate 14 having good thermal conductivity, the plate 14 becomes a heat sink fin as it is to dissipate the heat. The heat sink effect is large, and the temperature rise of the insulator 12 approached is small.

Description

【発明の詳細な説明】 この発明は希ガスイオンレーザ管、特に強制空冷でプラ
ズマ細管等の発熱を除去するアルゴン管等に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rare gas ion laser tube, particularly an argon tube or the like that uses forced air cooling to remove heat generated by a plasma capillary or the like.

希ガスイオンレーザ管は、イオン準位でのレーザ遷移を
行なわせるためプラズマ細管に数アンペアから10アン
ペア以上におよぶ放電電流を通ずる。
In a rare gas ion laser tube, a discharge current ranging from several amperes to more than 10 amperes is passed through the plasma capillary to cause laser transition at the ion level.

空冷形フルボンイオンレーザではプラズマ細管はレーザ
利得を得るのに0.8〜1.2mの内径であるため電圧
降下が大きく、希ガスイオンレーザ管の放電電力の大部
分はプラズマ細管で消費される。
In an air-cooled fulbone ion laser, the plasma capillary has an inner diameter of 0.8 to 1.2 m to obtain laser gain, so the voltage drop is large, and most of the discharge power of a rare gas ion laser tube is consumed in the plasma capillary. Ru.

従ってプラズマ細管は数百ワットから1kW以上の発生
熱に耐える材料を用いる必要がある。このため空冷形ア
ルゴンイオンレーザ管は、ベリリア磁器のような高熱伝
導度、高耐熱性の絶縁体の管を用い、これを真空外囲器
とすると共に、その外側に放熱フィンを取付け、放熱フ
ィンを強制空冷する構造にしである。
Therefore, it is necessary to use a material for the plasma capillary that can withstand heat generated from several hundred watts to more than 1 kW. For this reason, air-cooled argon ion laser tubes use a tube made of an insulator with high thermal conductivity and high heat resistance, such as beryllia porcelain, and use this as a vacuum envelope. It has a structure that allows forced air cooling.

また大放電電流によって、封入ガスがレーザ管の一方に
偏在することを防ぐため、アノード部分とカソード部分
とを結ぶガスリターンパスがプラズマ細管とは別に設け
られている。
Furthermore, in order to prevent the filled gas from being unevenly distributed in one side of the laser tube due to a large discharge current, a gas return path connecting the anode portion and the cathode portion is provided separately from the plasma thin tube.

しかしながら、このような熱特性と真空気密特性とを持
った絶縁物細管は、現在、材料がベリリア磁器に限定さ
れており、中心の孔の真直度と直径精度が良く、長尺の
ものは製造困難であると同時に、ベリリア磁器は有害物
質であって生産が限定され、且つ極めて高価ガ物質であ
る。
However, the material for insulating capillary tubes with such thermal and vacuum-tight properties is currently limited to beryllia porcelain, which has good straightness and diameter accuracy of the center hole, and is difficult to manufacture in long lengths. In addition to being difficult to produce, beryllia porcelain is a toxic material, limited in production, and extremely expensive.

また外部に設けられるガスリターンパスは、希ガスイオ
ンレーザ管の構造を複雑にして、熟練したガラス加工が
必要となり、レーザ管の組込上も破損の危険が大きかっ
た。
Moreover, the gas return path provided externally complicates the structure of the rare gas ion laser tube, requires skilled glass processing, and there is a great risk of damage when the laser tube is assembled.

従来の空冷形希ガスイオンレーザ管は、第1図の断面図
に示すように、カソード1と、プラズマ細管を構成する
と共に真空気密容器を兼ねる1本のベリリア磁器細管2
と、アノード3と、一対のブルーメタ窓、1.4’と、
リターンパス5と、コバー金属等で構成される封入皿9
,9′によってベリリア磁器細管2に接続された外囲器
5,5′とから成る。外囲器5,5′とべIJ IJア
磁器細管2の内部にはレーザ媒質としてアルゴン等の希
ガス7が封入され、ベリリア磁器細管2の中心を通して
レーザ光軸8が設定される。プラズマ細管2とアノード
3の外側には、放熱フィン10がロー付またはネジ等で
取付けられ、図に示されないファンによってプラズマ細
管とアノードで発生する熱を除去する。
A conventional air-cooled rare gas ion laser tube, as shown in the cross-sectional view of FIG.
, anode 3, a pair of blue metal windows, 1.4',
A return path 5 and an enclosure plate 9 made of cover metal etc.
, 9' to the beryllia porcelain capillary tube 2. A rare gas 7 such as argon is sealed as a laser medium inside the envelopes 5, 5' and the porcelain thin tube 2, and a laser optical axis 8 is set through the center of the beryllia porcelain thin tube 2. A heat dissipation fin 10 is attached to the outside of the plasma tube 2 and the anode 3 with brazing or screws, and heat generated in the plasma tube and the anode is removed by a fan (not shown).

プラズマ細管2は熱伝導の良いベリリア磁器で作られて
いるため、発生熱は速やかに放熱フィン10を通して放
熱される。ところがベリリア磁器は高価で有害性がある
うえ、真直度が良く、小孔の内径精度の高い長い細管の
入手が難しい。プラズマ細管2をベリリア磁器以外のセ
ラミックにしようとした場合は、はとんどの入手容易な
セラミックはべIJ リア磁器よりも熱伝導特性がはる
かに劣るため、細管の肉厚を薄くして放熱を良くしかけ
ればならず、実用的表強度を持つレーザ管を構成するこ
とは不可能であった。このため空冷形希ガスイオンレー
ザではべりリア磁器以外のプラズマ細管材料は考えられ
なかった。
Since the plasma thin tube 2 is made of beryllia porcelain with good thermal conductivity, the generated heat is quickly radiated through the radiation fins 10. However, beryllia porcelain is expensive and harmful, and it is difficult to obtain long thin tubes with good straightness and a highly accurate inner diameter of the small holes. If you wish to use a ceramic other than Beryllia porcelain for the plasma capillary tube 2, most easily available ceramics have far inferior heat conductivity properties than Beryllium porcelain, so it is recommended to reduce the thickness of the capillary tube to improve heat dissipation. It was impossible to construct a laser tube with practical surface strength. Therefore, for air-cooled rare gas ion lasers, plasma capillary materials other than Berria porcelain could not be considered.

また第1図に示すようにプラズマ細管2の外部にガスリ
ターンパス5を設けなければならず、熟練を要するガラ
ス加工が必要なうえ、レーザ管としても取扱、411込
の際破損の危険が多かった。
Furthermore, as shown in Fig. 1, a gas return path 5 must be provided outside the plasma thin tube 2, which requires glass processing that requires skill, and is also handled as a laser tube, so there is a high risk of breakage when installing the tube. Ta.

本発明の目的は大放電電流に耐え、冷却効率と寸法精度
が良く、入手製造が容易なプラズマ細管を有する希ガス
イオンレーザ管を提供することにある。
An object of the present invention is to provide a rare gas ion laser tube having a plasma capillary that can withstand large discharge currents, has good cooling efficiency and dimensional accuracy, and is easy to obtain and manufacture.

本発明のもう一つの目的は、プラズマ細管部分にガスリ
ターンパス構造を持たせ、外部にガスリターンパスの無
い、機械的に取扱が容易な希ガスイオンレーザ管を提供
することにある。
Another object of the present invention is to provide a rare gas ion laser tube that has a gas return path structure in the plasma thin tube portion, has no external gas return path, and is mechanically easy to handle.

以下図面により本発明を説明する。The present invention will be explained below with reference to the drawings.

第2図は本発明の実施例を示す希ガスイオンレーザ管の
プラズマ細管構造の光軸方向断面図、第3図は同じく径
方向断面図でおる。
FIG. 2 is a cross-sectional view in the optical axis direction of a plasma capillary structure of a rare gas ion laser tube showing an embodiment of the present invention, and FIG. 3 is a cross-sectional view in the radial direction.

アルミナ磁器等の熱伝導が比較的良く、入手容易で無害
な絶縁物から成9、中央部分にプラズマ発生小孔11を
有するディスク12と、小孔11と同一かまたは小さい
内径13を持ち、ディスク12の外径よりも大きい外形
の金属板14とは、交互にロー付等で、真空気密を保っ
て小孔11゜13が一直線になるように積層接続されて
金属板14の内径13が主体となってプラズマ細管を形
成し、その中心にレーザ光軸8が設定される。このとき
ディスク12には中央部分の小孔11以外に、その周辺
に1つまたは複数の小孔14a〜14dが設けられ、金
属板14には、例えば小孔14a〜14dと対応する位
置に小孔15a−15dが設けられる。小孔14a〜1
4dまたはおよび小孔15a〜15aはそれぞれ小孔1
1よジも小さい断面積を有し、アノード3とカソード1
との間の放電が小孔1 ]、 、 13全通して行なわ
れ、小孔143〜14d、15a〜15dを通して行な
われないように十分小さいガス流と電気とのフンダクタ
ンスに設定される。従って小孔14a〜14d。
The disk 12 is made of an easily available and harmless insulator with relatively good thermal conductivity such as alumina porcelain, and has a small plasma generating hole 11 in the center, and an inner diameter 13 that is the same as or smaller than the small hole 11. The metal plates 14 having an outer diameter larger than the outer diameter of the metal plates 12 are stacked and connected by brazing or the like alternately so that the small holes 11 and 13 are aligned in a straight line while maintaining vacuum tightness, so that the inner diameter 13 of the metal plate 14 is the main As a result, a plasma thin tube is formed, and the laser optical axis 8 is set at the center of the plasma thin tube. At this time, in addition to the small hole 11 at the center, the disk 12 is provided with one or more small holes 14a to 14d around it, and the metal plate 14 has small holes at positions corresponding to the small holes 14a to 14d, for example. Holes 15a-15d are provided. Small holes 14a-1
4d or small holes 15a to 15a are respectively small holes 1
The anode 3 and cathode 1
The funductance between the gas flow and the electricity is set to be sufficiently small so that the discharge between the small holes 1], , 13 and 143 to 14d and 15a to 15d does not occur. Therefore, the small holes 14a to 14d.

15a〜15dには放電が生じないが、封入ガスは自由
に流れることができる。外形を大きくとった金属板14
はプラズマ細管を構成すると同時に真空外囲器外まで延
びて金属板相互には電気絶縁を保ちながら、放熱フィン
となる。
No discharge occurs in 15a-15d, but the filler gas can flow freely. Metal plate 14 with a large external shape
constitutes a plasma thin tube, and at the same time extends to the outside of the vacuum envelope and serves as a heat dissipation fin while maintaining electrical insulation between the metal plates.

この構造によるとプラズマ細管小孔11.13で発生し
た熱は、熱伝導の良い金属板14に直ちに伝導され、金
属板14がそのまま放熱フィンとなって熱を放散する。
According to this structure, the heat generated in the plasma capillary small holes 11, 13 is immediately conducted to the metal plate 14, which has good thermal conductivity, and the metal plate 14 acts as a heat radiation fin and radiates the heat.

小孔13の内径が小孔14の内径よりも小さい場合、金
属板14の中心部13が主にプラズマ細管の役目を果す
が、発生熱が直接強制空冷されるため温度上昇は極めて
小さくスパッタも小さい。すなわち第1図に示す従来構
造のレーザ管のように放熱フィンを真空外で間接的に取
付けることがなく、発生した熱は、発生場所の金属その
ものを通して放散されるため放熱効果が大きく、近接し
た絶縁物12の温度上昇も小さいので、アルミナ等のべ
IJ IJアよりも熱伝導の劣る材料が使用可能となる
。もちろん空冷で使用すれば、複数の隣接した金属板1
4、すなわち金属製プラズマ細管は相互に絶縁され、放
電動作上も全く問題が無い。
When the inner diameter of the small hole 13 is smaller than the inner diameter of the small hole 14, the center part 13 of the metal plate 14 mainly plays the role of a plasma capillary, but since the generated heat is directly forced air cooled, the temperature rise is extremely small and there is no spatter. small. In other words, unlike the conventional laser tube structure shown in Figure 1, the heat dissipation fins are not indirectly attached outside the vacuum, and the generated heat is dissipated through the metal itself at the location where it is generated, resulting in a large heat dissipation effect. Since the temperature rise of the insulator 12 is also small, it is possible to use a material such as alumina, which has a lower thermal conductivity than the bare IJA. Of course, if used with air cooling, multiple adjacent metal plates 1
4. That is, the metal plasma capillary tubes are insulated from each other, and there is no problem in terms of discharge operation.

壕だ小孔14a 〜14d 、15a 〜15dがガス
リターンパスの役目を成し、プラズマ細管外部に特別の
ガスリターンパスを必要とせず、簡単で丈夫な構造とな
る。この場合、アルミナ磁器等で作られるディスク12
は、2〜31++II+の厚さでよく、且つ金属板14
の内径13よりも寸法精度上の制約も小さく、容易に所
望の形状が得られる。
The trenches 14a to 14d and 15a to 15d serve as gas return paths, and a simple and durable structure is achieved without requiring any special gas return path outside the plasma capillary. In this case, the disk 12 made of alumina porcelain etc.
may have a thickness of 2 to 31++II+, and the metal plate 14
It has less restrictions on dimensional accuracy than the inner diameter 13 of the inner diameter 13, and a desired shape can be easily obtained.

また絶縁物ディスク12と金属板14とを精度よく一直
線に並べて同時に真空気密ロー付することは、従来の電
子管製造技術の延長で可能である。
Further, it is possible to align the insulating disk 12 and the metal plate 14 with high accuracy and vacuum-tightly braze them at the same time by extending the conventional electron tube manufacturing technology.

小孔14a〜14d、15a 〜15dはレーザ媒質ガ
スが通りぬけるだけでよく、高い寸法精度は不要で、直
線性も強く要求されない。小孔14a〜14dと15a
〜15dの内径寸法は同一でなくてもよく、微細加工が
容易外金属板14の小孔153〜15dを小さく、絶縁
物15の小孔142〜15dを大きくとってもよい。
The small holes 14a to 14d, 15a to 15d only need to allow the laser medium gas to pass through them, so high dimensional accuracy is not required and linearity is not strongly required. Small holes 14a to 14d and 15a
The inner diameter dimensions of the holes 153 to 15d may not be the same, and the small holes 153 to 15d in the outer metal plate 14 may be made small and the small holes 142 to 15d in the insulator 15 may be made large so that fine processing is easy.

すなわち小孔14a−14d 、15a 〜15dは放
電が生じない範囲で任意の形状、大数、配置を選ぶこと
ができる。
That is, the small holes 14a-14d, 15a-15d can be arbitrarily selected in shape, number, and arrangement as long as no discharge occurs.

本発明は、ブルーメタ窓を有する外部ミラー形レーザだ
けではなく、内部ミラー形にも適用できる。また絶縁物
12.金属板14の形状寸法は限定されない。金属板1
4の外形は円形でも角形でもよく、絶縁物12と金属板
14の厚さも本発明によって限定されない。
The present invention is applicable not only to external mirror type lasers with a blue meta window but also to internal mirror type lasers. Insulator 12. The shape and dimensions of the metal plate 14 are not limited. metal plate 1
The outer shape of the insulator 4 may be circular or square, and the thicknesses of the insulator 12 and the metal plate 14 are not limited by the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の空冷形希ガスイオンレーザ管を示す断面
図、第2図は本発明の実施例を示すプラズマ細管の光軸
方向断面図、第3図は同じく径方向断面図である。 ■・・・・・・カソード、2・・・・・・プラズマ細管
、3・・・・・・アノード、4.4’・・・・・・ブル
ーメタ窓、5・・・・・・ガスリターンパス、6.6’
−゛°°°真空外囲器、7・・・・・・希ガス、8・・
・・・・レーザ光軸、9,9’・旧・・封入皿、 10
・・・・・・放熱フィン、11・・・・・・円板状絶縁
物内径、12・・・・・・円板状絶縁物、13・旧・・
金属板内径、14・・・°°°金属板% 14a〜14
d・・・・・・リターンパス用絶縁物小孔、15a〜1
5d・・・・・・リターンバス用金属板小孔。
FIG. 1 is a sectional view showing a conventional air-cooled rare gas ion laser tube, FIG. 2 is a sectional view along the optical axis of a plasma capillary according to an embodiment of the present invention, and FIG. 3 is a radial sectional view. ■...Cathode, 2...Plasma tube, 3...Anode, 4.4'...Blue metal window, 5...Gas return Pass, 6.6'
−゛°°°Vacuum envelope, 7...Rare gas, 8...
...Laser optical axis, 9,9', old...Enclosure dish, 10
...Radiation fin, 11...Disc-shaped insulator inner diameter, 12...Disc-shaped insulator, 13. Old...
Metal plate inner diameter, 14...°°°Metal plate% 14a~14
d...Insulator small hole for return path, 15a-1
5d... Metal plate small hole for return bus.

Claims (1)

【特許請求の範囲】[Claims] 中央部分に設けられた1つの小孔Aと小孔人の周辺に設
けられた1つまたは複数の別の小孔Bとを有する板状の
金属板と、小孔Aと同一以上の大きさの小孔Cおよび小
孔Cの周辺に設けられた1つまたは複数の小孔りを有し
た、前記金属板の外形よりも小さい外形を有する絶縁板
とを、小孔AとCが一直線状に々り、小孔BとDとの間
をガスの通路が構成されるように、且つ金属板相互の電
気絶縁と真空気密を保ちつつ交互に接続し、プラズマ細
管としたことを特徴とする希ガスイオンレーザ管。
A plate-shaped metal plate having one small hole A provided in the center and one or more other small holes B provided around the small hole, and the size of the small hole A or larger. a small hole C and an insulating plate having one or more small holes provided around the small hole C and having an outer shape smaller than the outer shape of the metal plate, so that the small holes A and C are in a straight line. The small holes B and D are connected alternately so that a gas passage is formed, and while maintaining electrical insulation and vacuum tightness between the metal plates, forming a plasma thin tube. Rare gas ion laser tube.
JP17346583A 1983-09-20 1983-09-20 Rare gas ion laser tube Pending JPS6065586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17346583A JPS6065586A (en) 1983-09-20 1983-09-20 Rare gas ion laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17346583A JPS6065586A (en) 1983-09-20 1983-09-20 Rare gas ion laser tube

Publications (1)

Publication Number Publication Date
JPS6065586A true JPS6065586A (en) 1985-04-15

Family

ID=15960976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17346583A Pending JPS6065586A (en) 1983-09-20 1983-09-20 Rare gas ion laser tube

Country Status (1)

Country Link
JP (1) JPS6065586A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426048A (en) * 2013-08-29 2015-03-18 大族激光科技产业集团股份有限公司 Heat sink and laser device with heat sink

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104426048A (en) * 2013-08-29 2015-03-18 大族激光科技产业集团股份有限公司 Heat sink and laser device with heat sink

Similar Documents

Publication Publication Date Title
US3437950A (en) Ion laser having a metal tube shrink-fitted onto the ceramic discharge tube
JP2009164038A (en) Fixed anode type x-ray tube and integrated x-ray generator
JP5196872B2 (en) High voltage connector for X-ray tube
KR100941037B1 (en) Soft X-ray Tube with free oxygen copper bulb
US2546976A (en) Electron discharge device and method of assembly
JPS6065586A (en) Rare gas ion laser tube
US3227905A (en) Electron tube comprising beryllium oxide ceramic
JP2003123999A (en) X-ray tube device
KR20160059282A (en) Micro x-ray tube with improved insulation
JP3038830B2 (en) Conduction-cooled multistage collector
JPS607785A (en) Rare gas ion laser tube
JPS6028284A (en) Rare gas ion laser tube
JP6899971B1 (en) Heat dissipation structure and its manufacturing method, vacuum valve
JPS607784A (en) Rare gas ion laser tube
JPS63184378A (en) Ion laser tube
JPH05275774A (en) Ion laser tube
JP6238467B2 (en) Electrothermal planar cathode
US10483078B2 (en) Anode stack
CN221079927U (en) Copper-based high-heat-conductivity composite material conversion target and X-ray tube
IL101935A (en) Collector apparatus for a traveling-wave tube
JPH0453010Y2 (en)
JPH04157774A (en) Air-cooling type argon laser tube
JPS6181682A (en) Ion laser tube
KR20240002247A (en) X-ray tube with arc resistant structure
JPH02116182A (en) Laser fine pipe