JP2003123999A - X-ray tube device - Google Patents

X-ray tube device

Info

Publication number
JP2003123999A
JP2003123999A JP2001314955A JP2001314955A JP2003123999A JP 2003123999 A JP2003123999 A JP 2003123999A JP 2001314955 A JP2001314955 A JP 2001314955A JP 2001314955 A JP2001314955 A JP 2001314955A JP 2003123999 A JP2003123999 A JP 2003123999A
Authority
JP
Japan
Prior art keywords
ray tube
insulating oil
tube
anode
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001314955A
Other languages
Japanese (ja)
Inventor
Yoshiaki Tsuburaya
喜明 円谷
Mototatsu Doi
元達 土肥
Akira Takishita
彬 瀧下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2001314955A priority Critical patent/JP2003123999A/en
Publication of JP2003123999A publication Critical patent/JP2003123999A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently cool an insulating oil in the vicinity of the anode and stator coil of the X-ray tube of a mono-tank X-ray tube device. SOLUTION: A thermoelectric cooler 12 is mounted on the vicinity of the rotating anode 2a of the X-ray tube 2 in the circumference of a tube pipe 4 for supporting the X-ray tube 2 in a tube vessel 3. The cooler 12 comprises a cooling pipe 30, a base seat 32, a thermoelectric element 34, and a radiation plate 36, which are arranged in order from the inside. The base seat 32 has a circular inside shape and a polygonal outside shape, the heat absorbing surface of the thermoelectric element 34 is mounted on the polygonal flat part of the base seat 32, and the radiation plate 36 is mounted on the surface of the thermoelectric element 32. The heat stored in the insulating oil 7a around the rotating anode 2a of the X-ray tube 2 is radiated to the insulating oil 7b on the outside of the tube pipe 4 through the cooler 12.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、X線管容器(以
下、管容器という)内に高電圧発生部が配設されている
モノタンク式のX線管装置に係り、特に内挿X線管の冷
却技術に関する。 【0002】 【従来の技術】図7に従来のモノタンク式X線管装置の
構造例を示す。図7において、管容器3内に、管容器3に
固定された管球パイプ4に支持されたX線管2と、X線管
2に印加する高電圧を発生させるための高電圧発生器5
と、X線管2にフィラメント加熱電圧を供給する加熱変
圧器6が配設されている。更に、管容器3内には、X線管
2などの絶縁と冷却のために、絶縁油7が充填されてい
る。 【0003】管容器3は金属製の容器で、その内面には
X線発生時に不必要なX線を遮蔽するために、鉛板が張
られている。管球パイプ4は金属又はプラスチック製の
筒状体で、その外表面にはX線を遮蔽するための鉛板が
張られており、筒状体の開口端面には絶縁物が配設され
ている。管球パイプ4の内側にはX線管2と、X線管2の
回転陽極を回転させるためのステータコイル8が配設さ
れている。X線管2とステータコイル8は、それぞれ絶縁
物から成る支持体を介して、管球パイプ4の内表面に支
持されている。 【0004】X線管2は、真空に保持された外囲器2c内
に、負電位を持つ陰極2bと、この陰極2bと対向して配置
され、正電位を持つ回転陽極2aを備えている。外囲器2c
は、ガラス又はセラミックなどの耐熱性絶縁物か、この
耐熱性絶縁物と金属との組合せから成る。陰極2bは、熱
電子を放出するフィラメントを備え、加熱変圧器6と接
続されている。回転陽極2aは、陰極2bからの電子線が衝
突してX線を発生するターゲットを備えており、このタ
ーゲットはタングステンなどの高融点、高原子番号の金
属から成る。X線管2の回転陽極2aと陰極2bは、高電圧
発生器5の高電圧端子に接続され、高電圧の供給を受け
る。 【0005】X線管2の使用動作中には、X線管2の回転
陽極2aと陰極2bとの間に、高電圧発生器5によって百数
十kVの高電圧が印加され、同時に陰極2bのフィラメント
が加熱変圧器6によって加熱されるので、陰極2bのフィ
ラメントから放出された熱電子は高電圧によって加速さ
れて、回転陽極2aのターゲットの焦点に衝突し、X線を
発生する。このX線発生時には、X線管2への入力の約9
9%が熱エネルギーに変換されるため、X線管2の回転陽
極2aのターゲットにおいて多量の熱が発生する。このと
きの平均発熱量は、モノタンク式X線管装置では約300
〜400Wとなる。この発熱の結果、回転陽極2aのターゲッ
トは温度上昇し、ターゲット全体としての平均温度は約
1.000℃に達する。 【0006】回転陽極2aのターゲットからの放熱は、大
部分が熱輻射で行われ、外囲器2cを通して絶縁油7に熱
伝達される。このため、回転陽極2aのターゲット近傍の
外囲器2c表面の温度は約200℃、その近傍の絶縁油7の温
度は約150℃まで上昇する。また、回転陽極2aを回転さ
せるステータコイル8の駆動には最大約300W程度、平均
で約100Wの入力が必要であり、この駆動によるステー
タコイル8の発熱によっても、ステータコイル8の周辺
部の絶縁油7が温度上昇する。 【0007】上記の如くして、X線管2及びステータコ
イル8で発生した平均で約500Wの熱量は、X線管2の周
囲の絶縁油7から管球パイプ4に熱伝達され、管球パイプ
4内を熱伝導して、更に管球パイプ4の外側の絶縁油7、
管容器3へと熱伝達され、最終的に管容器3の外表面から
大気中に放熱される。 【0008】また、図示していないが、管容器3の外部
に熱交換器を配置して絶縁油7を強制冷却する絶縁油冷
却手段を備えた装置もある。この場合には、温度上昇し
た絶縁油7が管容器3から熱交換器に送油パイプで導き出
されて、熱交換器で強制冷却された後、管容器3に戻さ
れる。しかし、従来のモノタンク式X線管装置では、そ
の特徴である小形軽量が要求されるため、上記の如く熱
交換器を配置することは稀である。このため、X線管装
置1の冷却方法としては、管容器3の外表面のみからの放
熱が主流となっていた。 【0009】 【発明が解決しようとする課題】上記の如く、モノタン
ク式X線管装置では、その冷却を管容器3表面からの放
熱のみに依存しているため、管容器3内の絶縁油7の流れ
は自然対流のみとなり、淀んでいる。この結果、管球パ
イプ4内に配置されているX線管2やステータコイル8の
近傍の熱を効率的に外側に向けて熱伝達するのが困難に
なっている。 【0010】このため、X線管2やステータコイル8の近
傍の絶縁油7の温度が非常に高くなり、それに起因し
て、X線管2の内部では、特に外囲器2cを構成するガラ
スなどの絶縁物から、例えばH2Oなどのガスが放出し
て、ガス放電が発生したり、或いは絶縁油7中では、絶
縁油7の劣化や炭化物の発生が起り、その結果絶縁油7内
で油中放電が発生したりして、X線管装置の耐電圧性能
の劣化が起っていた。 【0011】これらに鑑み、本発明のX線管装置では、
管容器内のX線管とステータコイルの近傍の絶縁油を効
率的に冷却して、X線管装置の耐電圧性能の劣化を防止
することを目的とする。 【0012】 【課題を解決するための手段】上記目的を達成するた
め、本発明のX線管装置は、X線管容器内に、X線管
と、X線管に高電圧を供給する高電圧発生器と、X線管
の陰極にフィラメント加熱電圧を供給する加熱変圧器
と、絶縁油とを内包するX線管装置において、X線管外
の、X線管の陽極の近傍で、かつX線管の陽極の外周の
少なくとも一部を覆う位置に、X線管の陽極の外周の絶
縁油を冷却するための絶縁油冷却手段を配設したもので
ある(請求項1)。 【0013】この構成では、X線管の陽極の近傍の外周
部に、絶縁油を冷却するための絶縁油冷却手段が配設さ
れているため、X線管の陽極から放散された熱やステー
タコイルの発熱などによって加熱された絶縁油がその近
傍に配設された絶縁油冷却手段によって効率良く冷却さ
れるので、X線管の陽極周辺部の絶縁油の温度上昇が抑
制され、X線管内でのガス放出、絶縁油の劣化、炭化物
の生成などが防止される。その結果、X線管装置の耐電
圧性能を向上することができる。 【0014】本発明のX線管装置では更に、前記絶縁油
冷却手段は熱電素子を含む。また、前記熱電素子は板状
体で、1個以上の熱電素子がX線管の陽極の外周を囲む
ように配設されている。また、前記熱電素子は吸熱面と
放熱面を有し、その吸熱面がX線管の陽極側に対向して
配設されている。 【0015】この構成では、絶縁油冷却手段としての熱
電素子がX線管の陽極の外周を囲むように配設されてい
るため、X線管の陽極からその周辺の絶縁油に放散され
た熱は絶縁油冷却手段としての熱電素子を介して、絶縁
油冷却手段の外側の絶縁油に伝達されるので、X線管の
陽極の周辺部の絶縁油の温度上昇が抑制される。また、
熱電素子は板状体で、その吸熱面がX線管の陽極側に対
向して配設されているので、X線管の陽極周辺の絶縁油
の熱を効率良く吸収し、絶縁油冷却手段の外側の絶縁油
に放熱することができる。 【0016】本発明のX線管装置では更に、前記絶縁油
冷却手段は前記熱電素子と、該熱電素子を支持する筒状
の台座と、前記熱電素子の放熱面に取り付けられる放熱
板を備え、前記台座は熱伝導性の良い金属材料から成
り、その内周はほぼ円形でX線管の陽極側に対向し、そ
の外周は多角形であり、前記熱電素子の吸熱面が前記台
座の多角形の辺を構成する平面部に接合される。 【0017】この構成では、絶縁油冷却手段としての熱
電素子が台座によって確実に支持されるとともに、この
台座を介してX線管の陽極からその周辺の絶縁油に放散
された熱を効率良く吸収することができるので、X線管
の陽極周辺の絶縁油の温度上昇を抑制することができ
る。 【0018】本発明のX線管装置では更に、X線管を絶
縁支持する筒状体がX線管の外周に配設され、該筒状体
の外周の、X線管の陽極の近傍部に前記絶縁油冷却手段
が配設されるものである。また、前記筒状体のうちの少
なくとも前記絶縁油冷却手段が配設される部分は熱伝導
性の良い金属材料から成る。また、前記筒状体の外周と
前記絶縁油冷却手段の内周との間には熱伝導性の良い金
属材料から成る薄層の管状体が配設される。 【0019】この構成では、筒状体によってX線管が支
持されることによって、筒状体の内外の絶縁油に温度差
が生じるが、絶縁油冷却手段をX線管の陽極近傍に配設
したことにより、その部分には効率の良い冷却経路が形
成されるので、X線管の陽極近傍の絶縁油が効率良く冷
却され、その部分の絶縁油の温度上昇を抑制することが
できる。また、絶縁油冷却手段は筒状体に支持され、絶
縁油冷却手段の内周には、熱伝導性の良い管状体と筒状
体が配設されているので、確実な冷却経路が形成され
る。 【0020】本発明のX線管装置では更に、前記筒状体
を2分割して、X線管の陽極側及び陰極側に配置し、両
者の間の、X線管の陽極の近傍部に前記絶縁油冷却手段
を配設したものである。また、前記筒状体と前記絶縁油
冷却手段との間を隙間なく接合したものである。 【0021】この構成では、X線管の陽極周辺部の絶縁
油を絶縁油冷却手段にて直接的に冷却することができる
ので、絶縁油の冷却効率が向上する。 【0022】 【発明の実施の形態】以下、本発明の実施例を添付図面
により説明する。図面の符号は、従来例と同じ構造及び
機能の構成要素については、従来例のものと同じ符号を
用いることにする。図1に、本発明に係るモノタンク式
X線管装置の第1の実施例の全体構造図を示す。また、
図2には、図1の第1の実施例の要部の拡大図を示す。図1
において、本実施例のX線管装置10では、内面にX線遮
蔽のための鉛板を貼った管容器3内に、X線管2と、X線
管2を支持し、管容器3内面に固定された管球パイプ4
と、X線管2に高電圧を印加する高電圧発生器5と、X線
管2の陰極にフィラメントを加熱するための電圧を供給
する加熱変圧器6と、管球パイプ4の外側面に取り付け
られた熱電素子12が配設され、更に管容器3の内部には
絶縁油7が充填されている。 【0023】図2は、本実施例の要部である管球パイプ4
の部分を拡大して示したしたものである。図2におい
て、X線管2は管球パイプ4内面に陽極側絶縁支持体14及
び陰極側絶縁支持体16によって支持されている。陽極側
絶縁支持体14は、X線管2の回転陽極2aの端部を絶縁支
持し、陰極側絶縁支持体16はX線管2の外囲器2cの陰極
側の外周を絶縁支持している。X線管2の回転陽極2aを
回転駆動するステータコイル8は回転陽極2aのロータ部
の外周に配置されるが、このステータコイル8はステー
タ絶縁支持体18に固定され、このステータ絶縁支持体18
が陽極側絶縁支持体14によって支持される。ステータ絶
縁支持体18はX線管2とステータコイル8の絶縁をしてい
る。陽極側絶縁支持体14、陰極側絶縁支持体16及びステ
ータ絶縁支持体18は耐熱性エポキシ樹脂などの耐熱性高
強度の絶縁材料で構成されている。 【0024】管球パイプ4は、金属又は耐熱性高強度の
絶縁材料で構成された筒状体で、その内周面にはX線管
2の回転陽極2aの周辺部から陰極2b側にかけてX線を遮
蔽するための鉛板20が貼り付けられている。管球パイプ
4に寸法的な余裕がない場合などには、この鉛板20は管
球パイプ4の外周面に貼り付けてもよい。また、管球パ
イプ4の側面で、X線管2の焦点(X線発生源)の近傍に
は、X線を外部に放射するためのX線窓22が設けられて
いる。 【0025】更に、X線管2の回転陽極2aとステータコ
イル8が配置される位置に対応する管球パイプ4の外周表
面に、熱電方式冷却器12が取り付けられている。図示の
場合、熱電方式冷却器12はX線管2の陽極側の周囲に取
り付けられている。X線管2やステータコイル8からの放
熱が大きい場合には、2個以上の熱電方式冷却器12を取
り付けてもよい。この場合には、例えばX線管2の陰極
側の周囲に取り付けるとか、陽極側の周囲に追加して取
り付けるとかする。 【0026】図3には、熱電方式冷却器12を管球パイプ4
に取り付けた構造図を示す。図3には、X線管2の管軸に
直交する方向の断面図である。図3において、管球パイ
プ4のX線管2の回転陽極2aに対向する部分の外周全体に
熱電方式冷却器12が取り付けられている。 【0027】熱電方式冷却器12は、冷却パイプ30と、台
座32と、熱電素子34と、放熱板36と、直流電源(図示せ
ず)とから成る。冷却パイプ30は熱伝導性の良い金属、
例えば銅やアルミニウムなどから成る管状体で、管球パ
イプ4の陽極側の外周に密着して巻かれる。台座32は内
周が円形で、外周が多角形の筒状体で、熱伝導性の良い
金属、例えば銅やアルミニウムなどから成る。この台座
32は、冷却パイプ30に密着して取り付けられる。台座32
の外周の平板部の各々に熱電素子34の吸熱面側が取り付
けられる。 【0028】熱電素子34としてはペルチェ素子などが用
いられる。熱電素子34は長方形の板状体で、一方の面が
熱を吸収する吸熱面を構成し、他方の面が熱を放出する
放熱面を構成する。熱電素子34の吸熱面の寸法と台座32
の平板部の寸法はほぼ一致するように設定されている。
熱電素子34の放熱面側には放熱板36が取り付けられる。
この放熱板36も熱伝導性の良い金属、例えば銅やアルミ
ニウムなどから成る。 【0029】熱電素子34の数、台座32の形状、放熱板36
の構造などは、X線管2及びステータコイル8からの発熱
量と熱電素子34単体の能力を考慮して決められる。 【0030】管球パイプ4の熱電方式冷却器12を取りつ
ける部分4aは、熱伝導性の良い材料、例えば銅やアルミ
ニウムなどの金属材料で構成されている。これは管球パ
イプ4の内側から熱電方式冷却器12の外周までの伝熱経
路の熱伝達性能を良くするためである。このため、管球
パイプ4については、上記の一部分4aだけ熱伝導性を良
くしてもよいし、或いは全体の熱伝導性を良くしてもよ
い。 【0031】冷却パイプ30については、管球パイプ4の
外周のうち少なくとも熱電方式冷却器12の存在する領域
に巻かれていればよい。また、冷却パイプ30は管球パイ
プ4の外周と熱電方式冷却器12の内周との密着度を良く
して、両者の間の熱伝導性を向上させるためのものであ
るので、両者の間の密着度が良い場合には省略してもよ
い。 【0032】熱電素子34としてペルチェ素子を使用した
場合の熱電方式冷却器の回路構成と制御の仕方の一例に
ついて説明する。図4は、ペルチェ素子を用いた熱電方
式冷却器の回路構成を示したものである。図4におい
て、ペルチェ素子38はP1、P2、…、Pnのn個並列に配置
されており、各々のペルチェ素子38にX線管装置の外部
に配置した直流電源40から直流電圧が印加される。n個
のペルチェ素子38は図3に示した如く、X線管装置10内
に配置された台座32の平板部に取り付けられており、各
々の端子は並列に接続されて、X線管装置10の外に引き
出されて直流電源40に接続される。 【0033】ペルチェ素子40の冷却能力としては種々の
ものがあるが、ここでは例えば1個当り50Wのものを使用
することにする。本実施例では、X線管2とステータコ
イル8からの発熱は平均で約500Wであるので、10個のペ
ルチェ素子38が必要となる。ペルチェ素子38を取り付け
るための台座32の平板部も10個設けられる。50Wのペル
チェ素子38を10個に接続する直流電源40としては20V、4
0A程度の容量のものが適当である。直流電源40の制御と
しては、X線管装置10の使用中及び使用後の冷却中には
直流電源40をON状態とし、その他の時はOFF状態とす
る。直流電源40にはこのON、OFF制御のためのスイッチ
を設けておけばよい。 【0034】次に、本発明を適用したX線管装置10の動
作例について、図1と図5を用いて説明する。図5は、本
発明に係るX線管装置10内での熱電方式冷却器の動作を
説明するための図である。この図は、図1の中の熱電方
式冷却器の周辺部のみを示している。先ず、モノタンク
式X線管装置10内に内挿されたX線管2は、使用動作中
に陰極2bと回転陽極2aとの間に高電圧発生器5から百数
十kVの高電圧が印加され、陰極2bから放出された熱電子
が回転陽極2aの焦点に衝突し、X線を発生する。X線発
生時には、入力の約99%が熱エネルギーに変換され、X
線管2の回転陽極2aのターゲットは約1.000℃まで温度上
昇し、回転陽極2aでの平均発熱は約300〜400Wとなり、
回転陽極2aからの熱輻射により外囲器2cの外側の絶縁油
7aの温度が上昇する。更に、回転陽極2aを回転駆動する
ステータコイル8も最大で300W、平均で約100Wの熱を発
生し、ステータコイル8の周辺の絶縁油7aの温度を上昇
させる。 【0035】上記の如く、X線管2の使用動作により、
X線管2の回転陽極2aの周辺部の絶縁油7aの温度は、管
球パイプ4の外周部の絶縁油7bの温度に対し大幅に上昇
する。このため、管球パイプの内外で絶縁油温度に大き
な差が生ずる。 【0036】管球パイプ4の外周の、回転陽極2aの外側
に対応する部分には、本発明の要部となる熱電方式冷却
器12が取り付けられている。この熱電方式冷却器12は内
周側から外周側に向けて、冷却パイプ30、台座32、熱電
素子34、放熱板36の順で配置されている。熱電素子34に
はX線管2の稼動開始ととも、X線管装置10の外部にあ
る直流電源から直流電圧が印加されている。 【0037】上記の如く、管球パイプ4の外周部に熱電
方式冷却器12を配設することにより、管球パイプ4の内
側の絶縁油7aに蓄積した熱が管球パイプ4の外側の絶縁
油7bに伝達され、放熱される。これらの熱は,更に管容
器3に熱伝達され、最終的には管容器3の表面から外気中
に放熱される。 【0038】熱電方式冷却器12による放熱機構として
は、先ず熱電方式冷却器12の熱電素子34が、直流電圧を
印加されることによって、その板状体の内周側の吸熱面
で吸熱を行い、外周側の放熱面で放熱を行う。このた
め、X線管2の回転陽極2a及びステータコイル8の周辺部
の絶縁油7aに蓄積した熱は、絶縁油7aの対流及び管球パ
イプ4、冷却パイプ30、台座32を通しての熱伝導によっ
て、熱電素子34の吸熱面に吸収される。更に、熱電素子
34によって吸収された熱は、熱電素子34の放熱面から放
熱され、放熱板36を通して管球パイプ4の外側の絶縁油7
bに放熱される。 【0039】以上説明した如く、本発明では、X線発生
時に高温となる場所、すなわちX線管2の回転陽極2a及
びステータコイル8の周辺部を直接的に冷却しているの
で、冷却効率が非常に高くなっている。本発明のX線管
装置では、熱電方式冷却器12で採用したことにより、X
線管2の回転陽極2aを囲む外囲器2c近傍の絶縁油7aの温
度を約120℃まで低下させることが可能となり、絶縁油
の耐電圧劣化や炭化物の発生を防止することができる。 【0040】次に、本発明に係るモノタンク式X線管装
置の第2の実施例について説明する。本実施例は第1の実
施例に対し、管球パイプ4の構造と、管球パイプと熱電
方式冷却器12との接続構造が異なる。図6に第2の実施例
の要部の拡大図を示す。 【0041】図6において、X線管2を支持する管球パイ
プ42は、陽極側管球パイプ42aと、陰極側管球パイプ42b
とに分割され、両者の間に熱電方式冷却器12が挿入され
ている。熱電方式冷却器44と、X線管2の回転陽極2aと
の相対的位置関係は第1の実施例とほぼ同じである。熱
電方式冷却器44の両端と、陽極側管球パイプ42a及び陰
極側管球パイプ42bの端部との間はほぼ隙間なく接合さ
れている。 【0042】本実施例における熱電方式冷却器44の構成
は、第1の実施例に対し、冷却パイプは省略され、台座3
2と、熱電素子34と、放熱板36と、直流電源(図示せ
ず)とから構成されている。本実施例では、熱電方式冷
却器44の内周面である台座32の内周面がX線管2の回転
陽極2a周辺の絶縁油7aと直接的に接触することになり、
管球パイプや冷却パイプなどが間に介在しないため、熱
電方式冷却器44はX線管2の回転陽極2aからその近傍の
絶縁油7aに放散された熱を効率良く吸収し、管球パイプ
の外側の絶縁油7bに放散することができる。 【0043】熱電方式冷却器44と陽極側及び陰極側管球
パイプ42a、42bとの接合は熱電方式冷却器44の台座32の
側面で行われる。それぞれの間の接合は、突き合わせて
ろう付けするとか、重ね合わせ部分を設けてねじで締結
するとか、接着剤にて接着するとかして行われる。 【0044】 【発明の効果】以上説明した如く、本発明によれば、モ
ノタンク式X線管装置の管容器内に支持されるX線管の
陽極の近傍の外周部に、絶縁油を冷却するための絶縁油
冷却手段が配設されているため、X線管の陽極から放散
された熱やステータコイルの発熱などによって加熱され
た絶縁油が、その近傍に配設された絶縁油冷却手段によ
って効率良く冷却されるので、X線管の陽極周辺部の絶
縁油の温度上昇が抑制される。その結果、X線管内での
ガス放出や絶縁油の絶縁劣化や炭化物の生成などが防止
され、X線管装置の耐電圧性能を向上することができ
る。 【0045】また、本発明によれば、絶縁油冷却手段と
しての熱電素子がX線管の陽極の外周を囲むように配設
されているため、X線管の陽極からその周辺の絶縁油に
放散された熱は絶縁油冷却手段としての熱電素子を介し
て、絶縁油冷却手段の外側の絶縁油に伝達されるので、
X線管の陽極の周辺部の絶縁油の温度上昇が抑制され
る。また、熱電素子は板状体で、その吸熱面がX線管の
陽極側に対向して配設されているので、X線管の陽極周
辺の絶縁油の熱を効率良く吸収し、絶縁油冷却手段の外
側の絶縁油に放熱することができる。 【0046】また、本発明では、絶縁油冷却手段の熱電
素子が台座によって確実に支持されるとともに、台座を
介してX線管の陽極からその周辺の絶縁油に放散された
熱を効率良く吸収することができるので、X線管の陽極
周辺の絶縁油の温度上昇を抑制することができる。 【0047】また、本発明では、X線管の外周に配設さ
れた筒状体によってX線管が支持される場合でも、絶縁
油冷却手段をX線管の陽極近傍に設置したことにより、
この部分に効率の良い冷却経路が形成されるので、筒状
体の内側のX線管の陽極近傍の絶縁油が効率良く冷却さ
れ、その部分の絶縁油の温度上昇を抑制することができ
る。また、絶縁油冷却手段は筒状体に支持され、その内
周には熱伝導性の良い管状体と筒状体が配設されている
ので、確実な冷却経路が形成される。 【0048】また、本発明によれば、絶縁油冷却手段が
2分割された筒状体の間に、2つの筒状体に結合されて配
設されているので、X線管の陽極周辺部の絶縁油は絶縁
油冷却手段の内周面に接触し、直接的に冷却されるの
で、絶縁油の冷却効率が向上する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monotank type X-ray tube in which a high-voltage generating section is disposed in an X-ray tube container (hereinafter, referred to as a tube container). The present invention relates to an apparatus, and particularly to a technique for cooling an inserted X-ray tube. 2. Description of the Related Art FIG. 7 shows a structural example of a conventional monotank type X-ray tube device. In FIG. 7, an X-ray tube 2 supported by a tube pipe 4 fixed to the tube container 3 and an X-ray tube
High voltage generator 5 for generating high voltage applied to 2
And a heating transformer 6 for supplying a filament heating voltage to the X-ray tube 2. Furthermore, an X-ray tube is contained in the tube container 3.
The insulation oil 7 is filled for insulation and cooling such as 2. [0003] The tube container 3 is a metal container, and a lead plate is provided on an inner surface thereof to shield unnecessary X-rays when X-rays are generated. The tube pipe 4 is a cylindrical body made of metal or plastic, and a lead plate for shielding X-rays is stretched on the outer surface thereof, and an insulating material is provided on an opening end surface of the cylindrical body. I have. The X-ray tube 2 and a stator coil 8 for rotating a rotating anode of the X-ray tube 2 are arranged inside the tube pipe 4. The X-ray tube 2 and the stator coil 8 are supported on the inner surface of the tube pipe 4 via supports made of an insulator, respectively. [0004] The X-ray tube 2 includes a cathode 2b having a negative potential and a rotating anode 2a having a positive potential, which is disposed opposite the cathode 2b in an envelope 2c maintained in a vacuum. . Enclosure 2c
Is made of a heat-resistant insulator such as glass or ceramic, or a combination of the heat-resistant insulator and a metal. The cathode 2b includes a filament that emits thermoelectrons, and is connected to the heating transformer 6. The rotating anode 2a has a target that generates X-rays by collision of an electron beam from the cathode 2b, and this target is made of a metal having a high melting point and a high atomic number, such as tungsten. The rotating anode 2a and the cathode 2b of the X-ray tube 2 are connected to a high voltage terminal of a high voltage generator 5, and receive a high voltage. During operation of the X-ray tube 2, a high voltage of more than one hundred tens of kV is applied between the rotating anode 2 a and the cathode 2 b of the X-ray tube 2 by the high voltage generator 5, and at the same time, the cathode 2 b Is heated by the heating transformer 6, the thermoelectrons emitted from the filament of the cathode 2b are accelerated by the high voltage and collide with the focus of the target of the rotating anode 2a to generate X-rays. When this X-ray is generated, about 9
Since 9% is converted to heat energy, a large amount of heat is generated at the target of the rotating anode 2a of the X-ray tube 2. The average calorific value at this time is about 300 for the monotank type X-ray tube device.
~ 400W. As a result of this heat generation, the temperature of the target of the rotating anode 2a rises, and the average temperature of the entire target becomes approximately
Reach 1.000 ° C. Most of the heat radiation from the target of the rotary anode 2a is performed by heat radiation, and the heat is transferred to the insulating oil 7 through the envelope 2c. For this reason, the temperature of the surface of the envelope 2c near the target of the rotating anode 2a rises to about 200 ° C., and the temperature of the insulating oil 7 in the vicinity rises to about 150 ° C. Further, the driving of the stator coil 8 for rotating the rotary anode 2a requires an input of about 300 W at the maximum and about 100 W on average, and the heat generated by the stator coil 8 due to this driving also insulates the periphery of the stator coil 8. The temperature of the oil 7 rises. As described above, an average amount of heat of about 500 W generated in the X-ray tube 2 and the stator coil 8 is transferred from the insulating oil 7 around the X-ray tube 2 to the tube pipe 4, and pipe
4 conducts heat and further insulating oil 7 outside the tube pipe 4
Heat is transferred to the tube container 3 and finally radiated from the outer surface of the tube container 3 to the atmosphere. [0008] Although not shown, there is an apparatus provided with an insulating oil cooling means for forcibly cooling the insulating oil 7 by disposing a heat exchanger outside the tube container 3. In this case, the insulating oil 7 whose temperature has risen is led out of the tube container 3 to the heat exchanger by an oil feed pipe, forcibly cooled by the heat exchanger, and then returned to the tube container 3. However, the conventional monotank type X-ray tube apparatus requires a small size and light weight which is a feature thereof, and therefore, it is rare to arrange the heat exchanger as described above. For this reason, as the cooling method of the X-ray tube device 1, heat radiation from only the outer surface of the tube container 3 has been the mainstream. As described above, in the monotank type X-ray tube apparatus, the cooling depends only on the heat radiation from the surface of the tube container 3. The current is only natural convection and is stagnant. As a result, it is difficult to efficiently transfer heat in the vicinity of the X-ray tube 2 and the stator coil 8 disposed in the tube pipe 4 to the outside. Therefore, the temperature of the insulating oil 7 in the vicinity of the X-ray tube 2 and the stator coil 8 becomes extremely high, and as a result, the inside of the X-ray tube 2, especially the glass forming the envelope 2c For example, a gas such as H 2 O is released from the insulating material such as H 2 O to cause gas discharge, or in the insulating oil 7, the insulating oil 7 is deteriorated or carbides are generated. As a result, a discharge in the oil occurred, and the withstand voltage performance of the X-ray tube device deteriorated. In view of these, in the X-ray tube apparatus of the present invention,
An object of the present invention is to efficiently cool insulating oil in the vicinity of an X-ray tube and a stator coil in a tube container and prevent deterioration of withstand voltage performance of the X-ray tube device. [0012] In order to achieve the above object, an X-ray tube apparatus according to the present invention comprises an X-ray tube and a high-voltage tube for supplying a high voltage to the X-ray tube. In an X-ray tube device including a voltage generator, a heating transformer for supplying a filament heating voltage to a cathode of the X-ray tube, and insulating oil, outside the X-ray tube, near an anode of the X-ray tube, and An insulating oil cooling means for cooling the insulating oil on the outer periphery of the anode of the X-ray tube is provided at a position covering at least a part of the outer periphery of the anode of the X-ray tube (claim 1). [0013] In this configuration, since the insulating oil cooling means for cooling the insulating oil is provided on the outer peripheral portion near the anode of the X-ray tube, heat dissipated from the anode of the X-ray tube and the stator are cooled. Since the insulating oil heated by the heat of the coil and the like is efficiently cooled by the insulating oil cooling means disposed in the vicinity thereof, the temperature rise of the insulating oil around the anode of the X-ray tube is suppressed, and Gas, deterioration of insulating oil, generation of carbide, etc. are prevented. As a result, the withstand voltage performance of the X-ray tube device can be improved. In the X-ray tube apparatus according to the present invention, the insulating oil cooling means further includes a thermoelectric element. Further, the thermoelectric element is a plate-like body, and one or more thermoelectric elements are disposed so as to surround the outer periphery of the anode of the X-ray tube. The thermoelectric element has a heat absorbing surface and a heat radiating surface, and the heat absorbing surface is disposed so as to face the anode side of the X-ray tube. In this configuration, since the thermoelectric element as the insulating oil cooling means is disposed so as to surround the outer periphery of the anode of the X-ray tube, the heat radiated from the anode of the X-ray tube to the insulating oil around the anode is provided. Is transmitted to the insulating oil outside the insulating oil cooling means via the thermoelectric element as the insulating oil cooling means, so that the temperature rise of the insulating oil around the anode of the X-ray tube is suppressed. Also,
Since the thermoelectric element is a plate-shaped body, and its heat absorbing surface is disposed to face the anode side of the X-ray tube, the thermoelectric element efficiently absorbs the heat of the insulating oil around the anode of the X-ray tube, and the insulating oil cooling means. The heat can be radiated to the insulating oil outside. In the X-ray tube apparatus according to the present invention, the insulating oil cooling means further includes the thermoelectric element, a cylindrical pedestal supporting the thermoelectric element, and a radiator plate attached to a radiating surface of the thermoelectric element. The pedestal is made of a metal material having good thermal conductivity, the inner circumference of which is substantially circular and faces the anode side of the X-ray tube, the outer circumference of which is polygonal, and the heat absorbing surface of the thermoelectric element is the polygonal shape of the pedestal. Are joined to the plane part constituting the side of In this configuration, the thermoelectric element as the insulating oil cooling means is reliably supported by the pedestal, and the heat radiated from the anode of the X-ray tube to the surrounding insulating oil through the pedestal is efficiently absorbed. Therefore, an increase in the temperature of the insulating oil around the anode of the X-ray tube can be suppressed. In the X-ray tube apparatus according to the present invention, further, a cylindrical body for insulatingly supporting the X-ray tube is disposed on the outer periphery of the X-ray tube, and the outer periphery of the cylindrical body near the anode of the X-ray tube. , The insulating oil cooling means is provided. In addition, at least a portion of the tubular body where the insulating oil cooling means is provided is made of a metal material having good heat conductivity. A thin-layer tubular body made of a metal material having good heat conductivity is provided between the outer periphery of the tubular body and the inner periphery of the insulating oil cooling means. In this configuration, since the X-ray tube is supported by the cylindrical body, a temperature difference occurs between the insulating oil inside and outside the cylindrical body, but the insulating oil cooling means is disposed near the anode of the X-ray tube. As a result, an efficient cooling path is formed in that portion, so that the insulating oil near the anode of the X-ray tube is efficiently cooled, and the temperature rise of the insulating oil in that portion can be suppressed. Further, the insulating oil cooling means is supported by the tubular body, and a tubular body and a tubular body having good heat conductivity are arranged on the inner periphery of the insulating oil cooling means, so that a reliable cooling path is formed. You. In the X-ray tube apparatus according to the present invention, the cylindrical body is further divided into two parts and arranged on the anode side and the cathode side of the X-ray tube. The insulating oil cooling means is provided. Further, the tubular body and the insulating oil cooling means are joined without any gap. In this configuration, the insulating oil around the anode of the X-ray tube can be directly cooled by the insulating oil cooling means, so that the cooling efficiency of the insulating oil is improved. Embodiments of the present invention will be described below with reference to the accompanying drawings. In the drawings, the same reference numerals as those of the conventional example are used for components having the same structure and function as those of the conventional example. FIG. 1 shows an overall structural diagram of a first embodiment of a monotank type X-ray tube apparatus according to the present invention. Also,
FIG. 2 is an enlarged view of a main part of the first embodiment of FIG. Figure 1
In the X-ray tube apparatus 10 of the present embodiment, the X-ray tube 2 and the X-ray tube 2 are supported in a tube container 3 having a lead plate for X-ray shielding adhered on the inner surface. Tube pipe fixed to 4
A high voltage generator 5 for applying a high voltage to the X-ray tube 2; a heating transformer 6 for supplying a voltage for heating the filament to the cathode of the X-ray tube 2; The attached thermoelectric element 12 is provided, and the inside of the tube container 3 is filled with insulating oil 7. FIG. 2 shows a tube pipe 4 which is a main part of this embodiment.
Is shown in an enlarged manner. In FIG. 2, the X-ray tube 2 is supported on the inner surface of the tube pipe 4 by an anode-side insulating support 14 and a cathode-side insulating support 16. The anode-side insulating support 14 insulates and supports the end of the rotating anode 2a of the X-ray tube 2, and the cathode-side insulating support 16 insulates and supports the cathode-side outer periphery of the envelope 2c of the X-ray tube 2. I have. A stator coil 8 for rotationally driving the rotating anode 2a of the X-ray tube 2 is arranged on the outer periphery of the rotor portion of the rotating anode 2a. The stator coil 8 is fixed to a stator insulating support 18, and the stator insulating support 18
Are supported by the anode-side insulating support. The stator insulating support 18 insulates the X-ray tube 2 from the stator coil 8. The anode-side insulating support 14, the cathode-side insulating support 16, and the stator insulating support 18 are made of a heat-resistant high-strength insulating material such as a heat-resistant epoxy resin. The tube pipe 4 is a cylindrical body made of a metal or a heat-resistant and high-strength insulating material.
A lead plate 20 for shielding X-rays is attached from the periphery of the rotating anode 2a to the cathode 2b. Tube pipe
This lead plate 20 may be attached to the outer peripheral surface of the tube pipe 4 when there is no dimensional margin in 4, for example. An X-ray window 22 for emitting X-rays to the outside is provided near the focal point (X-ray generation source) of the X-ray tube 2 on the side surface of the tube pipe 4. Further, a thermoelectric cooler 12 is mounted on the outer peripheral surface of the tube pipe 4 corresponding to the position where the rotating anode 2a and the stator coil 8 of the X-ray tube 2 are arranged. In the illustrated case, the thermoelectric cooler 12 is mounted around the anode side of the X-ray tube 2. When heat radiation from the X-ray tube 2 or the stator coil 8 is large, two or more thermoelectric coolers 12 may be attached. In this case, for example, it is attached around the cathode side of the X-ray tube 2 or additionally attached around the anode side. FIG. 3 shows that the thermoelectric cooler 12 is connected to the tube pipe 4.
FIG. FIG. 3 is a cross-sectional view of the X-ray tube 2 in a direction orthogonal to the tube axis. In FIG. 3, a thermoelectric cooler 12 is attached to the entire outer periphery of a portion of the tube pipe 4 facing the rotating anode 2a of the X-ray tube 2. The thermoelectric cooler 12 includes a cooling pipe 30, a pedestal 32, a thermoelectric element 34, a radiator plate 36, and a DC power supply (not shown). The cooling pipe 30 is made of metal with good heat conductivity,
For example, it is a tubular body made of copper, aluminum, or the like, and is tightly wound around the outer circumference of the tube pipe 4 on the anode side. The pedestal 32 is a cylindrical body having a circular inner periphery and a polygonal outer periphery, and is made of a metal having good heat conductivity, such as copper or aluminum. This pedestal
32 is attached in close contact with the cooling pipe 30. Pedestal 32
The heat-absorbing surface side of the thermoelectric element 34 is attached to each of the outer flat plate portions. As the thermoelectric element 34, a Peltier element or the like is used. The thermoelectric element 34 is a rectangular plate-like body, and one surface constitutes a heat absorbing surface that absorbs heat, and the other surface constitutes a heat radiating surface that emits heat. The dimensions of the heat absorbing surface of the thermoelectric element 34 and the pedestal 32
Are set so that the dimensions of the flat portions substantially coincide with each other.
A heat radiating plate 36 is attached to the heat radiating surface of the thermoelectric element 34.
The radiator plate 36 is also made of a metal having good heat conductivity, for example, copper or aluminum. Number of thermoelectric elements 34, shape of pedestal 32, heat sink 36
Is determined in consideration of the amount of heat generated from the X-ray tube 2 and the stator coil 8 and the capability of the thermoelectric element 34 alone. The portion 4a of the tube pipe 4 to which the thermoelectric cooler 12 is attached is made of a material having good heat conductivity, for example, a metal material such as copper or aluminum. This is to improve the heat transfer performance of the heat transfer path from the inside of the tube pipe 4 to the outer periphery of the thermoelectric cooler 12. For this reason, with respect to the tube pipe 4, the thermal conductivity may be improved only in the above-mentioned portion 4a, or the thermal conductivity may be improved as a whole. The cooling pipe 30 only needs to be wound around at least the area where the thermoelectric cooler 12 is present on the outer periphery of the tube pipe 4. Further, the cooling pipe 30 is for improving the degree of adhesion between the outer periphery of the tube pipe 4 and the inner periphery of the thermoelectric cooler 12 and improving the thermal conductivity between the two. May be omitted if the degree of adhesion is good. An example of the circuit configuration and control method of the thermoelectric cooler when a Peltier element is used as the thermoelectric element 34 will be described. FIG. 4 shows a circuit configuration of a thermoelectric cooler using a Peltier element. In FIG. 4, n Peltier elements 38 are arranged in parallel with P 1 , P 2 ,..., P n , and a DC voltage is applied to each Peltier element 38 from a DC power supply 40 arranged outside the X-ray tube device. Applied. As shown in FIG. 3, the n Peltier elements 38 are attached to the flat portion of the pedestal 32 arranged in the X-ray tube device 10, and the respective terminals are connected in parallel to form the X-ray tube device 10. And connected to the DC power supply 40. Although there are various cooling capacities of the Peltier element 40, here, for example, a Peltier element having a cooling capacity of 50 W is used. In this embodiment, since the heat generated from the X-ray tube 2 and the stator coil 8 is about 500 W on average, ten Peltier elements 38 are required. Ten flat plate portions of the pedestal 32 for mounting the Peltier element 38 are also provided. DC power supply 40 for connecting 10 Peltier elements 38 of 50 W to 20 V, 4
A capacity of about 0A is appropriate. In controlling the DC power supply 40, the DC power supply 40 is turned on during use of the X-ray tube device 10 and during cooling after use, and is turned off at other times. The DC power supply 40 may be provided with a switch for this ON / OFF control. Next, an operation example of the X-ray tube apparatus 10 to which the present invention is applied will be described with reference to FIGS. FIG. 5 is a diagram for explaining the operation of the thermoelectric cooler in the X-ray tube device 10 according to the present invention. This figure shows only the periphery of the thermoelectric cooler in FIG. First, the X-ray tube 2 inserted in the monotank type X-ray tube device 10 applies a high voltage of more than one hundred tens of kV from the high voltage generator 5 between the cathode 2b and the rotating anode 2a during use. Then, thermions emitted from the cathode 2b collide with the focal point of the rotating anode 2a to generate X-rays. When X-rays are generated, about 99% of the input is converted to heat energy,
The temperature of the target of the rotating anode 2a of the wire tube 2 rises to about 1.000 ° C., and the average heat generation at the rotating anode 2a becomes about 300 to 400 W,
Insulating oil outside the envelope 2c due to heat radiation from the rotating anode 2a
The temperature of 7a rises. Further, the stator coil 8 that rotationally drives the rotary anode 2a also generates heat of 300 W at the maximum and about 100 W on average, and raises the temperature of the insulating oil 7a around the stator coil 8. As described above, the operation of using the X-ray tube 2
The temperature of the insulating oil 7a around the rotating anode 2a of the X-ray tube 2 is significantly higher than the temperature of the insulating oil 7b around the outer periphery of the tube pipe 4. For this reason, a large difference occurs between the insulating oil temperature inside and outside the tube pipe. A thermoelectric cooler 12, which is a main part of the present invention, is attached to a portion of the outer periphery of the tube pipe 4 corresponding to the outside of the rotary anode 2a. The thermoelectric cooler 12 is provided with a cooling pipe 30, a pedestal 32, a thermoelectric element 34, and a heat sink 36 in this order from the inner peripheral side to the outer peripheral side. When the operation of the X-ray tube 2 is started, a DC voltage is applied to the thermoelectric element 34 from a DC power source outside the X-ray tube device 10. As described above, by arranging the thermoelectric cooler 12 on the outer peripheral portion of the tube pipe 4, the heat accumulated in the insulating oil 7 a inside the tube pipe 4 allows the heat accumulated on the outside of the tube pipe 4 to be insulated. The heat is transmitted to the oil 7b and dissipated. The heat is further transferred to the tube 3 and finally radiated from the surface of the tube 3 into the outside air. The heat dissipation mechanism of the thermoelectric cooler 12 is as follows. First, the thermoelectric element 34 of the thermoelectric cooler 12 absorbs heat on the inner heat absorbing surface on the inner peripheral side of the plate by applying a DC voltage. The heat is radiated on the heat radiation surface on the outer peripheral side. Therefore, heat accumulated in the insulating oil 7a around the rotating anode 2a of the X-ray tube 2 and the stator coil 8 is generated by convection of the insulating oil 7a and heat conduction through the tube pipe 4, the cooling pipe 30, and the pedestal 32. Is absorbed by the heat absorbing surface of the thermoelectric element 34. Furthermore, thermoelectric elements
The heat absorbed by the heat dissipation element 34 is radiated from the heat dissipation surface of the thermoelectric element 34 and passes through the heat dissipation plate 36 to the insulating oil 7 outside the tube pipe 4.
Heat is dissipated to b. As described above, in the present invention, since the place where the temperature becomes high when X-rays are generated, that is, the periphery of the rotating anode 2a of the X-ray tube 2 and the stator coil 8 is directly cooled, the cooling efficiency is reduced. It is very high. In the X-ray tube apparatus of the present invention, the X-ray tube
The temperature of the insulating oil 7a in the vicinity of the envelope 2c surrounding the rotating anode 2a of the wire tube 2 can be reduced to about 120 ° C., so that the withstand voltage of the insulating oil can be prevented from deteriorating and generation of carbides can be prevented. Next, a description will be given of a second embodiment of the monotank type X-ray tube apparatus according to the present invention. This embodiment is different from the first embodiment in the structure of the tube pipe 4 and the connection structure between the tube pipe and the thermoelectric cooler 12. FIG. 6 shows an enlarged view of a main part of the second embodiment. In FIG. 6, a tube pipe 42 supporting the X-ray tube 2 includes an anode-side tube pipe 42a and a cathode-side tube pipe 42b.
And a thermoelectric cooler 12 is inserted between them. The relative positional relationship between the thermoelectric cooler 44 and the rotating anode 2a of the X-ray tube 2 is almost the same as in the first embodiment. Both ends of the thermoelectric cooler 44 and the ends of the anode-side tube pipe 42a and the cathode-side tube pipe 42b are joined with almost no gap. The structure of the thermoelectric cooler 44 in this embodiment is different from that of the first embodiment in that the cooling pipe is omitted and the pedestal 3
2, a thermoelectric element 34, a radiator plate 36, and a DC power supply (not shown). In the present embodiment, the inner peripheral surface of the pedestal 32, which is the inner peripheral surface of the thermoelectric cooler 44, comes into direct contact with the insulating oil 7a around the rotary anode 2a of the X-ray tube 2,
Since no tube pipe or cooling pipe is interposed therebetween, the thermoelectric cooler 44 efficiently absorbs the heat radiated from the rotating anode 2a of the X-ray tube 2 to the insulating oil 7a in the vicinity thereof, and It can be dissipated to the outer insulating oil 7b. The junction between the thermoelectric cooler 44 and the anode-side and cathode-side tube pipes 42a and 42b is performed on the side surface of the pedestal 32 of the thermoelectric cooler 44. The connection between them is performed by butt brazing, by providing an overlapped portion and fastening with screws, or by bonding with an adhesive. As described above, according to the present invention, the insulating oil is cooled on the outer peripheral portion near the anode of the X-ray tube supported in the tube vessel of the monotank type X-ray tube device. Oil cooling means is provided, so that the insulating oil heated by the heat dissipated from the anode of the X-ray tube or the heat generated by the stator coil is cooled by the insulating oil cooling means disposed in the vicinity thereof. Since the cooling is performed efficiently, the temperature rise of the insulating oil around the anode of the X-ray tube is suppressed. As a result, outgassing in the X-ray tube, insulation deterioration of the insulating oil, generation of carbides, and the like are prevented, and the withstand voltage performance of the X-ray tube device can be improved. Further, according to the present invention, since the thermoelectric element as the insulating oil cooling means is disposed so as to surround the outer periphery of the anode of the X-ray tube, the thermoelectric element is cooled from the anode of the X-ray tube to the surrounding insulating oil. Since the dissipated heat is transmitted to the insulating oil outside the insulating oil cooling means through the thermoelectric element as the insulating oil cooling means,
The temperature rise of the insulating oil around the anode of the X-ray tube is suppressed. In addition, since the thermoelectric element is a plate-like body, and its heat absorbing surface is disposed so as to face the anode side of the X-ray tube, the heat of the insulating oil around the anode of the X-ray tube can be efficiently absorbed and the insulating oil can be absorbed. The heat can be radiated to the insulating oil outside the cooling means. Further, according to the present invention, the thermoelectric element of the insulating oil cooling means is securely supported by the pedestal, and the heat radiated from the anode of the X-ray tube to the surrounding insulating oil via the pedestal is efficiently absorbed. Therefore, an increase in the temperature of the insulating oil around the anode of the X-ray tube can be suppressed. Further, according to the present invention, even when the X-ray tube is supported by the cylindrical body provided on the outer periphery of the X-ray tube, the insulating oil cooling means is provided near the anode of the X-ray tube,
Since an efficient cooling path is formed in this portion, the insulating oil near the anode of the X-ray tube inside the tubular body is efficiently cooled, and the temperature rise of the insulating oil in that portion can be suppressed. Further, the insulating oil cooling means is supported by the tubular body, and the tubular body and the tubular body having good heat conductivity are disposed on the inner periphery thereof, so that a reliable cooling path is formed. According to the present invention, the insulating oil cooling means is
Between the two divided cylinders, it is arranged so as to be joined to the two cylinders, so that the insulating oil around the anode of the X-ray tube contacts the inner peripheral surface of the insulating oil cooling means, Since the cooling is performed directly, the cooling efficiency of the insulating oil is improved.

【図面の簡単な説明】 【図1】本発明に係るモノタンク式X線管装置の第1の
実施例の全体構造図。 【図2】図1の第1の実施例の要部の拡大図。 【図3】熱電方式冷却器を管球パイプに取り付けた構造
図。 【図4】ペルチェ素子を用いた熱電方式冷却器の回路構
成。 【図5】本発明に係るX線管装置内での熱電方式冷却器
の動作を説明するための図。 【図6】本発明に係るモノタンク式X線管装置の第2の実
施例の要部の拡大図。 【図7】従来のモノタンク式X線管装置の構造例。 【符号の説明】 1,10…X線管装置 2…X線管 2a…回転陽極 2b…陰極 2c…外囲器 3…X線管容器(管容器) 4,42…管球パイプ 5…高電圧発生器 6…加熱変圧器 7,7a,7b…絶縁油 8…ステータコイル 12、44…熱電方式冷却器 14…陽極側絶縁支持体 16…陰極側絶縁支持体 18…ステータ絶縁支持体 20…鉛板 22…X線窓 30…冷却パイプ 32…台座 34…熱電素子 36…放熱板 38…ペルチェ素子 40…直流電源 42a…陽極側管球パイプ 42b…陰極側管球パイプ
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an overall structural diagram of a first embodiment of a monotank type X-ray tube device according to the present invention. FIG. 2 is an enlarged view of a main part of the first embodiment of FIG. 1; FIG. 3 is a structural diagram in which a thermoelectric cooler is attached to a tube pipe. FIG. 4 is a circuit configuration of a thermoelectric cooler using a Peltier element. FIG. 5 is a diagram for explaining the operation of the thermoelectric cooler in the X-ray tube device according to the present invention. FIG. 6 is an enlarged view of a main part of a second embodiment of the monotank type X-ray tube device according to the present invention. FIG. 7 is a structural example of a conventional monotank type X-ray tube device. [Explanation of Signs] 1, 10 X-ray tube device 2 X-ray tube 2a Rotating anode 2b Cathode 2c Envelope 3 X-ray tube container (tube container) 4, 42 Tube tube 5 High Voltage generator 6 Heating transformer 7, 7a, 7b Insulating oil 8 Stator coil 12, 44 Thermoelectric cooler 14 Anode-side insulating support 16 Cathode-side insulating support 18 Stator insulating support 20 Lead plate 22 X-ray window 30 Cooling pipe 32 Pedestal 34 Thermoelectric element 36 Heat sink 38 Peltier element 40 DC power supply 42a Anode tube pipe 42b Cathode tube pipe

Claims (1)

【特許請求の範囲】 【請求項1】 X線管容器内に、X線管と、X線管に高
電圧を供給する高電圧発生器と、X線管の陰極にフィラ
メント加熱電圧を供給する加熱変圧器と、絶縁油とを内
包するX線管装置において、X線管外の、X線管の陽極
の近傍で、かつX線管の陽極の外周の少なくとも一部を
覆う位置に、X線管の陽極の外周の絶縁油を冷却するた
めの絶縁油冷却手段を配設したことを特徴とするX線管
装置。
Claims: 1. An X-ray tube, a high voltage generator for supplying a high voltage to the X-ray tube, and a filament heating voltage to a cathode of the X-ray tube in an X-ray tube container. In an X-ray tube apparatus including a heating transformer and insulating oil, an X-ray tube is provided outside the X-ray tube, near the anode of the X-ray tube, and at a position covering at least a part of the outer periphery of the anode of the X-ray tube. An X-ray tube device comprising an insulating oil cooling means for cooling the insulating oil on the outer periphery of the anode of the X-ray tube.
JP2001314955A 2001-10-12 2001-10-12 X-ray tube device Pending JP2003123999A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314955A JP2003123999A (en) 2001-10-12 2001-10-12 X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314955A JP2003123999A (en) 2001-10-12 2001-10-12 X-ray tube device

Publications (1)

Publication Number Publication Date
JP2003123999A true JP2003123999A (en) 2003-04-25

Family

ID=19133193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314955A Pending JP2003123999A (en) 2001-10-12 2001-10-12 X-ray tube device

Country Status (1)

Country Link
JP (1) JP2003123999A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358211A (en) * 2003-05-14 2004-12-24 Shimadzu Corp Surgical x-ray tv apparatus
JP2007005283A (en) * 2005-02-21 2007-01-11 Hitachi Medical Corp Integrated x-ray generator
JP2011033512A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Target for source of neutron
CN102595754A (en) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 Radiation device installing box and oil cooling cyclic system as well as X-ray generator
CN102595753A (en) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 Radiation device installing box and X-ray generator
JP2015032512A (en) * 2013-08-05 2015-02-16 株式会社東芝 X-ray tube device and x-ray tube device air cooling mechanism
JP2015173002A (en) * 2014-03-11 2015-10-01 株式会社東芝 X-ray tube device and manufacturing method of the same
WO2017052799A1 (en) * 2015-09-25 2017-03-30 Moxtek, Inc. X-ray tube integral heatsink
CN107546089A (en) * 2016-08-04 2018-01-05 上海丞铭电子技术有限公司 A kind of high power x-ray bulb
RU199029U1 (en) * 2020-04-03 2020-08-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" MICROFOCUS X-RAY TUBE WITH ANODE "HEAT TUBE" SHOT TYPE

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004358211A (en) * 2003-05-14 2004-12-24 Shimadzu Corp Surgical x-ray tv apparatus
JP2007005283A (en) * 2005-02-21 2007-01-11 Hitachi Medical Corp Integrated x-ray generator
JP2011033512A (en) * 2009-08-04 2011-02-17 Mitsubishi Electric Corp Target for source of neutron
CN102595754B (en) * 2012-01-06 2015-05-13 同方威视技术股份有限公司 Radiation device installing box and oil cooling cyclic system as well as X-ray generator
US9263226B2 (en) 2012-01-06 2016-02-16 Nuctech Company Limited Radiation device installation housing and X-ray generator
WO2013102426A1 (en) * 2012-01-06 2013-07-11 同方威视技术股份有限公司 Radiation device installation box and x-ray generator
WO2013102427A1 (en) * 2012-01-06 2013-07-11 同方威视技术股份有限公司 Radiation device installation case, oil cooled circulation system and x-ray generator
CN102595753A (en) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 Radiation device installing box and X-ray generator
CN102595754A (en) * 2012-01-06 2012-07-18 同方威视技术股份有限公司 Radiation device installing box and oil cooling cyclic system as well as X-ray generator
US9420676B2 (en) 2012-01-06 2016-08-16 Nuctech Company Limited Installation case for radiation device, oil-cooling circulation system and x-ray generator
JP2015032512A (en) * 2013-08-05 2015-02-16 株式会社東芝 X-ray tube device and x-ray tube device air cooling mechanism
JP2015173002A (en) * 2014-03-11 2015-10-01 株式会社東芝 X-ray tube device and manufacturing method of the same
WO2017052799A1 (en) * 2015-09-25 2017-03-30 Moxtek, Inc. X-ray tube integral heatsink
US10182490B2 (en) 2015-09-25 2019-01-15 Moxtek, Inc. X-ray tube integral heatsink
US10264659B1 (en) 2015-09-25 2019-04-16 Moxtek, Inc. X-ray tube integral heatsink
CN107546089A (en) * 2016-08-04 2018-01-05 上海丞铭电子技术有限公司 A kind of high power x-ray bulb
CN107546089B (en) * 2016-08-04 2024-05-28 上海钧安医疗科技有限公司 High-power X-ray tube
RU199029U1 (en) * 2020-04-03 2020-08-07 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" MICROFOCUS X-RAY TUBE WITH ANODE "HEAT TUBE" SHOT TYPE

Similar Documents

Publication Publication Date Title
JP6039282B2 (en) Radiation generator and radiation imaging apparatus
JP6039283B2 (en) Radiation generator and radiation imaging apparatus
US5949849A (en) X-ray generator and electrostatic remover using the same
US5802140A (en) X-ray generating apparatus with integral housing
EP2495747B1 (en) X-ray tube
JP2003123999A (en) X-ray tube device
JP4435124B2 (en) X-ray tube
JP2009164038A (en) Fixed anode type x-ray tube and integrated x-ray generator
JP7089396B2 (en) X-ray generator
JP5196872B2 (en) High voltage connector for X-ray tube
JP4749615B2 (en) Fixed anode type X-ray tube device
JP2006302648A (en) Rotary positive electrode x-ray tube device
JP2007042434A (en) X-ray tube
KR101742642B1 (en) Cooling structure of x-ray tube having thermoelectric element
JP5478873B2 (en) X-ray source
KR20210017140A (en) X-ray generator having a cooling means
US12029593B2 (en) X-ray high-voltage generator having a two-phase cooling system
JPH10334840A (en) High-cooling rotary positive electrode x-ray tube
JPS6158937B2 (en)
JP4847067B2 (en) X-ray tube device
JPS61183861A (en) X-ray tube device
JPH0864386A (en) Rotary anode x-ray tube device
JP2023090808A (en) X-ray generator
JPS6055949B2 (en) Multistage collector type electron beam tube
JPH11213925A (en) Rotary-anode x-ray tube device