JPH0864386A - Rotary anode x-ray tube device - Google Patents

Rotary anode x-ray tube device

Info

Publication number
JPH0864386A
JPH0864386A JP20318294A JP20318294A JPH0864386A JP H0864386 A JPH0864386 A JP H0864386A JP 20318294 A JP20318294 A JP 20318294A JP 20318294 A JP20318294 A JP 20318294A JP H0864386 A JPH0864386 A JP H0864386A
Authority
JP
Japan
Prior art keywords
ray tube
insulating member
anode
rotary anode
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20318294A
Other languages
Japanese (ja)
Inventor
Yoshinori Takemoto
吉範 竹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP20318294A priority Critical patent/JPH0864386A/en
Publication of JPH0864386A publication Critical patent/JPH0864386A/en
Pending legal-status Critical Current

Links

Landscapes

  • X-Ray Techniques (AREA)

Abstract

PURPOSE: To improve the cooling efficiency by interposing an insulating member outside of a bulb at a position opposite to the back of a rotary anode. CONSTITUTION: The insulating oil 18 is filled between an X-ray tube container 10 and a glass bulb 11. An insulating member 17 as a radiation heat absorber is provided outside of the bulb 11 near at a position opposite to the back surface 13a of a rotary anode 13. When the X-ray is generated, heating at the anode 13 is especially large. This heating is radiated, or transmitted to the surface 13a, and diverged as the radiation heat. This radiation heat is effectively absorbed by the insulating member 17 provided so as to be opposite to the surface 13a. In the case where a cooling ring 19 is provided in the back side of the insulating member 17, the X-ray tube is effectively cooled. Inside of the hollow ring 19 is filled with the coolant (for example, insulating oil), and the coolant is circulated between the ring 19 and a heat exchanger. In the case where the insulating member 17 is extended to a part opposite to a rotor 15, heating of the rotor part can be effectively absorbed, and the cooling efficiency is more improved. Radiation heat from the anode 13 is thereby effectively absorbed so as to improve the cooling efficiency.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、医用分野において用い
られる回転陽極X線管装置に関し、さらに詳しくは回転
陽極X線管装置の冷却に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary anode X-ray tube apparatus used in the medical field, and more particularly to cooling of a rotary anode X-ray tube apparatus.

【0002】[0002]

【従来の技術】回転陽極X管ではX線を発生する際に大
量の熱を発生するため、冷却しなければならない。その
ため、従来より回転陽極(ターゲット)の熱は輻射によ
り、X線管の管容器の各部材や管容器内に充満させた絶
縁油に放散させている。
2. Description of the Related Art A rotating anode X-tube generates a large amount of heat when generating X-rays, and therefore must be cooled. Therefore, conventionally, the heat of the rotating anode (target) is radiated to be radiated to each member of the tube container of the X-ray tube and the insulating oil filled in the tube container.

【0003】また、回転陽極からの熱放散の効率を向上
するために、回転陽極の裏面、すなわち陰極と対向する
面(ターゲット面)の裏面に高輻射率のセラミックコー
ティングを施すことや高輻射率のグラファイトを設ける
ことがなされている。
Further, in order to improve the efficiency of heat dissipation from the rotating anode, a ceramic coating having a high emissivity or a high emissivity is applied to the rear surface of the rotating anode, that is, the rear surface of the surface facing the cathode (target surface). Of graphite has been provided.

【0004】[0004]

【発明が解決しようとする課題】近年の診断技術の高度
化に伴い、ますます高頻度に回転陽極X線管装置が使用
されるようになり、X線管容器の冷却能力の向上の必要
性が増している。ところが、回転陽極からの放熱には限
界があり、放熱を良くするために回転陽極の動作温度を
上げると回転陽極からのガス放出が増し、管内放電が生
じたり、あるいは回転陽極の回転機構のベアリング部分
の温度上昇を招き、回転騒音異常を起こすことがあっ
た。本発明はこのような問題を解決し、従来の冷却方法
によるものよりもさらに冷却効率の優れた回転陽極X線
管装置を提供することを目的とする。
[Problems to be Solved by the Invention] With the advancement of diagnostic technology in recent years, the rotating anode X-ray tube device has been used more and more frequently, and it is necessary to improve the cooling capacity of the X-ray tube container. Is increasing. However, there is a limit to the heat dissipation from the rotating anode, and if the operating temperature of the rotating anode is raised to improve the heat dissipation, the gas discharge from the rotating anode increases, and discharge occurs in the tube, or the bearing of the rotating mechanism of the rotating anode. There was a case where the temperature of the part increased and abnormal rotation noise occurred. It is an object of the present invention to solve such a problem and to provide a rotating anode X-ray tube device which is more excellent in cooling efficiency than the conventional cooling method.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するため
になされた本発明の回転X線管装置は、ガラスバルブ内
に回転陽極および陰極が対向するように配設されたX線
管をX線管容器内に収容した回転陽極X線管装置におい
て、ガラスバルブの外側でかつ回転陽極の裏面と対向す
る位置に輻射熱を吸収する絶縁部材を介在させたことを
特徴とする。以下、この装置がどのように作用するか説
明する。
The rotary X-ray tube apparatus of the present invention made to solve the above-mentioned problems is an X-ray tube in which a rotary anode and a cathode are arranged to face each other in a glass bulb. In the rotating anode X-ray tube device housed in the tube container, an insulating member for absorbing radiant heat is interposed outside the glass bulb and at a position facing the back surface of the rotating anode. The following is a description of how this device works.

【0006】[0006]

【作用】本発明の回転陽極X線管装置では、回転陽極で
発生し、輻射によって放散された熱はガラスバルブ外側
近傍に対向して設けられた輻射熱を吸収する絶縁部材に
よって吸収される。この絶縁部材の存在によって回転陽
極からの熱を効率よく吸収することができ、ターゲット
の動作温度を上げることなく冷却の効率を向上させるこ
とができる。特に、回転陽極が最も高温になるので、こ
の回転陽極の裏面に対向する位置に熱吸収を促進する絶
縁部材を設けることにより熱吸収効率は向上する。
In the rotary anode X-ray tube device of the present invention, the heat generated by the rotary anode and dissipated by radiation is absorbed by the insulating member which is provided in the vicinity of the outside of the glass bulb and which absorbs the radiant heat. Due to the presence of this insulating member, the heat from the rotating anode can be efficiently absorbed, and the cooling efficiency can be improved without raising the operating temperature of the target. In particular, since the rotating anode has the highest temperature, the heat absorption efficiency is improved by providing an insulating member that promotes heat absorption at a position facing the back surface of the rotating anode.

【0007】[0007]

【実施例】以下、本発明の実施例を図を用いて説明す
る。図1に本発明による回転陽極X線管装置の一実施例
の断面図を示す。このX線管装置は、X線管容器10内
にガラスバルブ11により内部が密封されたX線管12
が入れてある。X線管12内には、回転陽極13と陰極
14とが対向して配置されており、回転陽極13はロー
タ15およびステータ16とからなるモータ機構に軸支
され、回転可能となっている。回転陽極13の陰極側の
に対向する面はターゲット面であり、その裏面13aは
輻射効率を向上させるために高輻射率を有するセラミッ
クコーティングが施されている。また、これと同様にロ
ータ15の外表面15aについても輻射効率向上のため
のセラミックコーティングが施されている。これはロー
タに発生する熱をも効率よく放散するためである。セラ
ミックコーティングは、Al2 O3 、TiO2 、ZnO
2 のうちの少なくともひとつを被コーティング面に溶射
することにより施されるのが一般的であるが、これ以外
であってもよい。たとえば、回転陽極の裏面13aにつ
いてはコーティングのかわりにグラファイト部材をろう
付けにより接合してもよい。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a sectional view of an embodiment of a rotary anode X-ray tube device according to the present invention. This X-ray tube device includes an X-ray tube 12 whose inside is sealed by a glass bulb 11 in an X-ray tube container 10.
Is included. In the X-ray tube 12, a rotary anode 13 and a cathode 14 are arranged so as to face each other, and the rotary anode 13 is rotatably supported by a motor mechanism including a rotor 15 and a stator 16. The surface of the rotating anode 13 facing the cathode side is the target surface, and the back surface 13a thereof is coated with a ceramic coating having a high emissivity in order to improve the radiation efficiency. Similarly, the outer surface 15a of the rotor 15 is also coated with a ceramic coating for improving the radiation efficiency. This is to efficiently dissipate the heat generated in the rotor. Ceramic coating is Al2 O3, TiO2, ZnO
It is generally applied by spraying at least one of the two on the surface to be coated, but other than this may be applied. For example, instead of coating the back surface 13a of the rotating anode, a graphite member may be joined by brazing.

【0008】ガラスバルブ11の外側で回転陽極13の
裏面13aに対向する位置付近に輻射熱吸収体である絶
縁部材17が設けられる。絶縁部材17の材料として
は、セラミックスや樹脂が用いられるが、たとえば電気
絶縁性、耐熱性、熱伝導性の点からAlNが好適であ
る。絶縁部材17には輻射熱をより効率的に吸収できる
ようにターゲット裏面と同様のセラミックコーティング
を施してもよい。
An insulating member 17, which is a radiant heat absorber, is provided outside the glass bulb 11 in the vicinity of a position facing the back surface 13a of the rotary anode 13. Although ceramics or resin is used as the material of the insulating member 17, for example, AlN is preferable from the viewpoint of electrical insulation, heat resistance, and thermal conductivity. The insulating member 17 may be provided with the same ceramic coating as the back surface of the target so that the radiant heat can be absorbed more efficiently.

【0009】なお、本実施例では絶縁部材17はロータ
15に対向する部分まで延設され、ロータ外表面の輻射
熱をも吸収できるようにしてある。この場合、高電圧で
あるロータ15とアース電位であるステータ16との間
は絶縁する必要があるが、絶縁部材17はもともと絶縁
性を有するがゆえに特に問題は生じない。
In this embodiment, the insulating member 17 is extended to a portion facing the rotor 15 so that the radiant heat on the outer surface of the rotor can be absorbed. In this case, it is necessary to insulate between the rotor 15 having a high voltage and the stator 16 having a ground potential, but since the insulating member 17 originally has an insulating property, no particular problem occurs.

【0010】X線管容器10とガラスバルブ11との間
の空間は絶縁油18により充満されており、この絶縁油
により冷却されるようになっている。なお、絶縁部材1
7に吸収された熱を効果的に逃がすため、絶縁部材17
の裏側に冷却リング19を設けておけばさらによい。こ
の冷却リング19は中空形状であり、内部は冷媒(たと
えば絶縁油)が充填され、図示しない熱交換器との間を
冷媒が循環するようにしてある。この冷却リング19は
アース電位でよく、銅、アルミ、またはこれらの合金に
より作られる。
The space between the X-ray tube container 10 and the glass bulb 11 is filled with insulating oil 18 and is cooled by this insulating oil. The insulating member 1
In order to effectively release the heat absorbed by 7, the insulating member 17
It is more preferable to provide a cooling ring 19 on the back side of the. The cooling ring 19 has a hollow shape, and the inside thereof is filled with a refrigerant (for example, insulating oil) so that the refrigerant circulates between it and a heat exchanger (not shown). The cooling ring 19 may be at ground potential and is made of copper, aluminum or alloys thereof.

【0011】以上のような構成の回転X線管装置により
X線を発生させることにより、熱が発生する。特に、陰
極に対向するターゲットとしての回転陽極13での発熱
が大きい。ここで発生した熱は輻射され、あるいは陽極
の裏面13aに伝達され、ここから輻射熱として発散さ
れる。この発散される輻射熱はガラスバルブ11の外側
にて裏面13aと対向するように設けられている絶縁部
材17により効果的に吸収される。さらに、絶縁部材1
が冷却リング19により冷却されていれば、これにより
X線管が効果的に冷却される。なお、絶縁部材17をロ
ータ15と対向する部分まで延設してあれば、ロータ部
分での発熱についても有効に吸収でき、さらに冷却効率
が向上する。
Heat is generated by generating X-rays by the rotating X-ray tube device having the above-mentioned configuration. In particular, the heat generation at the rotating anode 13 as a target facing the cathode is large. The heat generated here is radiated or transferred to the back surface 13a of the anode and radiated from here as radiant heat. The emitted radiant heat is effectively absorbed by the insulating member 17 provided outside the glass bulb 11 so as to face the back surface 13a. Furthermore, the insulating member 1
If is cooled by the cooling ring 19, this effectively cools the X-ray tube. If the insulating member 17 is extended to the portion facing the rotor 15, the heat generated in the rotor portion can be effectively absorbed, and the cooling efficiency is further improved.

【0012】[0012]

【発明の効果】以上、説明したように本発明によれば、
回転陽極の輻射面と対向するガラスバルブ外側近傍に輻
射熱を吸収する絶縁部材を介在させたことにより、発熱
が大きい回転陽極からの輻射熱を効果的に吸収すること
ができ、冷却効率を向上することができる。
As described above, according to the present invention,
By arranging an insulating member that absorbs radiant heat near the outside of the glass bulb that faces the radiating surface of the rotating anode, it is possible to effectively absorb the radiant heat from the rotating anode, which generates a large amount of heat, and improve cooling efficiency. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である回転X線管装置を示す
断面図。
FIG. 1 is a sectional view showing a rotary X-ray tube device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10:X線管容器 11:ガラスバルブ 12:X線管 13:回転陽極(ターゲット) 13a:回転陽極裏面 14:陰極 15:ロータ 15a:ロータ外表面 16:ステータ 17:絶縁部材 18:絶縁油 10: X-ray tube container 11: Glass bulb 12: X-ray tube 13: Rotating anode (target) 13a: Rotating anode back surface 14: Cathode 15: Rotor 15a: Rotor outer surface 16: Stator 17: Insulating member 18: Insulating oil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ガラスバルブ内に回転陽極および陰極が対
向するように配設されたX線管をX線管容器内に収容し
た回転陽極X線管装置において、ガラスバルブの外側で
かつ回転陽極の裏面と対向する位置に輻射熱を吸収する
絶縁部材を介在させたことを特徴とする回転陽極X線管
装置。
1. A rotary anode X-ray tube apparatus in which an X-ray tube having a rotary anode and a cathode arranged in a glass bulb so as to face each other is housed in an X-ray tube container. A rotary anode X-ray tube device, wherein an insulating member for absorbing radiant heat is interposed at a position facing the back surface of the.
JP20318294A 1994-08-29 1994-08-29 Rotary anode x-ray tube device Pending JPH0864386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20318294A JPH0864386A (en) 1994-08-29 1994-08-29 Rotary anode x-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20318294A JPH0864386A (en) 1994-08-29 1994-08-29 Rotary anode x-ray tube device

Publications (1)

Publication Number Publication Date
JPH0864386A true JPH0864386A (en) 1996-03-08

Family

ID=16469824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20318294A Pending JPH0864386A (en) 1994-08-29 1994-08-29 Rotary anode x-ray tube device

Country Status (1)

Country Link
JP (1) JPH0864386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152926A1 (en) * 2007-06-15 2008-12-18 Nikon Corporation Euv light source, euv exposure apparatus and semiconductor device manufacturing method
CN117524816A (en) * 2024-01-04 2024-02-06 科罗诺司医疗器械(上海)有限公司 X-ray tube and anode recovery method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152926A1 (en) * 2007-06-15 2008-12-18 Nikon Corporation Euv light source, euv exposure apparatus and semiconductor device manufacturing method
JP2008311465A (en) * 2007-06-15 2008-12-25 Nikon Corp Euv light source, euv exposure device, and manufacturing method of semiconductor device
CN117524816A (en) * 2024-01-04 2024-02-06 科罗诺司医疗器械(上海)有限公司 X-ray tube and anode recovery method
CN117524816B (en) * 2024-01-04 2024-03-22 科罗诺司医疗器械(上海)有限公司 X-ray tube and anode recovery method

Similar Documents

Publication Publication Date Title
EP1104003B1 (en) Mammography X-ray tube having an integral housing assembly
US5802140A (en) X-ray generating apparatus with integral housing
JP2726093B2 (en) X-ray generator cooling device
US6263046B1 (en) Heat pipe assisted cooling of x-ray windows in x-ray tubes
EP1449232B1 (en) Rotating anode x-ray tube heat barrier
JP5450916B2 (en) X-ray tube
EP0929907A1 (en) High-performance x-ray generating apparatus with cooling system
JP2001143646A (en) Method of cooling x ray tube with rotary anode assembly by means of heat pipe
US7515687B2 (en) Compact source with very bright X-ray beam
JPH0286035A (en) X-ray tube having fluid cooling type heat receptor
JPH04315752A (en) High-output rotary-anode x-ray tube
US4884292A (en) Air-cooled X-ray tube
WO2007026612A1 (en) X-ray tube
US5535255A (en) System for the cooling of an anode for an X-ray tube in a radiogenic unit without heat exchanger
EP1500123B1 (en) A device for generating x-rays having a heat absorbing member
USH312H (en) Rotating anode x-ray tube
JP2006302648A (en) Rotary positive electrode x-ray tube device
JP2003123999A (en) X-ray tube device
JPH0864386A (en) Rotary anode x-ray tube device
US9202664B2 (en) Finned anode
CN108766861A (en) A kind of anode assemblies for X ray CT pipe
WO2011159944A2 (en) X-ray tube rotating anode
JPS61183861A (en) X-ray tube device
JP2001093698A (en) X-ray tube device
JPS64779B2 (en)