JPS62145788A - Ion laser tube - Google Patents

Ion laser tube

Info

Publication number
JPS62145788A
JPS62145788A JP28656785A JP28656785A JPS62145788A JP S62145788 A JPS62145788 A JP S62145788A JP 28656785 A JP28656785 A JP 28656785A JP 28656785 A JP28656785 A JP 28656785A JP S62145788 A JPS62145788 A JP S62145788A
Authority
JP
Japan
Prior art keywords
members
laser tube
discharge path
holes
disc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28656785A
Other languages
Japanese (ja)
Inventor
Takashi Kanemoto
金本 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP28656785A priority Critical patent/JPS62145788A/en
Publication of JPS62145788A publication Critical patent/JPS62145788A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To readily obtain cooling medium like city water by forming a part between an anode and a cathode of a ceramic material, and providing cylindrical connection members alternately connected hermetically between a plurality of disclike members including through holes for a discharge path and a gas return path. CONSTITUTION:Through holes 2 for forming discharge paths are opened at a plurality of disclike members 1, and a plurality of through holes 3 for a gas return path are opened at the periphery. The members 1 may use aluminum nitride ceramics having nonconductivity, excellent heat resistance and excellent relatively thermal conductivity. Connection members 4 disposed between the disclike members are cylindrical members having inner diameter capable of containing the holes 2 and 3 in the bore of the inner hole thereof, and a laser tube can be cooled by directly feeding cooling medium to the members 1 and 4. The medium is not particularly limited, and may use city water.

Description

【発明の詳細な説明】 産業上の利用分野上の利用分野 本発明は、イオンレーザ管に関する。[Detailed description of the invention] Application fields in industrial application fields The present invention relates to an ion laser tube.

更に詳細には、イオンレーザ管の放電路の新規な構造に
関する。
More specifically, the present invention relates to a novel structure of a discharge path of an ion laser tube.

従来の技術 アルゴン、クリプトン等の気体をイオン化してそのエネ
ルギー遷移によりレーザ発振を行うイオンレーザ管は、
高出力化のためにイオン密度を上げる必要があり、この
ために内径が1〜4mmの細い放電路にIOAを越える
大電流を流すように構成されている。
Conventional technology Ion laser tubes ionize gases such as argon and krypton and generate laser oscillations by the energy transition.
In order to achieve high output, it is necessary to increase the ion density, and for this purpose, the discharge path is configured so that a large current exceeding the IOA flows through a narrow discharge path with an inner diameter of 1 to 4 mm.

しかしながら、ガスレーザは一般に発振効率が悪く供給
された電力の大半は熱と化すため放電路近傍は極めて高
い温度に曝される。従って、レーザ管の放電路を構成す
る部材には、優れた耐熱性が必要とされる。
However, gas lasers generally have poor oscillation efficiency and most of the supplied power turns into heat, so the vicinity of the discharge path is exposed to extremely high temperatures. Therefore, the members constituting the discharge path of the laser tube are required to have excellent heat resistance.

また、この熱により、レーザ管に熱変形が生じ、出力さ
れるレーザの光学的品位を低下させたり、甚だしい場合
はレーザ管自体の熱破損さえ生じてしまう。そこで、実
際にはレーザ管の作動時は、積極的な冷却を行うことが
一般的であり、このため前記の放電路を構成する部材に
ば、単に耐熱性のみならず、優れた熱伝導性も要求され
る。
Moreover, this heat causes thermal deformation of the laser tube, which deteriorates the optical quality of the output laser and, in extreme cases, even causes thermal damage to the laser tube itself. Therefore, in practice, it is common to actively cool the laser tube when it is in operation, and for this reason, the materials that make up the discharge path have not only heat resistance but also excellent thermal conductivity. is also required.

従来技i+Ii; (l供贋慎 上述のような、レーザ管の発熱に対して、高い耐熱性お
よび熱伝導性を達成するために、種々の構造が提案され
ている。
Prior Art i+Ii; (I Warning) Various structures have been proposed in order to achieve high heat resistance and thermal conductivity against the heat generated by the laser tube as described above.

実際に利用されているもので代表的なものでは、米国特
許第3.619.81.0号に開示されている、グラフ
ァイト等の高融点物質で形成された放電路を形成し、こ
れを石英ガラス製の外囲器内に収納して動作させる一方
、外囲器外部に冷却水を流して冷却する構造がある。
A typical example that is actually used is the one disclosed in U.S. Pat. There is a structure in which the device is operated while being housed in a glass envelope, and is cooled by flowing cooling water outside the envelope.

しかしながら、グラファイトは融点こそ高いもの、加熱
・冷却を繰り返すと粉末化して放散してしまい、放電路
の内径を拡大して出力されるレーザ光の品位を著しく阻
害する上、発生したグラファイト粉末がブリュースター
窓に付着してレーザ管自体の機能を損ねる等、結局レー
ザ管の寿命を縮める要因となっていた。
However, graphite has a high melting point, and repeated heating and cooling will turn it into powder and dissipate, which will expand the inner diameter of the discharge path and significantly impede the quality of the output laser light. It adheres to the star window and impairs the function of the laser tube itself, ultimately shortening the life of the laser tube.

また、この問題を解消するために、金属製の放電路形成
部材を用いる構造も、米国特許第4.378.600号
に開示されているが、これは、中心に貫通孔を有するタ
ングステン円板を、銅製の支持部材を介してアルミナセ
ラミックス製の外囲器内に複数収納し、前記貫通孔を放
電路として用いる構造である。
In order to solve this problem, a structure using a metal discharge path forming member is also disclosed in U.S. Pat. are housed in an envelope made of alumina ceramics via copper supporting members, and the through holes are used as discharge paths.

この構造は、放電路部材の耐久性も優れ、また各部材の
熱伝導性が高いので冷却性能も良好であるが、その構造
が、用いられる部材の材質の特性にそぐわない点が多い
。即ち、外囲器に用いられるセラミックス材料は精密な
寸法で成形することが非常に難しく、外囲器の内径およ
び真直度が均一になり難い。一方、この構造では、タン
グステン円板の中心にあけられた直径1〜4mmの孔を
同軸」二に精度良く配列する必要があるので、支持部材
を介することによって、タングステン円板の取りつけ位
置を調整しつつロー材を行うという手間のかかる製造方
法を必要とする。また、アルミナセラミックス製の外囲
器の内面をメクライズすることなくロー材するためには
、特殊なロー材を用いなければならず、製造を更に面倒
なものとしている。更に、タングステンは金属であり、
前記の円板の厚さを大きくすると、放電により発生した
プラズマに暖される面積が増え、これによりよってタン
グステン製の部材の表面がスパックされてしまうため、
これを薄い円板状とせざるを得す、放電路の有効長を減
らしてしまい、従来の構造のレーザ管に比較して発振効
率が約30%も落るという欠点もある。
In this structure, the durability of the discharge path members is excellent, and since each member has high thermal conductivity, the cooling performance is also good, but the structure often does not match the characteristics of the materials used. That is, it is very difficult to mold the ceramic material used for the envelope with precise dimensions, and it is difficult to make the inner diameter and straightness of the envelope uniform. On the other hand, with this structure, it is necessary to precisely arrange the holes with a diameter of 1 to 4 mm drilled in the center of the tungsten disk coaxially, so the mounting position of the tungsten disk can be adjusted by using a support member. This requires a labor-intensive manufacturing method in which brazing is performed at the same time. Furthermore, in order to braze the inner surface of the alumina ceramic envelope without macerating it, a special brazing material must be used, which makes manufacturing even more troublesome. Furthermore, tungsten is a metal;
If the thickness of the disk is increased, the area heated by the plasma generated by the discharge will increase, and this will cause the surface of the tungsten member to spatter.
This has the disadvantage that it has to be made into a thin disk shape, which reduces the effective length of the discharge path, resulting in a drop in oscillation efficiency of about 30% compared to a laser tube with a conventional structure.

また、昨今のセラミックス製造技術の進歩と共に、耐熱
性に優れたセラミックス材料を放電路の形成に用いるこ
とも提案されている。
Furthermore, with recent advances in ceramic manufacturing technology, it has been proposed to use ceramic materials with excellent heat resistance to form discharge paths.

耐熱性に加えて、熱伝導性に優れるセラミック□  ス
材料として代表的なベリリアセラミックスを用いて放電
路を形成し、更にべIJ IJアセラミックスは非導電
性なので、これを水などの簡便な冷却媒体で直接冷却す
る構造で極めて優れた耐久性と冷却性能を達成している
In addition to heat resistance, the discharge path is formed using beryllia ceramics, which is a typical ceramic material with excellent thermal conductivity. It has a structure that cools directly with a cooling medium, achieving extremely excellent durability and cooling performance.

しかしながら、ベリリアセラミックスに限らず、セラミ
ックス材料は精密な成形が難しく、レーザ管の放電路の
ように内径1〜4關という細い管を精度と真直度を保ち
つつ長く成形することは極めて困難である。
However, it is difficult to precisely mold ceramic materials, including beryllia ceramics, and it is extremely difficult to mold long tubes with an inner diameter of 1 to 4 mm, such as the discharge path of a laser tube, while maintaining precision and straightness. be.

そこで、米国特許第3.760.213号に開示される
如く、比較的厚いベリリア円板の中心に放電路用の貫通
孔を穿ち、これを複数、気密に接続して放電路を形成す
る構造が既に提案されている。
Therefore, as disclosed in U.S. Pat. No. 3,760,213, a structure in which a through hole for a discharge path is bored in the center of a relatively thick beryllia disk and a plurality of through holes are airtightly connected to form a discharge path. has already been proposed.

ところが、ガスレーザ管は、放電路におけるガスポンピ
ング現象により放電路のカソード側とアノード側との間
でガス圧力の不均衡を生じるので、両者を連通ずるガス
帰還路を設けることが必要である。そこで、前記のべI
J IJT製の円板状部材に、放電路用とは別にガス帰
還路用の貫通孔を穿ち、円板状部材を接続する際に放電
路と同時にガス帰還路も位置合わせをしてその連通を確
保する必要がある。従って、上述のような構造を採用す
ると、その製造時、殊に円板状部材の接続の際には極め
て煩雑な操作が必要となり、依然としてガスレーザ管の
製造を困難なものとしていた。
However, in the gas laser tube, gas pressure imbalance occurs between the cathode side and the anode side of the discharge path due to the gas pumping phenomenon in the discharge path, so it is necessary to provide a gas return path that communicates the two. Therefore, the above
A through hole for the gas return path is drilled in the disc-shaped member made by J IJT, separate from that for the discharge path, and when connecting the disc-shaped member, the gas return path is aligned at the same time as the discharge path to ensure communication. It is necessary to ensure that Therefore, when the above-described structure is adopted, extremely complicated operations are required during manufacturing, especially when connecting the disc-shaped members, which still makes manufacturing the gas laser tube difficult.

また、ベリリアセラミックスは人体に対して毒性がある
ので、その原料の供給が限られてきており、その高い熱
伝導性とは裏腹に安易な利用は戒められろべきものであ
る。
Furthermore, since beryllia ceramics are toxic to the human body, the supply of their raw materials is limited, and despite their high thermal conductivity, their casual use should be discouraged.

別渭じ」9決するための毛flu 本発明者等は、上記従来技術の各々の長所と短所を詳細
に検討し、その長所を活かしつつ上記問題点を解消すべ
く何重を重ねた結果、本発明に至ったものである。
The inventors of the present invention have carefully examined the advantages and disadvantages of each of the above-mentioned conventional techniques, and have made multiple efforts to utilize the advantages while solving the above-mentioned problems. This led to the present invention.

即ち、本発明によりアノードとカソードとの間の少なく
とも一部分が、非導電性且つ高熱伝導性のセラミック材
料により形成され、放電路用の貫通孔とガス帰還路用の
貫通孔とを備えた複数の円盤状部材と、 前記貫通孔を内包できる内径を有し、該円盤状部材の間
に交互に目、つ気密に接続された筒状接続部材とから構
成されることを特徴とするイオンレーザ管が提供される
That is, according to the present invention, at least a portion between the anode and the cathode is formed of a non-conductive and highly thermally conductive ceramic material, and has a plurality of through holes for the discharge path and the gas return path. An ion laser tube comprising a disc-shaped member and a cylindrical connecting member having an inner diameter capable of enclosing the through hole and connected alternately and airtightly between the disc-shaped members. is provided.

詐囲 本発明に従うイオンレーザ管は、その放電路を精密加工
の難しいセラミックス材料によって形成するが、本発明
に従い、貫通孔を有する円盤状部材を積層することによ
って放電路を形成するので、円盤状部材の各々は容易に
加工することができ、更に、各円盤状部材に穿たれた放
電路用貫通孔が同軸上に配列されるように接続すること
により、所望の長さの放電路を容易に得ることができる
In the ion laser tube according to the present invention, the discharge path is formed of a ceramic material that is difficult to precisely process. However, according to the present invention, the discharge path is formed by stacking disc-shaped members having through holes, so that the discharge path is formed in a disc-shaped manner. Each of the members can be easily machined, and by connecting the discharge path through holes drilled in each disc-shaped member so that they are coaxially arranged, it is easy to create a discharge path of a desired length. can be obtained.

また、その接続は、筒状接続部材を介してなされ、組立
時に特別な配慮をしなくてもガス帰還路の導通を維持す
ることができる。
In addition, the connection is made through a cylindrical connecting member, and continuity of the gas return path can be maintained without special consideration during assembly.

更に、これら部材を気密に接続するので、レーザ管動作
時の冷却は、これら部材の外部表面を直接冷却媒体に触
れさせることができ、また、上述のように加工性によっ
て材料を制限されないので、非導電性の材料を選択する
ことにより、冷却媒体は水道水のように容易に人手可能
なものを利用することができる。
Furthermore, since these members are airtightly connected, the external surfaces of these members can be brought into direct contact with the cooling medium for cooling during operation of the laser tube, and the materials are not limited by processability as described above. By selecting a non-conductive material, the cooling medium can be easily available, such as tap water.

実施例 以下に、添付の図面を参照して本発明に従うレーザ管の
構造についてより具体的に説明するが、以下に述べるも
のは本発明の1実施例にすぎず、本発明の技術的範囲を
何等制限するものではない。
EXAMPLE The structure of a laser tube according to the present invention will be explained in more detail below with reference to the accompanying drawings. However, what is described below is only one example of the present invention, and does not exceed the technical scope of the present invention. There is no restriction in any way.

第1図は、本発明に従うレーザ管の1実施例の構成を断
面図にて示したものである。
FIG. 1 is a sectional view showing the structure of one embodiment of a laser tube according to the present invention.

複数の円盤状部材1の各々には放電路を形成するだめの
貫通孔2が穿たれており、また、その周囲にはガス帰還
路用の貫通孔3が複数穿たれている。この円盤状部材1
は非導電性であり耐熱性に優れ、更に比較的熱伝導性に
優れる窒化アルミニウムセラミックス等を用いることが
できる。
Each of the plurality of disc-shaped members 1 is provided with a through hole 2 for forming a discharge path, and a plurality of through holes 3 for a gas return path are provided around the through hole 2. This disc-shaped member 1
It is possible to use aluminum nitride ceramics, etc., which are non-conductive and have excellent heat resistance, and also have relatively excellent thermal conductivity.

円盤状部材の間にある接続部材4は、放電路用の貫通孔
2およびガス帰還路用の貫通孔3をその内部孔の口径内
に納めることのできる内径を有する筒状の部材であり、
耐熱性に対する要求は円盤状部材よりも穏やかで、窒化
アルミニウムセラミックス等のセラミックス材料の他、
ガラス等も用いることができる。
The connecting member 4 located between the disk-shaped members is a cylindrical member having an inner diameter that allows the through-hole 2 for the discharge path and the through-hole 3 for the gas return path to be accommodated within the diameter of the inner hole,
The requirements for heat resistance are milder than for disc-shaped members, and in addition to ceramic materials such as aluminum nitride ceramics,
Glass or the like can also be used.

これら円盤状部材1および接続部材4は互いに低融点封
着用ガラス等により気密に接続することができ、上記部
材によって形成された放電路の更に外側に外囲器を形成
する必要はない。
The disc-shaped member 1 and the connecting member 4 can be hermetically connected to each other by a low-melting-point sealing glass or the like, and there is no need to form an envelope further outside the discharge path formed by the above-mentioned members.

また、レーザ管の冷却は円盤状部材1および接続部材4
の表面に直接冷却媒体を流すことで達成できる。上記の
部材はすべて非導電性なので、冷却媒体については特に
制限はなく、水道水等を利用して差支えない。
In addition, the laser tube is cooled by the disk-shaped member 1 and the connecting member 4.
This can be achieved by flowing a cooling medium directly onto the surface. Since all of the above members are non-conductive, there are no particular restrictions on the cooling medium, and tap water or the like may be used.

また、本実施例では円盤状部材1と接続部材4は同じ径
を有するもので形成しているが、円盤状部材1の径を接
続部材4の径よりも大きなものとすることで、円盤状部
材1と外部の冷却媒体との接触面積を増やし、また、更
にこの部分にフィンを切ることなどにより、レーザ管の
冷却効率を更に高めることも可能である。
Further, in this embodiment, the disc-shaped member 1 and the connecting member 4 are formed with the same diameter, but by making the diameter of the disc-shaped member 1 larger than the diameter of the connecting member 4, It is also possible to further increase the cooling efficiency of the laser tube by increasing the contact area between the member 1 and the external cooling medium, and by cutting fins in this area.

尚、このようにして形成された放電路の両端には、一方
には、アノード5に給電するための端子部材6とレーザ
管内の排気およびガスの封入を実施するための金属管7
を備えた金属部材8が、他端にはカソード9に給電する
ための端子部材10を備えた金属部材11が、それぞれ
気密に取りつけられている。また、これら端部金属部材
8および11は石英ガラス製のブリュースター窓12を
それぞれ備え□ており、これらをもってレーザ管として
機能するように構成されている。
Incidentally, at both ends of the discharge path formed in this way, there is a terminal member 6 for supplying power to the anode 5 on one side, and a metal tube 7 for carrying out evacuation and filling of gas in the laser tube.
A metal member 8 having a terminal member 8 and a metal member 11 having a terminal member 10 at the other end for supplying power to the cathode 9 are respectively attached in an airtight manner. Further, these end metal members 8 and 11 are each provided with a Brewster window 12 made of quartz glass, and are configured to function as a laser tube.

発明の効果 以上、詳述したように、本発明に従うイオンレーザ管の
放電路は、貫通孔を有する円盤状の部材を積層すること
により形成されているので、好ましい特性を有しながら
加工の難しいセラミックス材料を用いて、容易に精密な
放電路を形成することができる。
Effects of the Invention As detailed above, the discharge path of the ion laser tube according to the present invention is formed by laminating disc-shaped members having through holes, so it has favorable characteristics but is difficult to process. Precise discharge paths can be easily formed using ceramic materials.

また、上記円盤状部材の接続は筒状の接続部材を介して
いるので、放電路の組立の際には、放電路用の貫通孔の
軸合わせのみを留意すれば足り、ガス帰還路の導通につ
いては一切の手間を必要としない。
In addition, since the connection of the disk-shaped members is through the cylindrical connecting member, when assembling the discharge path, it is only necessary to pay attention to the axis alignment of the through-hole for the discharge path, and the gas return path is well-conducted. It does not require any effort.

更に、上述のような構成を採用することにより、レーザ
管動作時の冷却は、放電路を形成する部材を直接冷却す
ることができ、冷却効率が極めて高い。従って、レーザ
の冷却を材料の高熱伝導率に頼る必要はなく、ベリリア
セラミックスのような有毒な材料を用いることなく十分
な冷却能力を達成できる。
Furthermore, by employing the above configuration, the members forming the discharge path can be directly cooled during operation of the laser tube, resulting in extremely high cooling efficiency. Therefore, there is no need to rely on the high thermal conductivity of the material to cool the laser, and sufficient cooling capacity can be achieved without using toxic materials such as beryllia ceramics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に従うレーザ管の1実施例の構成を断
面図にて示したものである。 (主な参照番号) ■・・・・・円盤状部材、 2・・・・・放電路用貫通孔、 3・・・・・ガス帰還路用貫通孔、 4・・・・・筒状接続部材、 5・ ・ ・ ・ ・アノード、 6、IO・・・端子部材、 7・・・・・換気管、 8.11・・・端部金属部材、 9・・・・・カソード、
FIG. 1 is a sectional view showing the structure of one embodiment of a laser tube according to the present invention. (Main reference numbers) ■...Disk-shaped member, 2...Through hole for discharge path, 3...Through hole for gas return path, 4...Tubular connection Components, 5. . . . Anode, 6. IO... Terminal member, 7... Ventilation pipe, 8.11... End metal member, 9... Cathode,

Claims (1)

【特許請求の範囲】 アノードとカソードとの間の少なくとも一部分が、非導
電性且つ高熱伝導性のセラミック材料により形成され、
放電路用の貫通孔とガス帰還路用の貫通孔とを備えた複
数の円盤状部材と、 前記貫通孔を内包できる内径を有し、該円盤状部材の間
に交互に且つ気密に接続された筒状接続部材とから構成
されることを特徴とするイオンレーザ管。
[Claims] At least a portion between the anode and the cathode is formed of a non-conductive and highly thermally conductive ceramic material,
A plurality of disc-shaped members each having a through-hole for a discharge path and a through-hole for a gas return path, each having an inner diameter capable of containing the through-hole, and connected alternately and airtight between the disc-shaped members. An ion laser tube comprising: a cylindrical connecting member;
JP28656785A 1985-12-19 1985-12-19 Ion laser tube Pending JPS62145788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28656785A JPS62145788A (en) 1985-12-19 1985-12-19 Ion laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28656785A JPS62145788A (en) 1985-12-19 1985-12-19 Ion laser tube

Publications (1)

Publication Number Publication Date
JPS62145788A true JPS62145788A (en) 1987-06-29

Family

ID=17706080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28656785A Pending JPS62145788A (en) 1985-12-19 1985-12-19 Ion laser tube

Country Status (1)

Country Link
JP (1) JPS62145788A (en)

Similar Documents

Publication Publication Date Title
US4625317A (en) Internal mirror laser
US7274722B2 (en) CO2 slab laser
JPS62501461A (en) Gas laser, especially ion laser
JPS63184378A (en) Ion laser tube
JPS62145788A (en) Ion laser tube
US5319664A (en) Ion laser tubes
US4756001A (en) Gas discharge tube for an ion laser
US3760213A (en) Anode for a discharge tube
JP3064588B2 (en) Laser tube
JPS61185984A (en) Ion laser tube
JPH02295179A (en) Ion laser tube
JPS62226678A (en) Ion laser pipe
US5177761A (en) Gas discharge tube having refractory ceramic coated bore disc for ion laser
JPS6181682A (en) Ion laser tube
JPS5918695Y2 (en) ion laser tube
JPH0453010Y2 (en)
JPS59161887A (en) Ion laser tube
JPS6028284A (en) Rare gas ion laser tube
JPS61180488A (en) Ion laser tube
JPS61181180A (en) Ion laser tube
JPS6239552B2 (en)
JPS60219782A (en) Gas laser tube
JPS6211284A (en) Ion laser tube
JPS5918696Y2 (en) ion laser tube
JPH066524Y2 (en) Gas laser equipment