JPS6322694Y2 - - Google Patents
Info
- Publication number
- JPS6322694Y2 JPS6322694Y2 JP1981020331U JP2033181U JPS6322694Y2 JP S6322694 Y2 JPS6322694 Y2 JP S6322694Y2 JP 1981020331 U JP1981020331 U JP 1981020331U JP 2033181 U JP2033181 U JP 2033181U JP S6322694 Y2 JPS6322694 Y2 JP S6322694Y2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- brazing
- laser
- heat sink
- metal member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910052751 metal Inorganic materials 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 23
- 238000005219 brazing Methods 0.000 claims description 16
- 229910052573 porcelain Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 6
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 12
- 238000001816 cooling Methods 0.000 description 7
- 239000011521 glass Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Landscapes
- Lasers (AREA)
Description
【考案の詳細な説明】
本考案はイオンレーザ管の構造に関するもの
で、特に磁器質の放電路細管(以下、細管と呼
ぶ)に、多数の放熱板を直接取付けるための構造
に関するものである。[Detailed Description of the Invention] The present invention relates to the structure of an ion laser tube, and particularly to a structure for directly attaching a large number of heat sinks to a porcelain discharge channel thin tube (hereinafter referred to as a thin tube).
イオンレーザ管、例えば、アルゴンイオン
(Ar+)レーザ管のあるものでは機械的強度と耐
熱性確保のため、アルミナ又はベリリア等の磁器
材料によつて細管部を形成させたものがある。こ
の細管は中心軸に対しての曲りが極めて小さく、
かつ一様な内径寸法を持たせる必要があり、同時
に該細管が気密外囲器の一部である場合が多いた
め、寸法加工精度が良く、メタライズ加工等によ
つて金属部品と気密接着が可能なアルミナ又はベ
リリア磁器質のものが用いられることが多い。 Some ion laser tubes, such as argon ion (Ar + ) laser tubes, have a thin tube portion formed of a porcelain material such as alumina or beryllia in order to ensure mechanical strength and heat resistance. This thin tube has an extremely small bend with respect to the central axis.
Moreover, it is necessary to have a uniform inner diameter dimension, and at the same time, since the thin tube is often part of an airtight envelope, dimensional processing accuracy is good, and it is possible to make an airtight bond with metal parts through metallization processing etc. A material made of alumina or beryllia porcelain is often used.
他の放電路材料を用いたレーザ管としては、石
英ガラス製外囲器の中に多数のグラフアイト又は
タングステン、モリブデン等の耐熱金属などから
成る円環状部品を互に絶縁して同軸的に配列させ
たものがある。 Laser tubes using other discharge channel materials include a large number of annular parts made of graphite or heat-resistant metals such as tungsten, molybdenum, etc., arranged coaxially and insulated from each other in a quartz glass envelope. There is something that made me
こうしたアルゴンイオンレーザ管では、数アン
ペアないし数十アンペアにも達する比較的大きな
電流が放電路に流れ、そのほとんどが熱となつて
管外に放出される。このため、レーザ管の、特に
放電路は強制的に冷却してレーザ管自身が熱によ
つて破壊するのを防いだり、レーザ発振器の共振
条件が変化するのを極力防ぐ手段を講じる必要が
あつた。因みに、もしこうした強制冷却を行なわ
ない場合には、例えば、出力0.1wのベリリア質
磁器細管を用いたレーザ管では、細管部の温度は
瞬時に1000℃以上にもなり、磁器細管が熱衝撃に
よつて破壊する。即ち、アルゴンイオンレーザ管
では、放電路形成材の冷却問題が性能上極めて重
要となつていて長期間安定した冷却方法が具備さ
れているかどうかがレーザ管の性能と寿命を著し
く左右し、かつ、レーザ利用装置全体の信頼性を
決定すると云つても過言ではない。 In such an argon ion laser tube, a relatively large current of several amperes to several tens of amperes flows through the discharge path, most of which is converted into heat and released outside the tube. Therefore, it is necessary to forcibly cool the laser tube, especially the discharge path, to prevent the laser tube itself from being destroyed by heat, and to take measures to prevent changes in the resonance conditions of the laser oscillator as much as possible. Ta. Incidentally, if such forced cooling is not performed, for example, in a laser tube using a beryllium porcelain capillary tube with an output of 0.1 W, the temperature at the capillary section will instantly rise to over 1000°C, and the porcelain capillary tube will suffer from thermal shock. Twist and destroy. That is, in argon ion laser tubes, the problem of cooling the discharge path forming material is extremely important for performance, and whether or not a stable cooling method is provided for a long period of time significantly affects the performance and life of the laser tube. It is no exaggeration to say that it determines the reliability of the entire laser-based device.
磁器質細管を用いたレーザ管の冷却方法として
従来、細管外表面に密着固定する放熱体(ラジエ
ータ)を取付けることによつて細管で発生した熱
をフアン等で強制的に冷却していた。この方法は
比較的に簡便ではあるが、放熱体を細管表面に完
全に密着固定することは事実上不可能であり、か
つ、両者の熱膨張差等による使用中のゆるみ等も
あつて、しばしば冷却不足による磁器(細管)の
熱衝撃クラツクや、過熱による細管と他の金属部
品の封着部破壊、ろう付部ろう材の割れ現象や溶
融によるリーク事故等を引起していた。こうした
問題を解消するための方法の一つとして、前記細
管表面にメタライズ加工を施し、これに放熱板を
直接、又は他の金属封着部品を介してろう付等で
接合する改良がなされはじめている。 Conventionally, as a cooling method for a laser tube using a porcelain capillary, heat generated in the capillary is forcibly cooled using a fan or the like by attaching a heat radiator (radiator) closely fixed to the outer surface of the capillary. Although this method is relatively simple, it is virtually impossible to completely fix the heat sink to the surface of the thin tube, and it often loosens during use due to the difference in thermal expansion between the two. Insufficient cooling caused thermal shock cracks in the porcelain (tubes), overheating caused damage to the seals between the tubes and other metal parts, and cracking and melting of the brazing filler metal in brazing parts caused leaks. As one method to solve these problems, improvements have begun to be made in which the surface of the thin tube is metallized and a heat sink is joined to this directly or through other metal sealing parts by brazing or the like. .
第1図は従来のこうしたイオンレーザ管の構造
を示すものであつて、図の中央部が細管および放
熱板の取付構造を示す。ここでは、熱伝導性が高
いベリリア磁器製の細管1の外表面にメタライズ
加工(図示せず)が施され、該メタライズ面に対
応して、コバール金属の長い円筒型金属部材2と
無酸素銅板の円板状放熱板3がろう付されてい
る。ベリリア磁器の使用はその高い熱伝導性によ
る冷却効果の向上のために必要であるが、他の磁
器、例えば、アルミナ磁器に比べ機械的強度が小
さい。(約1/2程度である)このため、レーザ管の
設計に当つては細心の注意が必要となり、従来、
円筒状の、即ち、細管外周に対して連続周回して
封着された金属部材2および放熱板3と細管の間
の熱膨張特性の相違によつて発生する過大な応力
によつて、ベリリア細管が破壊することがあつ
た。このために、レーザ管の製造歩留りが低下す
る要因のひとつになつていた。 FIG. 1 shows the structure of such a conventional ion laser tube, and the center part of the figure shows the mounting structure of the thin tube and the heat sink. Here, the outer surface of a thin tube 1 made of beryllia porcelain with high thermal conductivity is metallized (not shown), and a long cylindrical metal member 2 made of Kovar metal and an oxygen-free copper plate are formed in correspondence with the metallized surface. A disc-shaped heat dissipation plate 3 is brazed. The use of beryllia porcelain is necessary to improve the cooling effect due to its high thermal conductivity, but its mechanical strength is low compared to other porcelains, such as alumina porcelain. (approximately 1/2) For this reason, great care must be taken when designing the laser tube.
Due to the excessive stress generated due to the difference in thermal expansion characteristics between the cylindrical, i.e., metal member 2 and the heat sink 3, which are continuously wrapped and sealed around the outer periphery of the capillary, and the capillary, the beryllia capillary Sometimes it was destroyed. This has been one of the factors that lowers the manufacturing yield of laser tubes.
本考案はこうした不具合を解決するために提案
されたもので、従来の方法に比べ、ろう付による
応力を小さくし、かつ、封着部全体に均一な厚み
でろう付できる様にろう付部の構造を工夫したも
のである。 The present invention was proposed to solve these problems, and compared to conventional methods, it reduces the stress caused by brazing and makes it possible to braze the entire sealing part with a uniform thickness. The structure has been devised.
即ち、ろう付加工において最も重要なろう付間
隙を、前記金属部材を複数個に分割配置して、お
もりを効果的に作用させることで適正化するとと
もに、熱膨張差や部品の熱変形、ろう材の溶融に
ともなつて生じる間隙等を自動的に修正できる構
造としたこと、および、封着部品寸法を実質的に
小さくして膨張差による応力の絶対量を小さくし
たことを特徴とするものである。 In other words, the brazing gap, which is the most important in brazing, can be optimized by dividing the metal member into multiple pieces and using weights to effectively act, while also reducing thermal expansion differences, thermal deformation of parts, and soldering. It is characterized by having a structure that can automatically correct gaps, etc. that occur as the materials melt, and by substantially reducing the dimensions of the sealed parts to reduce the absolute amount of stress due to expansion differences. It is.
以下に本考案の実施例を用い、さらに詳しく説
明する。 The present invention will be explained in more detail below using examples.
第2図は本考案の一実施例を示すイオンレーザ
管の細管部、横断面(管軸に対し直交する面)図
である。 FIG. 2 is a cross-sectional view (a plane perpendicular to the tube axis) of a narrow tube portion of an ion laser tube showing an embodiment of the present invention.
まず外径寸法16mm、長さ120mm、内径1.2mmのベ
リリア磁器細管21を用意した。次に、この磁気
細管の両端部から6mmおよび中央から両側へ各50
mmの外表面内に夫々M0〜Mnによるメタライジン
グを施した(図示せず)。一方、厚さ0.6mm、内径
16.05mm、長さ100mmのコバール合金円筒を作り、
これを円周方向に二分割した金属部材22を2
個、および厚さ1.5mmの無酸素銅板を図示する通
り、2分割した円還状にプレス型で打抜加工した
放熱板23を25組(50枚)用意した。また、その
他の部品として第1図に示す様に細管1と、陰極
側ガラスバルブ5を接続する封入皿6、および
M0の陽極4と、細管1を夫々接続するための封
入皿7、陽極4と陽極側ガラスバルブ9を接続す
るための封入皿8を用意した。 First, a beryllia porcelain thin tube 21 having an outer diameter of 16 mm, a length of 120 mm, and an inner diameter of 1.2 mm was prepared. Next, 6 mm from both ends of this magnetic capillary tube and 50 mm each from the center to both sides.
Metallization with M 0 to Mn was applied to the outer surface of each mm (not shown). Meanwhile, thickness 0.6mm, inner diameter
Make a Kovar alloy cylinder of 16.05mm and 100mm length.
This metal member 22 is divided into two parts in the circumferential direction.
As shown in the figure, 25 sets (50 sheets) of heat dissipating plates 23 were prepared by punching an oxygen-free copper plate having a thickness of 1.5 mm into two circular circular shapes using a press die. In addition, as shown in FIG. 1, other parts include an enclosure dish 6 that connects the thin tube 1 and the cathode side glass bulb 5, and
An enclosure plate 7 for connecting the M 0 anode 4 and the thin tube 1, and an enclosure plate 8 for connecting the anode 4 and the anode-side glass bulb 9 were prepared.
先ず細管21と陽極4および封入皿6,7,8
をBAu−1Vろう(図示せず)でろう付した。な
お、ろう付温度は1040℃であつた。次に、前記細
管21の組立物と、放熱板23、50枚を二分割円
筒状金属部材22、2枚を夫々介してBAg−8
ろう(図示せず)を用いてろう付した。このとき
ろう付温度は830℃で、おもりは約2.5Kgのものを
用いた。 First, the thin tube 21, the anode 4, and the enclosure dishes 6, 7, 8
were brazed with BAu-1V solder (not shown). Note that the brazing temperature was 1040°C. Next, the assembly of the thin tubes 21 and the 50 heat sinks 23 are connected to the BAg-8 through the two divided cylindrical metal members 22, respectively.
Brazing was performed using wax (not shown). At this time, the brazing temperature was 830°C, and a weight of approximately 2.5 kg was used.
ただし、放熱板23と金属部材22の接合位置
関係は、第2図に示す通り、金属部材22の外周
に対し、放熱板23のほぼ二分割された内周とが
一致するように配列する。即ち、ある1枚の放熱
板23は相対する1個の金属部材に対してのみ接
合されるようにし、分割された他の金属部材とは
接しないように注意する。こうすることによつ
て、考案者は次に示す著しい効果があることを確
かめた。 However, as shown in FIG. 2, the bonding positional relationship between the heat sink 23 and the metal member 22 is arranged such that the inner circumference of the heat sink 23, which is divided into two, substantially coincides with the outer circumference of the metal member 22. That is, one heat sink 23 is bonded only to one opposing metal member, and care is taken not to contact other divided metal members. By doing this, the inventor has confirmed that the following remarkable effects are achieved.
細管外径と金属部材の内径寸法や曲率に多少の
不一致があつても、ろう付の際のおもりを十分大
きくすることで調整でき得る。また、ろう付ギヤ
ツプも同様にしておもりで適正化できる。即ち、
金属部材22および放熱板23を互に一体化して
分割したことによつて、円筒嵌合型のろう付構造
を所謂、積重ね型に類似のろう付構造に変換でき
たので、ろう付設計およびろう付作業条件が極め
て簡単、かつ安定になり、工業的に見て特に、大
量生産性が著しく向上した。 Even if there is some discrepancy between the outer diameter of the thin tube and the inner diameter or curvature of the metal member, it can be adjusted by making the weight for brazing sufficiently large. Also, the brazed gap can be adjusted appropriately using weights in the same way. That is,
By integrating and dividing the metal member 22 and the heat dissipation plate 23, it was possible to convert the cylindrical fitting type brazing structure to a so-called stacking type brazing structure, so that the brazing design and brazing The working conditions have become extremely simple and stable, and from an industrial perspective, mass productivity has significantly improved.
このようにして放熱板を取付けたイオンレーザ
用細管組立は、その後陰極10を取付けた陰極バ
ルブ5、および陽極バルブ9を夫々ガラス旋盤を
用いて取付け、さらにガス帰還パイプ30および
プリユースタ面板12を夫々取付けイオンレーザ
封入管が完成した。このものは通常と全く同じ工
程を経て排気、ガス入れ、枯化が行なわれ、当初
の設計通りのレーザ光出力を有するイオンレーザ
管となつた。ただし、従来の円筒状金属部材によ
つて放熱板を取付けたものに比べ、ろう付の有効
面積が著しく増加したため、冷却効率が約70%改
善され、レーザ発振器の初期安定化に要する時間
が短縮されたほか、熱に原因する種々のやつかい
な問題も解決できた。さらに、レーザ管の製造工
程中、特に排気、枯化での熱衝撃による破損事故
も皆無となり、工業的に見てこの考案が極めて有
効であることを確かめた。 After the ion laser capillary assembly with the heat sink attached in this way, the cathode bulb 5 with the cathode 10 attached and the anode bulb 9 are attached using a glass lathe, and the gas return pipe 30 and pre-user face plate 12 are attached respectively. The installed ion laser encapsulated tube has been completed. This tube was evacuated, filled with gas, and dried through the same process as usual, resulting in an ion laser tube with laser light output as originally designed. However, compared to the conventional heat sink mounted with a cylindrical metal member, the effective area of brazing has been significantly increased, improving cooling efficiency by approximately 70% and reducing the time required for initial stabilization of the laser oscillator. In addition, various troublesome problems caused by heat could be solved. Furthermore, during the manufacturing process of the laser tube, there were no accidents caused by thermal shock, especially during exhaust and withering, confirming that this idea is extremely effective from an industrial perspective.
尚、本考案は上記実施例に限定されることな
く、磁器質細管に分割された金属部材を介して同
様に分割された放熱板群を取付けた全ての場合を
含むもので、分割の方法、数等に制限されること
が無いことは以上の記述により明白である。 It should be noted that the present invention is not limited to the above-mentioned embodiments, but includes all cases in which similarly divided heat sink groups are attached via metal members divided into porcelain thin tubes, and the method of division, It is clear from the above description that there is no limitation to the number, etc.
第1図は従来のレーザ管の縦断面を示す図、第
2図は本考案の一実施例を示す改良されたレーザ
管、細管部付近の横断面図である。
ここで、1および21は細管、2および22は
金属部材、3および23は放熱板、4は陽極、5
は陰極バルブ、6,7,8は封入皿、9は陽極バ
ルブ、10は陰極、30はガス帰還用パイプ、お
よび12はガラス面板を夫々示す。
FIG. 1 is a longitudinal cross-sectional view of a conventional laser tube, and FIG. 2 is a cross-sectional view of the vicinity of the thin tube portion of an improved laser tube showing an embodiment of the present invention. Here, 1 and 21 are thin tubes, 2 and 22 are metal members, 3 and 23 are heat sinks, 4 is an anode, and 5
1 shows a cathode bulb, 6, 7, and 8 are enclosure plates, 9 is an anode bulb, 10 is a cathode, 30 is a gas return pipe, and 12 is a glass face plate.
Claims (1)
管において、前記放電路細管の外周面にメタライ
ズを施すとともに、前記放電路細管の管軸に垂直
な断面に関して複数個に分割した金属部材と、該
分割した金属部材の夫々に対応して分割した放熱
板とを具備し、前記の放電路細管と金属部材と放
熱板の三者がろう付によつて一体化されているこ
とを特徴とするイオンレーザ管。 In an ion laser tube in which the discharge channel tube is made of a porcelain material, the outer circumferential surface of the discharge channel tube is metallized, and the metal member is divided into a plurality of pieces with respect to a cross section perpendicular to the tube axis of the discharge channel tube; 1. An ion laser comprising a heat sink divided into two parts corresponding to each of the metal members, wherein the discharge channel tube, the metal member, and the heat sink are integrated by brazing. tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981020331U JPS6322694Y2 (en) | 1981-02-16 | 1981-02-16 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1981020331U JPS6322694Y2 (en) | 1981-02-16 | 1981-02-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57134859U JPS57134859U (en) | 1982-08-23 |
JPS6322694Y2 true JPS6322694Y2 (en) | 1988-06-22 |
Family
ID=29818237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1981020331U Expired JPS6322694Y2 (en) | 1981-02-16 | 1981-02-16 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6322694Y2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50140292A (en) * | 1974-04-30 | 1975-11-10 | ||
JPS52137291A (en) * | 1976-05-12 | 1977-11-16 | Toshiba Corp | Gas laser tube |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5754294Y2 (en) * | 1977-04-28 | 1982-11-24 |
-
1981
- 1981-02-16 JP JP1981020331U patent/JPS6322694Y2/ja not_active Expired
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS50140292A (en) * | 1974-04-30 | 1975-11-10 | ||
JPS52137291A (en) * | 1976-05-12 | 1977-11-16 | Toshiba Corp | Gas laser tube |
Also Published As
Publication number | Publication date |
---|---|
JPS57134859U (en) | 1982-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107275319B (en) | LED chip flat heat pipe integrated packaging structure and preparation method thereof | |
US8860210B2 (en) | Semiconductor device | |
US3746087A (en) | Heat dissipation device | |
JPS6322694Y2 (en) | ||
JP2000183222A (en) | Semiconductor device and manufacture thereof | |
US3277957A (en) | Heat transfer apparatus for electronic component | |
JP3724028B2 (en) | Metal containers and packages | |
CN209626638U (en) | A kind of 400W laser list pumping source ceramic package shell | |
JPS5855112B2 (en) | Brazed structure of ceramics and Al | |
CN105789002B (en) | X-ray tube | |
JP3729521B2 (en) | Lightning arrestor | |
JP2001345402A (en) | Module-type semiconductor device and its method | |
US3147361A (en) | Vacuum tight joint and method of making such joint | |
CN210200707U (en) | Molybdenum-copper and tungsten-copper composite heat sink with CPM structure | |
JPS5989443A (en) | Brazing process of heat radiating blade | |
JPS62209878A (en) | Gas laser tube | |
JPS6218048Y2 (en) | ||
JP2714115B2 (en) | Power semiconductor switch device | |
JPH0432133A (en) | Cathode support body structure of magnetron | |
JPS6032767Y2 (en) | Stem for semiconductor devices | |
JPS60258831A (en) | Microwave electron tube | |
CN116544774A (en) | Water-cooling packaging tube shell for laser and preparation method thereof | |
JPH0160947B2 (en) | ||
JPS633471B2 (en) | ||
JPS60219782A (en) | Gas laser tube |