JPS633471B2 - - Google Patents
Info
- Publication number
- JPS633471B2 JPS633471B2 JP13657578A JP13657578A JPS633471B2 JP S633471 B2 JPS633471 B2 JP S633471B2 JP 13657578 A JP13657578 A JP 13657578A JP 13657578 A JP13657578 A JP 13657578A JP S633471 B2 JPS633471 B2 JP S633471B2
- Authority
- JP
- Japan
- Prior art keywords
- ceramic
- tube
- joining
- gas laser
- tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000919 ceramic Substances 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 19
- 229910052751 metal Inorganic materials 0.000 claims description 19
- 238000005304 joining Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 239000007789 gas Substances 0.000 description 10
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 6
- 238000005219 brazing Methods 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910000833 kovar Inorganic materials 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- QRJOYPHTNNOAOJ-UHFFFAOYSA-N copper gold Chemical compound [Cu].[Au] QRJOYPHTNNOAOJ-UHFFFAOYSA-N 0.000 description 1
- 230000006355 external stress Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 210000005239 tubule Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/02—Constructional details
- H01S3/03—Constructional details of gas laser discharge tubes
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Description
【発明の詳細な説明】
本発明はガスレーザ管、特に高出力レーザ管に
用いるためのセラミツク細管およびその製法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic capillary tube for use in gas laser tubes, particularly high-power laser tubes, and a method for manufacturing the same.
ガスレーザ管は一般に放電路細管と呼ばれる管
状部を備えている。放電路細管にはガス放電によ
つて発生する高温度に耐え得るよう、ガラス、グ
ラフアイトおよびセラミツク等の材料が用いられ
ている場合が多い。この放電路細管は、ガスレー
ザ管の出力特性が細管の形状即ち、長さ、内径寸
法および内径の真直度によつてほぼ決められるの
で重要な部品である。 A gas laser tube generally includes a tubular portion called a discharge channel tube. Materials such as glass, graphite, and ceramic are often used for discharge channel tubes so that they can withstand the high temperatures generated by gas discharge. This discharge channel thin tube is an important component because the output characteristics of the gas laser tube are determined approximately by the shape of the thin tube, that is, the length, inner diameter dimensions, and straightness of the inner diameter.
近年来、レーザ管の高出力化の要請が強まり、
前記細管の長大化が計られるとともに、耐熱性や
機械的強度の向上が必要、不可欠になつて来てい
る。 In recent years, there has been an increasing demand for higher output laser tubes.
As the thin tubes become longer and longer, it has become necessary and essential to improve heat resistance and mechanical strength.
この目的に対し、最も有力な施策は、熱伝導性
が優れかつ、機械的強度の大きいベリリアセラミ
ツク、又はアルミナセラミツク等のセラミツク質
細管の使用と、この細管をレーザ管の気密外囲器
の一部とし、その外側を直接水冷する方法であ
る。 The most effective measure for this purpose is to use ceramic capillaries such as beryllia ceramic or alumina ceramic, which have excellent thermal conductivity and high mechanical strength, and to attach these capillaries to the airtight envelope of the laser tube. This is a method in which the outside is directly cooled with water.
しかしながら、例えば10Wのレーザ光出力を得
るためのガスレーザ管に用いる長さ1000mm、内径
2.5mmのセラミツク細管を単体として入手するこ
とは世界的に見ても非常に困難な情況にある。 However, for example, a length of 1000 mm and an inner diameter used for a gas laser tube to obtain a laser light output of 10 W.
Even worldwide, it is extremely difficult to obtain 2.5mm ceramic tubules as a single unit.
従来、こうした不都合を解決する手段として、
多数の短かいセラミツク管を互にガラスやろう付
けにより接合して長尺化する方法がとられてき
た。 Conventionally, as a means to solve these inconveniences,
A method has been used to increase the length of a large number of short ceramic tubes by joining them together using glass or brazing.
第1図はその一例を示すものでセラミツク管1
および1′の端部にMp−Mo法等によるメタライ
ズ(図示せず)を施し、接続用の金属環状部品2
を同軸的に配置して、ろう材3により前記セラミ
ツク管1,1′を気密に接合していた。 Figure 1 shows an example of the ceramic tube 1.
The ends of 1' and 1' are metallized (not shown) by the M p -M o method, etc., and the metal annular part 2 for connection is
were arranged coaxially, and the ceramic tubes 1 and 1' were hermetically joined by a brazing filler metal 3.
こうした従来の方法における欠点は、セラミツ
ク管1と金属環状部品2の寸法公差や、ろう付の
際に用いる治具の寸法公差が災いして、必然的に
接合部の真直度が損われることであつた。 The disadvantage of these conventional methods is that the straightness of the joint is inevitably impaired due to the dimensional tolerances between the ceramic tube 1 and the metal ring part 2 and the dimensional tolerances of the jig used for brazing. It was hot.
この欠点は、接合個所が増加するにつれて加算
的に増大する傾向にあり、レーザ管の出力が小さ
いという不良の大きな原因の一つとなつていた。 This drawback tends to increase additively as the number of joints increases, and has been one of the major causes of failures such as low output from laser tubes.
本発明の目的はこうした欠点を解消したレーザ
管およびその製法を提供することにあり、本発明
はセラミツク管の接合部を柔軟な構造とし、細管
が完成した後に外部より応力を加えて接合部分を
変形させ真直度の修正ができるようにしたことを
特徴とするものである。 The purpose of the present invention is to provide a laser tube that eliminates these drawbacks and a method for manufacturing the same.The present invention provides a flexible structure for the joints of ceramic tubes, and applies external stress to the joints after the thin tube is completed. The feature is that the straightness can be corrected by deforming it.
以下に本発明を実施例によりさらに詳しく説明
する。 The present invention will be explained in more detail below with reference to Examples.
第2図は本発明の第一の実施例によるセラミツ
ク細管の一接合部を示すものである。 FIG. 2 shows a joint portion of a ceramic capillary according to a first embodiment of the present invention.
先ず、外径16mm、主要部の内径2.7mm、長さ250
mmの99.5%のベリリアセラミツク管11,11′
を用意した。該セラミツク管の接合端部には図に
示す通り深さ1.5mm、巾さ4mmの段付加工を行な
つてある。その後、該段付加工部を除いた端部よ
り8mmの範囲にメタライズ加工した。一方、内径
16.1mm、厚さ0.6mm、長さ22mmの無酸素銅管を作
り接合用金属環状部品21とした。前記セラミツ
ク管11,11′および金属環状部品21を金ろ
う(BAu−1V)3によりろう付した。その後さ
らに同様の構成によつてセラミツク管2本をつぎ
足して長さ約1000mmのガスレーザ管用セラミツク
細管を製造した。このものの真直度を調べたとこ
ろ細管を回転させた時中央部分の外側で約1.6mm
の振れがあつた。このため、次に示す真直度の修
正を行なつた。まず、完成した細管を施盤に装着
し回転させた。振れの大きな部分を見つけ接合用
金属環部に静かに曲げモーメントを加え順次曲り
の修正を行行なつた。最終的に、He−Neガスレ
ーザ装置を用いて、レーザ光の透過による減衰量
が最小となるように再修正した。 First, the outer diameter is 16 mm, the inner diameter of the main part is 2.7 mm, and the length is 250 mm.
mm 99.5% beryllia ceramic tube 11,11'
prepared. As shown in the figure, the joint end of the ceramic tube is stepped with a depth of 1.5 mm and a width of 4 mm. Thereafter, metallization was performed within a range of 8 mm from the end excluding the stepped portion. On the other hand, the inner diameter
An oxygen-free copper tube of 16.1 mm, thickness of 0.6 mm, and length of 22 mm was made into metal annular part 21 for joining. The ceramic tubes 11, 11' and the metal annular part 21 were brazed with gold solder (BAu-1V) 3. Thereafter, two ceramic tubes were added using the same structure to produce a ceramic thin tube for a gas laser tube with a length of about 1000 mm. When I checked the straightness of this thing, when I rotated the thin tube, it was about 1.6mm outside the center part.
The vibration was hot. For this reason, the following straightness corrections were made. First, the completed thin tube was mounted on a turning plate and rotated. We found areas with large deflections and gently applied a bending moment to the joining metal rings to correct the bends. Finally, using a He-Ne gas laser device, the attenuation due to laser light transmission was re-corrected to minimize it.
以上によつて製造したベリリアセラミツク細管
は、以後通常の工程を経てガスレーザ管となり、
初期の設定値を十分に満足する高出力のレーザ光
を得ることができた。 The beryllia ceramic capillary tube manufactured in the above manner is then turned into a gas laser tube through the usual process.
We were able to obtain a high-power laser beam that fully satisfied the initial settings.
第3図は本発明の第2の実施例を示す図であ
る。前記第1の実施例と同じ材質のセラミツク管
12および12′を用意した。別にコバール合金
を絞り加工して中央部に深さ1.8mmの凹状溝を設
けた厚さ0.5mm、長さ22mmの接合用金属環状部品
22を用意した。次に前記セラミツク管12,1
2′と前記接合用金属環状部品を図示の通り組合
わせ所定の位置に金−銅合金ろう材3を置き、水
素雰囲気中でろう付した。その後順次2本のセラ
ミツク管状部材を同様にして接合し、全長約1000
mmのガスレーザ管用放電路細管とした。その後前
記第1の実施例と同じ方法により真直度を修正し
ガスレーザ管が製造された。 FIG. 3 is a diagram showing a second embodiment of the present invention. Ceramic tubes 12 and 12' made of the same material as in the first embodiment were prepared. Separately, a metal annular part 22 for joining with a thickness of 0.5 mm and a length of 22 mm was prepared by drawing Kovar alloy and having a concave groove with a depth of 1.8 mm in the center. Next, the ceramic tube 12,1
2' and the metal annular part for joining were combined as shown in the figure, a gold-copper alloy brazing material 3 was placed at a predetermined position, and brazing was performed in a hydrogen atmosphere. After that, two ceramic tubular members were joined in the same way, and the total length was approximately 1000.
mm discharge channel tube for gas laser tube. Thereafter, the straightness was corrected by the same method as in the first embodiment, and a gas laser tube was manufactured.
第4図は本発明の第3の実施例を示す図で、前
記接合用金属環状部品をコバールで作り、接合中
央部分の肉厚を0.4mm、その他は0.7mmとして柔軟
化をはかつたものである。 FIG. 4 is a diagram showing a third embodiment of the present invention, in which the metal annular part for joining is made of Kovar, and the thickness of the joint center part is 0.4 mm, and the other parts are 0.7 mm to make it flexible. It is.
以上の三実施例では、第2図から第4図に示す
ように環状の凹状溝A部を施けたが、これは、真
直度の修正にあたり、金属環状部品21,22,
23の変形を容易にするためと、ろう付部の破壊
を防ぐために有効であつた。 In the above three embodiments, as shown in FIGS. 2 to 4, the annular concave groove A section was provided, but this was done to correct the straightness of the metal annular parts 21, 22,
This was effective for facilitating the deformation of No. 23 and for preventing the brazed portion from breaking.
以上に述べた通り本発明の特徴は、セラミツク
管の接続部が比較的に変形し易い金属環状部品か
らなる構造および該金属環部を人為的に変形させ
て、接続体の真直度を修正する製法にあることは
明白である。 As described above, the present invention is characterized in that the connecting portion of the ceramic tube is constructed of a metal ring component that is relatively easily deformed, and that the metal ring portion is artificially deformed to correct the straightness of the connecting body. It is obvious that it is due to the manufacturing method.
尚、前記真直度の修正完了後に、金属環状部品
の外側に第2の金属環状部品を固着して振動その
他により真直度が変化するのを防ぐことも試み、
効果のあることを確めた。 In addition, after completing the correction of the straightness, an attempt was made to fix a second metal annular part on the outside of the metal annular part to prevent the straightness from changing due to vibration or the like.
I confirmed that it was effective.
第1図は従来のセラミツク管の接続方法を示す
断面図、第2図〜第4図はそれぞれ本発明の実施
例による改良された接続方法を示す断面図であ
る。
1,1′,11,11′,12,12′,13,
13′……セラミツク管、2,21,22,23
……金属環状部品、3……ろう材。
FIG. 1 is a cross-sectional view showing a conventional method of connecting ceramic tubes, and FIGS. 2 to 4 are cross-sectional views showing an improved connecting method according to an embodiment of the present invention. 1, 1', 11, 11', 12, 12', 13,
13'...Ceramic tube, 2, 21, 22, 23
...Metal ring part, 3...Brazing metal.
Claims (1)
備えたガスレーザ管において、セラミツク管の端
部の外周部に段付加工を施し、端部どうしを同軸
的に配置した金属環状部品によつて互いに気密に
接合し、該金属環状部品が比較的変形し易い材質
で造られているか又は、比較的変形し易い形状に
加工されていることを特徴とするガスレーザ管。 2 複数のセラミツク管の端部の外周部に段付加
工を施し、端部どうしを比較的変形し易い材質又
は形状の金属環状部品を介して互いに接合する工
程と、接合完了後に前記金属環状部品を変形させ
てセラミツク管接合体の真直度を修正する工程と
を含むことを特徴とするガスレーザ管の製造方
法。[Scope of Claims] 1. A gas laser tube with a discharge path formed by joining a plurality of ceramic tubes, in which the outer periphery of the end of the ceramic tube is stepped and the ends are coaxially arranged. A gas laser tube that is airtightly joined to each other by annular parts, and the metal annular parts are made of a material that is relatively easily deformed or are processed into a shape that is relatively easily deformed. 2. Stepping the outer periphery of the ends of a plurality of ceramic tubes and joining the ends to each other via a metal annular part made of a material or shape that is relatively easily deformable, and after the joining is completed, the metal annular part A method for manufacturing a gas laser tube, comprising the step of modifying the straightness of the ceramic tube assembly by deforming the ceramic tube assembly.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13657578A JPS5563894A (en) | 1978-11-06 | 1978-11-06 | Gas laser tube and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13657578A JPS5563894A (en) | 1978-11-06 | 1978-11-06 | Gas laser tube and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5563894A JPS5563894A (en) | 1980-05-14 |
JPS633471B2 true JPS633471B2 (en) | 1988-01-23 |
Family
ID=15178468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13657578A Granted JPS5563894A (en) | 1978-11-06 | 1978-11-06 | Gas laser tube and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5563894A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6272188A (en) * | 1985-09-26 | 1987-04-02 | Toshiba Corp | Laser tube |
CN1260199C (en) | 2001-11-07 | 2006-06-21 | 三菱化学株式会社 | Storage tank for easily polymerizable compound and method of storage |
RU2644021C1 (en) * | 2014-01-30 | 2018-02-07 | Киваму ТАКЕХИСА | Oxygen laser emitter |
-
1978
- 1978-11-06 JP JP13657578A patent/JPS5563894A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5563894A (en) | 1980-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4213004A (en) | Hermetic electrical feedthrough for aluminum housing and method of making same | |
US4081762A (en) | Gas laser with a laser capillary positioned in a discharge tube | |
JPS633471B2 (en) | ||
US4270069A (en) | Traveling wave tube and method of making same | |
JPS6053477B2 (en) | gas laser | |
JPS6157653B2 (en) | ||
JPS59184577A (en) | Gas laser tube | |
JPS5855112B2 (en) | Brazed structure of ceramics and Al | |
US4799232A (en) | Gas laser and method | |
US3772766A (en) | Process for the production of ceramic-metal compound joints | |
JPH0542109B2 (en) | ||
US5044731A (en) | Laser tube | |
JPH0812764B2 (en) | Magnetron cathode assembly | |
JP2708534B2 (en) | Magnetron assembly method | |
JPH035665B2 (en) | ||
JP3729521B2 (en) | Lightning arrestor | |
JPH065098U (en) | X-ray tube | |
JP3755953B2 (en) | Method of manufacturing a metal envelope rotating anode X-ray tube | |
JPS6012289Y2 (en) | flat semiconductor device | |
JPS5831865Y2 (en) | Metal pipe mounting structure on ceramic body | |
JPS58148437A (en) | Stem for semiconductor pressure sensor | |
JPH08268770A (en) | Ceramic-metal joined body | |
JPH0355075Y2 (en) | ||
JPH0441564Y2 (en) | ||
JPS6322694Y2 (en) |