JPS60218845A - Apparatus for testing foreign matter - Google Patents

Apparatus for testing foreign matter

Info

Publication number
JPS60218845A
JPS60218845A JP59074951A JP7495184A JPS60218845A JP S60218845 A JPS60218845 A JP S60218845A JP 59074951 A JP59074951 A JP 59074951A JP 7495184 A JP7495184 A JP 7495184A JP S60218845 A JPS60218845 A JP S60218845A
Authority
JP
Japan
Prior art keywords
foreign matter
foreign
wafer
foreign object
lsi wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59074951A
Other languages
Japanese (ja)
Other versions
JPH0458622B2 (en
Inventor
Shunji Maeda
俊二 前田
Mitsuyoshi Koizumi
小泉 光義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59074951A priority Critical patent/JPS60218845A/en
Publication of JPS60218845A publication Critical patent/JPS60218845A/en
Publication of JPH0458622B2 publication Critical patent/JPH0458622B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To conduct an accurate test of any fine foreign matter adhered on the surface of an LSI wafer or the like, by detecting the adhered position with an optical means while observing and analyzing it with a scanning microscope. CONSTITUTION:S polarization laser light is applied onto a wafer 1 by an S polarization laser 27 of a foreign matter detecting unit 12. A polarizing plate 29 is provided behind an objective 28. Any light passing through them is detected by a photoelectronic device 30, and then only the scattered light from a foreign matter (P polarization component) is detected for detecting the position of the foreign matter on the LSI wafer provided with a circuit pattern. At a leading edge of a foreign matter detection signal 23, outputs of encoders 15 and 20 are latched in a coordinate storage 22 so that the position of the foreign matter is stored therein. A movable stage 16 is moved by a motor 19 into the field or view of a scanning electron microscope SEM13. Motors 14 and 19 are driven by a material scanning unit 21 according to the data stored in the storage 22 so as to position the stages 11 and 16 appropriately. The signal from the SEM13 is analyzed to obtain data of the foreign material.

Description

【発明の詳細な説明】 〔発明め利用分野〕 本発明は、微細異物検査装置に関し、@にLSI用フォ
トマスク、レティクル又はウェア等l)ヨミ盃 1f 
ム+噛と 1 占 脅り文m 1)h−へ 61市もド
ブ交ぷ#導B lz NFIする。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a micro foreign matter inspection device, and relates to a photomask for LSI, a reticle, a wear, etc. l) Reading cup 1f
M+Kite 1 Fortune-telling Threat letter m 1) To h- 61 city also dob exchange #guide B lz NFI.

〔発明の背景〕[Background of the invention]

一般に1例えばLSI、磁気バブルメモリなどは1μm
程度の微細な回路パターンで構成されているが、マスク
やウェハを製造する過程において、微細な異物が付着す
ることがあり、これらの異物は製造されたマスク、ウェ
ハの回路パターン等の欠陥原因となる。異物の付着は、
半導体製造のプロセスの多くの工程で生ずるため。
Generally 1.For example, LSI, magnetic bubble memory, etc. are 1μm.
However, during the process of manufacturing masks and wafers, minute foreign matter may adhere, and these foreign matter may cause defects in the circuit patterns of manufactured masks and wafers. Become. Adhesion of foreign matter is
This occurs in many steps in the semiconductor manufacturing process.

異物検査はその数量だけでなく、大きさの検出。Foreign object inspection detects not only the quantity but also the size.

物質の同定も重要である。Identification of the substance is also important.

このような、LSIウェハ上の異物検査には当初数百倍
の顕微鏡を使って目視検査が行なわれてきたが1作業の
疲労をさそい、検査能率の低下をきたすだけでなく1回
路パターンがより微細化するに伴いミクロン単位の異物
検査は極めて困難であった。
Initially, visual inspection was performed using a microscope with a magnification of several hundred times to inspect foreign substances on LSI wafers, but this not only caused fatigue and decreased inspection efficiency, but also made it difficult to inspect one circuit pattern. With the miniaturization, it has become extremely difficult to inspect foreign substances in micron units.

そこで1例えば回路パターンを有する被検査物の場合、
比較的上方よりレーザ光を被検査物に照射して乱反射光
を様々?r方向から隼光し。
Therefore, 1. For example, in the case of an object to be inspected that has a circuit pattern,
Laser light is irradiated onto the object to be inspected from relatively above to produce various diffusely reflected light? A ray of light from the r direction.

異物検査を行なうことも提案されている(例えば、特開
昭54−128682 、日立評論Vo1.62 、 
A11第15頁以下など)。
It has also been proposed to perform foreign substance inspection (for example, Japanese Patent Laid-Open No. 54-128682, Hitachi Review Vol. 1.62,
A11 page 15 and below).

しかし、これらの異物検査方法では、異物の存在位置は
検出できるが、異物の分析や、光の波長と同程度あるい
はそれより小さい異物の大きさの検出あるいは組成の分
析はできなかった。
However, although these foreign object inspection methods can detect the location of the foreign object, they cannot analyze the foreign object, detect the size of the foreign object that is comparable to or smaller than the wavelength of light, or analyze the composition of the foreign object.

このため、最近では走査電子顕微鏡(以下「SEM」と
略す)を用いた異物検査装置が使用されている。
For this reason, recently, a foreign matter inspection device using a scanning electron microscope (hereinafter abbreviated as "SEM") has been used.

従来、このようなSEMを用いた異物検査装置としては
、第1図に示すような構成のものが知られている。
Conventionally, as a foreign matter inspection apparatus using such an SEM, one having a configuration as shown in FIG. 1 is known.

ここで、51は陰極、52は陽極である。55 、54
はいずれも電子レンズであるが、55はコンデンサレン
ズとして機能させ、54は対物レンズとして機能させて
いる。1はLSIウェハであり、55は電子ビームをL
SIウェハ1の表面上で走査させるための偏向コイルで
ある。電子ビームをLSIウェハ1に照射すると、LS
Iウニ/11の表面からは、その形状1組成等に依存し
て2次電子1反射電子、X線等を発生させるが。
Here, 51 is a cathode and 52 is an anode. 55, 54
Both are electronic lenses, but 55 functions as a condenser lens, and 54 functions as an objective lens. 1 is an LSI wafer, and 55 is an LSI wafer.
This is a deflection coil for scanning the surface of the SI wafer 1. When the electron beam is irradiated onto the LSI wafer 1, the LS
The surface of I sea urchin/11 generates secondary electrons, reflected electrons, X-rays, etc. depending on its shape, composition, etc.

それらは検出器56で検出する。次に、57は、検出器
56からの出力を増幅するための増幅器であり、増幅さ
れた出力は、CRT5Bの輝度変調電極へ供給される。
They are detected by a detector 56. Next, 57 is an amplifier for amplifying the output from the detector 56, and the amplified output is supplied to the brightness modulation electrode of the CRT 5B.

40はCRT5Bの偏向コイルである。電子ビーム用偏
向コイル55並びにCRT用偏向コイル40には、走査
制御回路59の出力が供給される。SEMの電子ビーム
の走査とCRT5Bの走査は同期し、検出器56で得ら
れる検出信号がCRT5Bに表示される。
40 is a deflection coil of the CRT5B. The output of the scan control circuit 59 is supplied to the electron beam deflection coil 55 and the CRT deflection coil 40. The scanning of the electron beam of the SEM and the scanning of the CRT 5B are synchronized, and a detection signal obtained by the detector 56 is displayed on the CRT 5B.

このような異物検査装置を使用すると、異物の解析1分
析が比較的自由に行うことができるが1例えば回路パタ
ーンが形成されていない鏡面ウェハに対して異物検査を
行った場合には。
When such a foreign matter inspection device is used, foreign matter analysis 1 can be performed relatively freely; however, for example, when a foreign matter inspection is performed on a mirror wafer on which no circuit pattern is formed.

SEN信号にノイズ成分が非常に多く含まれることから
フィルタリング処理に時間が掛かり。
Since the SEN signal contains a large number of noise components, filtering processing takes time.

全面自動検査には長時間を要することとなる。Fully automated inspection will take a long time.

また、半導体素子等は、 Si 、 5i02などの絶
縁物上に形成するので、171子ビームをLSIウェハ
上に長時間照射すると、LSIウェハ表面に電子が帯電
する、いわゆるチャージアップ現象が発生するため1画
質が劣化しSiNが不足する。。
Furthermore, since semiconductor devices and the like are formed on insulators such as Si and 5i02, if the 171 electron beam is irradiated onto the LSI wafer for a long period of time, the so-called charge-up phenomenon will occur, in which the surface of the LSI wafer is charged with electrons. 1 Image quality deteriorates and SiN becomes insufficient. .

Al薄膜をLSIウェハ表面忙蒸着するととKより、チ
ャージアップ現象を防止できるが、工程途中のLSIウ
ェハには適用できない。さらK。
If an Al thin film is deposited on the surface of an LSI wafer, the charge-up phenomenon can be prevented more than K, but this cannot be applied to an LSI wafer in the middle of the process. Sara K.

電子ビームはコンタミネーション(試料表面へのカーボ
ンの付着)I!fi−のダメージをLSIウェハに与え
るおそれがある。
The electron beam is contaminated (carbon adhesion to the sample surface) I! There is a possibility that fi- damage may be caused to the LSI wafer.

そこで、低加速SENを使用すれば、これらチャージア
ップ現象やコンタミネーション等を防止できるが、ノイ
ズ成分が増々多くなってしまい、全面自動検査には更に
長時間を要する。
Therefore, if low-acceleration SEN is used, these charge-up phenomena and contamination can be prevented, but the number of noise components increases, and full-scale automatic inspection requires a longer time.

さらに、回路パターンの形成されたウェハに対しては、
パターンと異物の自動分類ができず。
Furthermore, for wafers with circuit patterns formed,
Unable to automatically classify patterns and foreign objects.

自動検査が行い得ないという欠点があった。There was a drawback that automatic inspection could not be performed.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、微細異物の大きさ1組成等を分析可能
な異物検査装置を提供することKある。
An object of the present invention is to provide a foreign matter inspection device capable of analyzing the size, composition, etc. of fine foreign matter.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために1本発明においてbt、LS
Iウェハ等の表面上に付着している異物の位置及び大き
さを検出するレーザ等の光学的手段と、検出した異物の
形状1組成分析を行う走査電子顕微鏡を同じ真空試料室
内に配設するよ5にした異物検査装置を提供する。
In order to achieve the above object, in the present invention, bt, LS
An optical means such as a laser that detects the position and size of foreign matter adhering to the surface of an I-wafer, etc., and a scanning electron microscope that analyzes the shape and composition of the detected foreign matter are placed in the same vacuum sample chamber. To provide a foreign matter inspection device according to the above.

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の一実施例について図面を参照して説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

尚、図面中間−箇所には同一符号を付しである。第2図
は本発明に係る異物検査装置の一例を示す構成図である
。1oは真空試料室で、11はLSIウェハなどの被検
査物を載置する試料ステージである。14は試料ステー
ジ11を回転させるためのモータであり、15はエンコ
ーダである。
Note that the same reference numerals are given to the middle portions of the drawings. FIG. 2 is a configuration diagram showing an example of a foreign matter inspection device according to the present invention. 1o is a vacuum sample chamber, and 11 is a sample stage on which an object to be inspected such as an LSI wafer is placed. 14 is a motor for rotating the sample stage 11, and 15 is an encoder.

16は移動ステージであって、レーザ等の光学的手段を
用いた異物検出部12とSEM15のそれぞれの視野間
及び視野内を移動する。19は移動ステージ16を移動
させるためのモータであって。
Reference numeral 16 denotes a moving stage, which moves between and within the fields of view of the foreign object detection unit 12 and the SEM 15 using optical means such as a laser. 19 is a motor for moving the moving stage 16.

ネジ17とカップリング18を介して、移動ステージに
接続している。20はエンコーダである。21は試料走
査部であって、モータ14 、19に接続しそれらの駆
動制御を行う。22はLSIウェハ1の被検査試料に付
着している異物の付着位置を記憶する座標記憶部である
。この座標記憶部22は、異物検出部12で検出した異
物検出信号25とエンコーダ15 、20からの出力を
入力するよう罠なっている。異物検出信号25は、異物
検出部12がLSIウェハ1上の異物を検知すると1例
えば、”Eiyk’ レベルとなる。24は異物検査装
置全体の制御を行う制御部である。また、25は試料交
換用の窓であり、26は真空ポンプである。
It is connected to a moving stage via a screw 17 and a coupling 18. 20 is an encoder. Reference numeral 21 denotes a sample scanning section, which is connected to the motors 14 and 19 and controls their driving. Reference numeral 22 denotes a coordinate storage unit that stores the adhesion position of foreign matter adhering to the test sample of the LSI wafer 1. This coordinate storage section 22 is configured to receive a foreign object detection signal 25 detected by the foreign object detection section 12 and outputs from the encoders 15 and 20. When the foreign object detection section 12 detects a foreign object on the LSI wafer 1, the foreign object detection signal 25 becomes 1 level, for example, "Eiyk". 24 is a control section that controls the entire foreign object inspection apparatus. It is a window for replacement, and 26 is a vacuum pump.

被検査物であるLSIウェハ1は試料交換用窓25から
真空試料室10内の試料ステージ11上に載置される。
The LSI wafer 1, which is the object to be inspected, is placed on the sample stage 11 in the vacuum sample chamber 10 through the sample exchange window 25.

レーザ等の光学的手段を用いた異物検出部12は1例え
ば第5図(α)に示すように。
A foreign object detection section 12 using an optical means such as a laser is shown in FIG. 5 (α), for example.

モータ14と19によりらせん形に移動するLSIウェ
ハ1上の異物を検出する。異物を検出するレベルに立上
る。その立上りで、エンコーダ1520の出力が座標記
憶部22にラッチされ、LSIウェハ1上の異物の位置
が記憶される。したがって異物の位置は極座標で得られ
る。LSIウェハ1の全面あるいは数チップ分の検査が
終了すると、移動ステージ16はモータ19によりSE
M15の視野内に移動する。検出した異物の位置座標は
、座標記憶部22に記憶されているので。
A foreign object on the LSI wafer 1, which is moving in a spiral manner by the motors 14 and 19, is detected. It rises to the level that detects foreign objects. At the rising edge, the output of the encoder 1520 is latched into the coordinate storage section 22, and the position of the foreign object on the LSI wafer 1 is stored. Therefore, the position of the foreign object can be obtained using polar coordinates. When the entire surface of the LSI wafer 1 or several chips have been inspected, the moving stage 16 is moved to the SE by the motor 19.
Move within field of view of M15. The position coordinates of the detected foreign object are stored in the coordinate storage section 22.

そのデータに基き試料走査部21はモータ14 、19
を微小駆動し、試料ステージ11.移動ステージ16を
位置決めする。このことにより観察したい位置の異物の
SEM信号を得ることができる。
Based on the data, the sample scanning section 21 operates the motors 14 and 19.
The sample stage 11. Position the moving stage 16. This makes it possible to obtain an SEM signal of the foreign object at the position desired to be observed.

LSIウェハ上に回路パターンのない鏡面ウェハの場合
、異物検出部12は例えば第4図に示す構成とする。回
転あるいは並進が可能な試料ステージ11上忙載置した
LSIウェハ1に対し、レーザ5からレーザ光を略真上
から照射する。
In the case of a mirror wafer having no circuit pattern on the LSI wafer, the foreign matter detection section 12 has the configuration shown in FIG. 4, for example. A laser beam from a laser 5 is irradiated from substantially directly above an LSI wafer 1 placed on a sample stage 11 that can rotate or translate.

LSIウェハ1の表面に付着している異物5からの散乱
光を検出器6で検出し、その検出値はアンプ7により増
幅されメモリ8に異物50位置と大きさを記憶する。こ
の繰り返しによりLSIウェハ1上の異物マツプ作成器
9により異物マツプを作成する。試料ステージ11は回
転あるいは並進が可能なので、第5図(α)忙示すよう
にレーザビームがLSIウェハ1上をらせん形に走査す
るようにLSIウェハな移動させることができ、第5図
(b) K示すようにも走査させることができる。また
回路パターンの付いたLSIウェハの場合には、異物検
査部12は例えば第5図に示す構成とする。第5図にお
いて、S偏光レーザ27により% S偏光レーザ光をL
SIウェハ1上に角度Pで照射する。Pは約1度である
。ここで照射レーザ光とウェハ法線(Z軸)のなす面に
、垂直に振動する偏光をS偏光、平行に振動する偏光な
P偏光と呼ぶ。このとき、LSIウェハ1上のパターン
部分からの散乱光は偏光方向が変化せず、実線で示すS
偏光のまま対物レンズ2Bのはうに進むが、異物に当っ
たレーザ光は偏光方向が変化するため点線で示すP偏光
成分を多く含んでいる。そこで、対物しンズ28の後方
にS偏光を遮断する偏光板29を設け、これを通過した
光を光電素子5oで検出するととKより、異物からの散
乱光(P偏光成分)だけを検出する。これにより1回路
パターンの付いたLSIウェハ上の異物の存在位置を検
出することができる。次に、5Eld15は例えば第1
図に示した構成とすることができる。その詳細は前述し
たので省略する。このSEM15からのSEN信号を分
析することKより異物の解析、分析を行う。なお、異物
検出信号25が、LSIウェハ1上の異物を検出した時
 Lowレベルとなる場合には、エンコーダ15,20
の出方は異物検出信号25の立下がりで座標記憶部22
にラッチされ、LSIウェハ上の異物の位置が記憶され
る。
Scattered light from foreign matter 5 attached to the surface of LSI wafer 1 is detected by detector 6, the detected value is amplified by amplifier 7, and the position and size of foreign matter 50 is stored in memory 8. By repeating this process, a foreign matter map on the LSI wafer 1 is created by the foreign matter map creator 9. Since the sample stage 11 can be rotated or translated, the LSI wafer can be moved so that the laser beam scans over the LSI wafer 1 in a spiral shape as shown in FIG. 5(a), and as shown in FIG. ) K can also be scanned as shown. Further, in the case of an LSI wafer with a circuit pattern, the foreign matter inspection section 12 has the configuration shown in FIG. 5, for example. In FIG. 5, the S-polarized laser beam 27 emits a
The SI wafer 1 is irradiated at an angle P. P is approximately 1 degree. Here, polarized light that vibrates perpendicularly to the plane formed by the irradiated laser beam and the wafer normal (Z-axis) is called S-polarized light, and polarized light that vibrates parallel to it is called P-polarized light. At this time, the polarization direction of the scattered light from the pattern portion on the LSI wafer 1 does not change, and S
Although the laser beam passes through the objective lens 2B as polarized light, the polarization direction of the laser beam that hits the foreign object changes, so it contains a large amount of P-polarized light component shown by the dotted line. Therefore, a polarizing plate 29 is provided behind the objective lens 28 to block the S-polarized light, and when the light that passes through this is detected by the photoelectric element 5o, only the scattered light (P-polarized light component) from the foreign object is detected. . This makes it possible to detect the position of a foreign object on an LSI wafer with one circuit pattern. Next, 5Eld15 is, for example, the first
The configuration shown in the figure can be used. The details have been described above, so they will be omitted. By analyzing the SEN signal from this SEM 15, foreign matter is analyzed. Note that if the foreign object detection signal 25 becomes Low level when a foreign object is detected on the LSI wafer 1, the encoders 15 and 20
is output from the coordinate storage unit 22 at the falling edge of the foreign object detection signal 25.
The position of the foreign object on the LSI wafer is stored.

次に、本発明の他の実施例を第6図にもとづいて説明す
る。この実施例においては、異物検出部12と5EN1
sを同一位置の試料に対してさらに有効に働かせる機構
を備えている。即ち。
Next, another embodiment of the present invention will be described based on FIG. In this embodiment, the foreign object detection section 12 and 5EN1
It is equipped with a mechanism that allows s to work more effectively on samples at the same location. That is.

レーザ42から照射したレーザ光をビームエキスパンダ
45、光学レンズホルダ44を介してLSIウェハ1に
集光する。異物による散乱光を検出器45によって検出
する異物検出部12は、モータ46により試料ステージ
11上に出し入れできるようになっている。第6図は異
物検出時のモードを示している。異物分析のモードでは
、光学レンズホルダ44が図中において右側に移動する
Laser light emitted from the laser 42 is focused on the LSI wafer 1 via the beam expander 45 and the optical lens holder 44. The foreign object detection unit 12, which detects light scattered by foreign objects using a detector 45, can be moved in and out of the sample stage 11 by a motor 46. FIG. 6 shows the mode when foreign matter is detected. In the foreign matter analysis mode, the optical lens holder 44 moves to the right in the figure.

そして、51M15の視野内ICLSIウェハ1だけが
置かれ異物の像を観察できる。LSIウェハ1は、異物
検出時にはモータ14 、19によりらせん形に連続的
に移動し、SEHによる観察。
Then, only the 51M15 ICLSI wafer 1 within the field of view is placed, and the image of the foreign object can be observed. When detecting a foreign object, the LSI wafer 1 is continuously moved in a spiral by motors 14 and 19, and observed by SEH.

分析時には座標記憶部22と試料走査部21により必要
量だけ移動する。51M15が長焦点(長作動距離)で
ない場合には、必要に応じてZ軸機構47を使用する。
During analysis, the coordinate storage unit 22 and sample scanning unit 21 move the sample by a required amount. When 51M15 is not a long focal point (long working distance), the Z-axis mechanism 47 is used as necessary.

Z軸機構47は、モータ48によりLSIウェハ1を5
1M15の焦点位置1例えば49の位置まで移動させる
ことができ、鮮明なSEH像が得られる。
The Z-axis mechanism 47 rotates the LSI wafer 1 by a motor 48.
The focal point position 1 of 1M15 can be moved to, for example, the position 49, and a clear SEH image can be obtained.

第2図、第6図において、励起源として電子を用い、L
SIウェハ1からの反射1次電子な検出器56で検出す
れば、低速電子エネルギ損失スペクトル分析となり1表
面の分析が可能であり、分子や振動状態まで調べること
ができる。
In FIGS. 2 and 6, electrons are used as the excitation source, and L
If primary electrons reflected from the SI wafer 1 are detected by the detector 56, the surface of the SI wafer 1 can be analyzed using slow electron energy loss spectrum analysis, and even molecules and vibrational states can be investigated.

同様Jf:、、LSIウェハ1からのオージェ電子を検
出器56で検出すれば1元素分析が可能となる。。
Similarly, if Auger electrons from the LSI wafer 1 are detected by the detector 56, single-element analysis becomes possible. .

また、X線を検出する検出器56を用意すれば。Moreover, if a detector 56 for detecting X-rays is prepared.

微小部の元素分析も可能となる。このように、微小異物
の組成才で含めた詳細な観察1分析を行うことができる
Elemental analysis of minute parts is also possible. In this way, detailed observation and analysis including the composition of minute foreign matter can be performed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、LSIウェハなどの被検査物表面に付
着している異物について、S偏光レーザなどの光学的手
段により付着位置を高速で検出するとともに、高分解能
の走査顕微鏡で観察・分析を行うことができるので、微
細異物検査を正確にしかも被検査物を損傷させるおそれ
なく行うことができる。さらに、異物゛の存在位置を短
時間で検出できるので、全体の検査時間を飛躍的に短か
くすることができる。したがって、走査電子顕微鏡にお
けるチャージアップ現象も防止できる。また、高速、高
分解能で異物検査を行うことができるので製造工程のチ
ェックが可能となり、半導体製品の歩留り低下の大きな
原因である異物の付着を防止することが可能となる。
According to the present invention, foreign matter adhering to the surface of an object to be inspected such as an LSI wafer can be detected at high speed by optical means such as an S-polarized laser, and at the same time can be observed and analyzed using a high-resolution scanning microscope. Therefore, fine foreign matter inspection can be performed accurately and without the risk of damaging the object to be inspected. Furthermore, since the location of foreign matter can be detected in a short time, the overall inspection time can be dramatically shortened. Therefore, the charge-up phenomenon in scanning electron microscopes can also be prevented. In addition, since foreign matter inspection can be performed at high speed and with high resolution, it becomes possible to check the manufacturing process, and it becomes possible to prevent the attachment of foreign matter, which is a major cause of lower yields of semiconductor products.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は走査電子顕微鏡の構成を示す構成図、第2図は
本発明の一実施例に係る異物検査装置の構成を示す構成
図、第5図はLSIウエノ1上の走査方向を示す模式図
、第4図は被検査物が回路パターンの付いていない場合
の本発明に係る異物検査装置における異物検出部の構成
を示す構成図、第5図は同じく被検査物が回路・くター
ンの付いている場合の異物検出部の構成を示す構成図、
第6図は本発明の他の実施例に係る異物検査装置の構成
を示す構成図である。 1・・・LSIウェハ、5・・・異物、11・・・試料
ステージ、12・・・異物検出部、15・・・走査電子
顕微鏡、14゜19 、46 、48・・・モータ、1
5.20・・・エンコーダ、1681.移動ステージ、
21・・・試料走査部、22・・・座標記憶部、25・
・・異物検出信号、24・・・制御部、27・・・S偏
光レーザ、28・・・対物レンズ、29・・・偏光板、
50・・・光電素子、51・・・陰極、32・・・陽極
、55 、54・・・電子レンズ、55.40・・・偏
向コイル、56.45・・・検出器、5B・・・CRT
、59・・・走査制御回路1.42・・・レーv、 4
5・・・ビームエキスパンダ、44・・・光学レンズホ
ルダ、47・・・Z軸機構。 第3図 第4目 第50 乙
FIG. 1 is a block diagram showing the structure of a scanning electron microscope, FIG. 2 is a block diagram showing the structure of a foreign matter inspection device according to an embodiment of the present invention, and FIG. 5 is a schematic diagram showing the scanning direction on the LSI Ueno 1. 4 is a block diagram showing the configuration of the foreign object detection section in the foreign object inspection apparatus according to the present invention when the object to be inspected does not have a circuit pattern, and FIG. A configuration diagram showing the configuration of the foreign object detection unit when the
FIG. 6 is a configuration diagram showing the configuration of a foreign matter inspection device according to another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... LSI wafer, 5... Foreign object, 11... Sample stage, 12... Foreign object detection part, 15... Scanning electron microscope, 14°19, 46, 48... Motor, 1
5.20...Encoder, 1681. moving stage,
21... Sample scanning section, 22... Coordinate storage section, 25.
... Foreign object detection signal, 24 ... Control unit, 27 ... S-polarized laser, 28 ... Objective lens, 29 ... Polarizing plate,
50... Photoelectric element, 51... Cathode, 32... Anode, 55, 54... Electronic lens, 55.40... Deflection coil, 56.45... Detector, 5B... CRT
,59...scan control circuit 1.42...ray v, 4
5... Beam expander, 44... Optical lens holder, 47... Z-axis mechanism. Figure 3, 4th item, 50th B

Claims (1)

【特許請求の範囲】 1、被検査物を載置する試料ステージ部と、この試料ス
テージ部を所定の動きで移動させる駆動部と、前記試料
ステージ部上の被検査物に光ビームを照射する光学系と
、前記被検査物からの反射光を受光し異物の位置及び大
きさの情報を検出する検出手段と、前記異物の分析・解
析手段を備えた走査電子顕微鏡とから成る異物検査装置
。 2、 検出手段が異物の位置及び/又は大きさについて
の情報を記憶する異物情報記憶部を備えている特許請求
の範囲第1項記載の異物検査装置。
[Claims] 1. A sample stage section on which an object to be inspected is placed, a drive section that moves this sample stage section in a predetermined movement, and a light beam irradiated to the object to be inspected on the sample stage section. A foreign matter inspection device comprising an optical system, a detection means for receiving reflected light from the object to be inspected and detecting information on the position and size of the foreign matter, and a scanning electron microscope equipped with an analysis means for the foreign matter. 2. The foreign object inspection device according to claim 1, wherein the detection means includes a foreign object information storage section that stores information about the position and/or size of the foreign object.
JP59074951A 1984-04-16 1984-04-16 Apparatus for testing foreign matter Granted JPS60218845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59074951A JPS60218845A (en) 1984-04-16 1984-04-16 Apparatus for testing foreign matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59074951A JPS60218845A (en) 1984-04-16 1984-04-16 Apparatus for testing foreign matter

Publications (2)

Publication Number Publication Date
JPS60218845A true JPS60218845A (en) 1985-11-01
JPH0458622B2 JPH0458622B2 (en) 1992-09-18

Family

ID=13562139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59074951A Granted JPS60218845A (en) 1984-04-16 1984-04-16 Apparatus for testing foreign matter

Country Status (1)

Country Link
JP (1) JPS60218845A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135848A (en) * 1986-11-28 1988-06-08 Hitachi Ltd Defect inspection instrument
JPS63179242A (en) * 1987-01-20 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Method and device for inspecting foreign matter
JPH01147513A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Foreign matter analyzer
JPH08220005A (en) * 1995-02-14 1996-08-30 Mitsubishi Electric Corp Method and apparatus for analyzing minute foreign matter, and manufacture of semiconductor element or liquid crystal display element using the method and apparatus
US5877035A (en) * 1995-02-14 1999-03-02 Mitsubishi Denki Kabushiki Kaisha Analyzing method and apparatus for minute foreign substances, and manufacturing methods for manufacturing semiconductor device and liquid crystal display device using the same
JP2008215940A (en) * 2007-03-01 2008-09-18 Canon Inc Foreign matter inspection device and foreign matter inspection method using the same
JP2012203074A (en) * 2011-03-24 2012-10-22 Hoya Corp Method for analyzing defect of mask blank
JP2015087114A (en) * 2013-10-28 2015-05-07 凸版印刷株式会社 Inspection equipment
JP2015111161A (en) * 2015-03-17 2015-06-18 大日本印刷株式会社 Foreign matter inspection device, foreign matter inspection method
US11239051B2 (en) 2017-02-13 2022-02-01 Hitachi High-Tech Corporation Charged particle beam device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364092A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Element analyzer
JPS57113227A (en) * 1980-12-19 1982-07-14 Ibm Method and device for inspecting article to be inspected with pattern
JPS57197454A (en) * 1981-05-29 1982-12-03 Rigaku Denki Kogyo Kk X-ray analysing apparatus
JPS58112909U (en) * 1982-01-28 1983-08-02 セイコーインスツルメンツ株式会社 X-ray film thickness device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364092A (en) * 1976-11-19 1978-06-08 Hitachi Ltd Element analyzer
JPS57113227A (en) * 1980-12-19 1982-07-14 Ibm Method and device for inspecting article to be inspected with pattern
JPS57197454A (en) * 1981-05-29 1982-12-03 Rigaku Denki Kogyo Kk X-ray analysing apparatus
JPS58112909U (en) * 1982-01-28 1983-08-02 セイコーインスツルメンツ株式会社 X-ray film thickness device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63135848A (en) * 1986-11-28 1988-06-08 Hitachi Ltd Defect inspection instrument
JPS63179242A (en) * 1987-01-20 1988-07-23 Nippon Telegr & Teleph Corp <Ntt> Method and device for inspecting foreign matter
JPH01147513A (en) * 1987-12-04 1989-06-09 Hitachi Ltd Foreign matter analyzer
JPH08220005A (en) * 1995-02-14 1996-08-30 Mitsubishi Electric Corp Method and apparatus for analyzing minute foreign matter, and manufacture of semiconductor element or liquid crystal display element using the method and apparatus
US5877035A (en) * 1995-02-14 1999-03-02 Mitsubishi Denki Kabushiki Kaisha Analyzing method and apparatus for minute foreign substances, and manufacturing methods for manufacturing semiconductor device and liquid crystal display device using the same
US6255127B1 (en) 1995-02-14 2001-07-03 Seiko Instruments Inc. Analyzing method and apparatus for minute foreign substances, and manufacturing methods for manufacturing semiconductor device and liquid crystal display device using the same
US6355495B1 (en) 1995-02-14 2002-03-12 Mitsubishi Denki Kabushiki Kaisha Method and apparatus for analyzing minute foreign substance, and process for semiconductor elements or liquid crystal elements by use thereof
JP2008215940A (en) * 2007-03-01 2008-09-18 Canon Inc Foreign matter inspection device and foreign matter inspection method using the same
US7629577B2 (en) 2007-03-01 2009-12-08 Canon Kabushiki Kaisha Foreign matter or abnormal unsmoothness inspection apparatus and foreign matter or abnormal unsmoothness inspection method
KR100944280B1 (en) 2007-03-01 2010-02-24 캐논 가부시끼가이샤 Foreign matter or abnormal unsmoothness inspection apparatus and foreign matter or abnormal unsmoothness inspection method
US8003939B2 (en) 2007-03-01 2011-08-23 Canon Kabushiki Kaisha Foreign matter or abnormal unsmoothness inspection apparatus and foreign matter or abnormal unsmoothness inspection method
JP2012203074A (en) * 2011-03-24 2012-10-22 Hoya Corp Method for analyzing defect of mask blank
JP2015087114A (en) * 2013-10-28 2015-05-07 凸版印刷株式会社 Inspection equipment
JP2015111161A (en) * 2015-03-17 2015-06-18 大日本印刷株式会社 Foreign matter inspection device, foreign matter inspection method
US11239051B2 (en) 2017-02-13 2022-02-01 Hitachi High-Tech Corporation Charged particle beam device

Also Published As

Publication number Publication date
JPH0458622B2 (en) 1992-09-18

Similar Documents

Publication Publication Date Title
CN109690748B (en) Defect marking for semiconductor wafer inspection
US3790287A (en) Surface inspection with scanned focused light beams
JPH11108864A (en) Method and apparatus for inspecting pattern flaw
JP2001159616A (en) Method and apparatus for inspecting pattern
JPS60218845A (en) Apparatus for testing foreign matter
JPH1048145A (en) Microscopic foreign matter-detecting method and detector therefor
JP2002181725A (en) Method for analyzing minute foreign matter, analysis apparatus, method for manufacturing semiconductor device and liquid crystal display device
JP2981117B2 (en) Method for detecting and inspecting minute foreign matter, scanning probe microscope used therefor, and method for producing semiconductor element or liquid crystal display element using the same
US20090316981A1 (en) Method and device for inspecting a disk-shaped object
JP2007212288A (en) Pattern inspection method and device, and program
JP3032967B2 (en) Apparatus and method for inspecting a smooth surface of a sample
JP3936873B2 (en) Defect imaging apparatus and imaging method
JP2000077019A (en) Electron microscope
JPS6196644A (en) Appearance examination device
JP3013519B2 (en) Inspection method and inspection device for thin film structure
JP3473932B2 (en) Defect observation apparatus and method
JPS61267246A (en) Foreign matter detector
JPH0997585A (en) Image reading method and device, and semiconductor manufacturing device using them
JPH11274256A (en) Sample checking device
CN221007330U (en) Terahertz silicon wafer detection device
JPH06194319A (en) Method and equipment for analyzing sample
JPH11354598A (en) Wafer inspection device
JPH11125602A (en) Method and device for analyzing foreign matter
JP2005055265A (en) X-ray analysis device, x-ray analysis method and surface inspection device
JPH04239149A (en) Microscopic system for examination of crystal cleavage plane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term