JPS63135848A - Defect inspection instrument - Google Patents

Defect inspection instrument

Info

Publication number
JPS63135848A
JPS63135848A JP28181386A JP28181386A JPS63135848A JP S63135848 A JPS63135848 A JP S63135848A JP 28181386 A JP28181386 A JP 28181386A JP 28181386 A JP28181386 A JP 28181386A JP S63135848 A JPS63135848 A JP S63135848A
Authority
JP
Japan
Prior art keywords
foreign matter
defect
wafer
distribution map
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28181386A
Other languages
Japanese (ja)
Other versions
JP2609594B2 (en
Inventor
Hiroyuki Ishida
博行 石田
Kimio Muramatsu
村松 公夫
Masayoshi Hagino
萩野 正吉
Tsuneo Okada
経雄 岡田
Hisato Nakamura
寿人 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi High Tech Corp
Original Assignee
Hitachi Ltd
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Electronics Engineering Co Ltd filed Critical Hitachi Ltd
Priority to JP61281813A priority Critical patent/JP2609594B2/en
Publication of JPS63135848A publication Critical patent/JPS63135848A/en
Application granted granted Critical
Publication of JP2609594B2 publication Critical patent/JP2609594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/9501Semiconductor wafers

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To remove a defect other than those to be diagnosed automatically, by subtracting a defect distribution map prior to a diagnosis process of an object to be inspected from that after the end thereof. CONSTITUTION:A wafer 1 as object to be inspected is placed on a foreign matter inspection stage 4 and irradiated with laser 12 to detect scattered bean due to a foreign matter with a photo sensor 16. The resulting detection signal is processed with a CPU 23 through a foreign matter detection controller 17, a foreign matter distribution map prior to the diagnosis process is stored into a defect distribution map memory section 25 and, then, the wafer 1 is sent to the diagnosis process for a specified processing. Likewise, a foreign matter is detected from the wafer 1 via the diagnosis process and a foreign matter distribution map after the end of the diagnosis process is stored 25. Then, a computing section 26 subtracts a defect distribution map prior to the diagnosis process from that thereafter. This enables the selection of a defect along generated in the wafer 1 during the process, thereby automatically determining a distribution map of a foreign matter attached in the process.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、欠陥検査技術、特に、被検査物の表面に欠陥
として付着した異物の自動欠陥検査装置に関し、例えば
、半導体装置の製造工程において、ウェハ等の表面に付
着した異物の検査に利用して有効なものに関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a defect inspection technique, and in particular, to an automatic defect inspection device for foreign matter attached as a defect on the surface of an object to be inspected. , which is effective for use in inspecting foreign matter attached to the surface of wafers, etc.

(従来の技術) 半導体装置の製造工程において、ウェハに異物付着等の
欠陥があると、製造歩留りや製品の品質および信頼性の
低下が発生するため、ウェハ上における欠陥についての
検査並びにそれに基づく評価ないしは診断は、オンライ
ンまたはオフラインを問わず重要である。
(Prior art) In the manufacturing process of semiconductor devices, if a wafer has defects such as foreign matter adhering to it, the manufacturing yield, product quality, and reliability will deteriorate. Diagnosis is important whether online or offline.

そこで、ウェハの欠陥検査を非破壊にて実行する欠陥検
査装置として、被検査物としてのウェハに光を照射して
ウェハからの反射光をホトセンサにより測定し、その測
定結果に基づいて正常部と欠陥部とを判定して欠陥の分
布を求めるように構成されている光学検査装置が、各種
提案されている。
Therefore, as a defect inspection device that performs wafer defect inspection non-destructively, the wafer as an object to be inspected is irradiated with light and the reflected light from the wafer is measured with a photo sensor, and based on the measurement results, it is determined whether the defect is normal or not. Various optical inspection apparatuses have been proposed that are configured to determine defect distribution by determining defective parts.

なお、光学検査技術を述べである例としては、株式会社
工業調査会発行「電子材料1984年11月号別冊」昭
和59年11月20日発行 P2l3〜P219、があ
る。
Examples of optical inspection techniques that describe optical inspection techniques include "Electronic Materials November 1984 Special Edition" published by Kogyo Research Association Co., Ltd., November 20, 1984, P213-P219.

さらに、ウェハに付着した異物の分布を検出するだけで
なく、当該異物の大きさ、組成等を走査電子R微鏡やX
線マイクロアナライザを用いて分析・解析する異物検査
装置も提案されている(例えば、特開昭60−2188
45号公報参照)。
Furthermore, in addition to detecting the distribution of foreign particles attached to the wafer, the size and composition of the foreign particles can be measured using a scanning electron R microscope or an X-ray microscope.
A foreign substance inspection device that uses a line microanalyzer for analysis has also been proposed (for example, Japanese Patent Application Laid-Open No. 60-2188
(See Publication No. 45).

〔発明が解決しようとする間u点〕[Point u while the invention is trying to solve the problem]

このような欠陥検査装置を用いてウェハの欠陥検査を実
施する際、ウェハが診断(ないしは評価)すべきプロセ
スを経る前から、ウェハに存在していた欠陥は、診断対
象外の欠陥であるため、除去する必要があるが、これを
人為的に除去する作業は困難であるという問題点がある
ことが、本発明者によって明らかにされた。
When inspecting wafers for defects using such defect inspection equipment, defects that existed on the wafer before the wafer went through the process to be diagnosed (or evaluated) are defects that are not subject to diagnosis. The inventor of the present invention has revealed that there is a problem in that it is difficult to manually remove this, although it is necessary to remove it.

本発明の目的は、診断対象外の欠陥を自動的に除去する
ことができる欠陥検査装置を提供することにある。
An object of the present invention is to provide a defect inspection device that can automatically remove defects that are not subject to diagnosis.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

【問題点を解決するための手段〕[Means for solving problems]

本閣において開示される発明のうち代表的なものの概要
を説明すれば、次の通りである。
A summary of typical inventions disclosed in this cabinet is as follows.

すなわち、被検査物における欠陥を検出する欠陥検出手
段と、欠陥検出手段の検出に基き被検査物における欠陥
の分布図を記憶する記憶部と、記憶部の記憶データに基
き、複数の欠陥分布図を照合する演算部とを設けたもの
である。
That is, a defect detection means for detecting defects in the object to be inspected, a storage section for storing a distribution map of defects in the object to be inspected based on the detection by the defect detection means, and a plurality of defect distribution maps based on the data stored in the storage section. The system is equipped with an arithmetic unit that verifies the information.

〔作用〕[Effect]

前記した手段によれば、記憶部には診断すべきプロセス
を被検査物が経る前に欠陥の分布を検査して記憶させて
おき、診断すべきプロセスを被検査物が経た後に欠陥の
分布を検査して記憶させることができる。そして、演算
部はプロセス後の被検査物における欠陥分布図からプロ
セス前の被検査物における欠陥分布図を減算することに
より、そのプロセスにおいて被検査物に発生した欠陥だ
けを選択することができる。
According to the above-mentioned means, the storage section inspects and stores the defect distribution before the inspected object undergoes the process to be diagnosed, and stores the defect distribution after the inspected object passes through the process to be diagnosed. It can be inspected and memorized. Then, by subtracting the defect distribution map of the inspected object before the process from the defect distribution map of the inspected object after the process, the arithmetic unit can select only the defects that occurred in the inspected object during the process.

したがって、その欠陥を解析することにより、当該プロ
セスにおける欠陥の発生の原因等を正確に診断すること
ができる。
Therefore, by analyzing the defect, it is possible to accurately diagnose the cause of the defect in the process.

また、記憶部には診断すべきプロセスを経た全ての被検
査物についての欠陥の分布図を記憶させておくことがで
きる。そして、演箆部は診断すべきプロセスを経た全て
の被検査物についての欠陥分布図を積算することにより
、そのプロセスにおいて被検査物に発生した欠陥の傾向
を顕著化することができる。したがって、この傾向を解
析することにより、当該プロセスにおける欠陥発生の原
因等を正確に診断することができる。
Furthermore, the storage unit can store defect distribution maps for all inspected objects that have undergone the process to be diagnosed. Then, by integrating the defect distribution maps for all the objects to be inspected that have gone through the process to be diagnosed, the calculation section can highlight the tendency of defects occurring in the objects to be inspected during that process. Therefore, by analyzing this tendency, it is possible to accurately diagnose the cause of defects in the process.

〔実施例1〕 第1図は本発明の一実施例である14物検査装置を示す
槓式図、第2図はその作用を説明するための説明図であ
る。
[Embodiment 1] FIG. 1 is a scale diagram showing a 14-object inspection device which is an embodiment of the present invention, and FIG. 2 is an explanatory diagram for explaining its operation.

本実施例において、この異物検査装置は被検査物として
のウェハ1上に診断すべきプロセスで付着した欠陥とし
ての異物の分布、およびその異物の組成を分析するよう
に構成されており、真空状態を形成し得るように構成さ
れている検査室2を備えている。検査室2の片膝(以下
、右脇とする。
In this embodiment, this foreign matter inspection device is configured to analyze the distribution of foreign matter as a defect that has adhered to a wafer 1 as an object to be inspected during the process to be diagnosed, and the composition of the foreign matter, and is configured to analyze the composition of the foreign matter. It is equipped with an examination room 2 configured to be able to form a. One knee in examination room 2 (hereinafter referred to as the right side).

)には予備室3がウェハlを検査室2に対して出し入れ
し得るように設備されており、検査室2内には異物の分
布を検査するための異物分布検査ステージ4、および異
物の組成を分析するための異物分析ステージ5が、右お
よび左にそれぞれ配されて設定されている。検査室2内
にはウェハ1を保持するためのホルダ6が移動台7に支
持されて設備されている。移動台7はホルダ6をXY方
向に移動させ得るように構成されており、XY方向の移
動座標はエンコーダ8によってコントローラ11にイン
プットされるようになっている。移動台7はモータlO
によって駆動される送りねじ装置9により分布検査ステ
ージ4と異物分析ステージ5との間を移動されるように
構成されており、モータlOはコントローラ11により
制御されるように構成されている。
) is equipped with a preliminary chamber 3 so that wafers l can be taken in and out of the inspection chamber 2, and inside the inspection chamber 2 there is a foreign matter distribution inspection stage 4 for inspecting the distribution of foreign matter, and a foreign matter distribution inspection stage 4 for inspecting the distribution of foreign matter. Foreign matter analysis stages 5 are arranged on the right and on the left, respectively. A holder 6 for holding the wafer 1 is installed in the inspection chamber 2 and supported by a movable table 7. The moving table 7 is configured to be able to move the holder 6 in the X and Y directions, and the moving coordinates in the X and Y directions are input to the controller 11 by the encoder 8. The moving table 7 is a motor lO
The motor IO is configured to be moved between the distribution inspection stage 4 and the foreign matter analysis stage 5 by a feed screw device 9 driven by a controller 11.

検査室2の異物分布ステージ4上にはレーザ発振器12
が設備されており、この発振器12は走査ミラー13を
介して、非破壊検査を実現する検査光としてのレーザ1
4をウェハ1に走査して照射するように構成されている
。また、異物分布ステージ4にはホトセンサ16がレー
ザの照射点に対向されて設備されており、このホトセン
サ16はウェハl上の異物に照射されたレーザ14の散
乱光15を検出し得るように構成されている。そして、
走査ミラー13は異物検査コントローラ17により制御
されるように構成されており、ホトセンサ16はコント
ローラ17にその検出結果をインプットするように構成
されている。
A laser oscillator 12 is installed on the foreign material distribution stage 4 in the examination room 2.
This oscillator 12 emits a laser 1 as an inspection light to realize non-destructive inspection via a scanning mirror 13.
4 to scan and irradiate the wafer 1. Further, a photosensor 16 is installed in the foreign matter distribution stage 4 so as to face the laser irradiation point, and this photosensor 16 is configured to be able to detect the scattered light 15 of the laser 14 irradiated to the foreign matter on the wafer l. has been done. and,
The scanning mirror 13 is configured to be controlled by a foreign object inspection controller 17, and the photosensor 16 is configured to input its detection results to the controller 17.

検査室2の異物分析ステージ5上には走査形電子顕微鏡
(以下、SEXという、)の電子銃18が、分析ステー
ジ5上のウェハlにおける異物に電子線を即射し得るよ
うに設備されており、電子銃18はSEMコントローラ
19により側御されるように構成されている。?tt子
銃18の片部には2次電子検出器20が電子線の照射に
より異物から飛び出す2次電子を検出し得るように設備
されており、この検出器20はその検出結果をSEMコ
ントローラ19にインプットさせるように構成されてい
る。また、異物分析ステージ5上にはX線検出器21が
電子線の照射により異物から放射されるX線を検出し得
るように設備されており、その検出結果はX線マイクロ
アナライザ22にインプットさせるように構成されてい
る。
On the foreign matter analysis stage 5 of the inspection room 2, an electron gun 18 of a scanning electron microscope (hereinafter referred to as SEX) is installed so that it can immediately shoot an electron beam at the foreign matter on the wafer l on the analysis stage 5. The electron gun 18 is configured to be side-controlled by an SEM controller 19. ? A secondary electron detector 20 is installed in one part of the tt child gun 18 so as to be able to detect secondary electrons emitted from a foreign object by irradiation with an electron beam, and this detector 20 sends the detection results to an SEM controller 19. It is configured so that it can be input to. Furthermore, an X-ray detector 21 is installed on the foreign matter analysis stage 5 to detect X-rays emitted from foreign matter by electron beam irradiation, and the detection results are input to an X-ray microanalyzer 22. It is configured as follows.

この異物検査装置はコンピュータ等からなる中央処理ユ
ニット(以下、CPtJという、)23を備えており、
そのCPU23には前記ホルダコントローラ11および
異物検出コントローラ17が接続されている。また、C
PU23には所望のパラメータ等を設定するためのコン
ソール24、欠陥分布図記憶部としてのメモリー25お
よび演算部26がそれぞれ接続されており、メモリー2
5および演算部26にはプリンタ、ディスプレー装置、
外部メモリー等のような出力装置27がPa続されてい
る。メモリー25はCPU23を通じて異物検出コント
ローラ17から送られて来るウェハ1上の異物の位置を
分布図として記憶し得゛るように構成されている。また
、演算部26はCPU23によって制御されることによ
り、CPU23を通じてメモリー24から送られて来る
欠陥分布図を照合して減算等のような所望の演算を実行
し得るように構成されている。
This foreign matter inspection device is equipped with a central processing unit (hereinafter referred to as CPtJ) 23 consisting of a computer etc.
The holder controller 11 and foreign object detection controller 17 are connected to the CPU 23. Also, C
Connected to the PU 23 are a console 24 for setting desired parameters, a memory 25 as a defect distribution map storage unit, and a calculation unit 26.
5 and the calculation unit 26 include a printer, a display device,
An output device 27 such as an external memory is connected. The memory 25 is configured to be able to store the positions of foreign objects on the wafer 1 sent from the foreign object detection controller 17 through the CPU 23 as a distribution map. Further, the calculation unit 26 is controlled by the CPU 23 so that it can collate the defect distribution map sent from the memory 24 through the CPU 23 and execute a desired calculation such as subtraction.

次に作用を説明する。Next, the effect will be explained.

まず、診断すべきプロセスを経る前のウェハlが、予備
室3から検査N2内の異物検出ステージ4に移動されて
いるホルダ6上に移載される。
First, a wafer l that has not yet undergone a process to be diagnosed is transferred onto a holder 6 that has been moved from the preliminary chamber 3 to the foreign object detection stage 4 in the inspection N2.

続いて、レーザ発振012からのレーザ14がミラー1
3により走査されながら、ウェハ1を移動台7によって
XY方向に移動されることによりウェハ1全面にわたう
て規則的に照射される。このとき、ウェハ上に異物があ
ると、異物に照射したレーザ14は散乱するため、散乱
光15がホトセンサ16によって検出される。異物が検
出されると、ホトセンサ16からコントローラ17に検
出信号がインプットされるとともに、エンコーダ8の出
力がメモリー25にラッチされる。CPU23はこの異
物位置に基き、第2図伽)に示されているようなプロセ
ス通過前の異物分布図31を仮想的に作成し、これをメ
モリー25に記憶させる。
Next, the laser 14 from the laser oscillation 012 hits the mirror 1.
The wafer 1 is moved in the X and Y directions by the moving stage 7 while being scanned by the wafer 3, so that the entire surface of the wafer 1 is irradiated regularly. At this time, if there is a foreign object on the wafer, the laser beam 14 irradiated onto the foreign object is scattered, so that scattered light 15 is detected by the photosensor 16. When a foreign object is detected, a detection signal is input from the photosensor 16 to the controller 17, and the output of the encoder 8 is latched into the memory 25. Based on this foreign matter position, the CPU 23 virtually creates a foreign matter distribution map 31 before passing through the process as shown in FIG. 2, and stores this in the memory 25.

このようにしてプロセスを経る前の異物分布図31を作
成されたウェハ1は検査室1から予備室3を経て外部に
取り出され、診断すべきプロセスに送られて所定の処理
を施こされる。
The wafer 1 on which the foreign matter distribution map 31 before undergoing the process has been created in this way is taken out from the inspection room 1 via the preliminary room 3, sent to the process to be diagnosed, and subjected to predetermined processing. .

その後、診断すべきプロセスを経たウェハ1は予備室3
から検査室2内の異物検出ステージ4のホルダ6上に移
載される。
After that, the wafer 1 that has undergone the process to be diagnosed is placed in the preliminary room 3.
From there, it is transferred onto the holder 6 of the foreign object detection stage 4 in the examination room 2.

続いて、ウェハ1は前記と同様な作動により異物を検出
され、その異物の位置により、第2図(烏)に示されて
いるようなプロセス経過後の異物分布図32が仮想的に
作成されてメモリー25に記憶される。
Subsequently, a foreign object is detected on the wafer 1 by the same operation as described above, and a foreign object distribution map 32 after the process is virtually created as shown in FIG. 2 (crow) based on the position of the foreign object. and stored in the memory 25.

ウェハ1の全面についての異95検査が終了すると、ウ
ェハlを保持したホルダ6は移動台7により分析ステー
ジ5におけるSEMll子銃18の真下に移動される。
When the inspection of the entire surface of the wafer 1 is completed, the holder 6 holding the wafer 1 is moved by the moving table 7 to a position directly below the SEM sub-gun 18 on the analysis stage 5.

検出した異物の位置座標はメモリー25に記憶されてい
るため、そのデータに基き移動台7はホルダ6を移動さ
せて、観察したい位置の異物を電子銃18の照射点に順
次対向させて行く。
Since the position coordinates of the detected foreign object are stored in the memory 25, the moving table 7 moves the holder 6 based on the data, and sequentially brings the foreign object at the position to be observed to face the irradiation point of the electron gun 18.

異物に電子線が照射されることにより、異物がら飛び出
す2次電子が2次電子検出器20によって検出され、ま
た、放射されるX線がX線検出器21によって検出され
る。この検出結果は、32Mコントローラ19およびX
線マイクロアナライザ22にインプットされ、外部メモ
リーや周辺機器に送られ、異物の大きさ分析や組成分析
等に供される。
When the foreign object is irradiated with an electron beam, secondary electrons ejected from the foreign object are detected by a secondary electron detector 20, and emitted X-rays are detected by an X-ray detector 21. This detection result is based on the 32M controller 19 and
The data is input to the line microanalyzer 22, sent to external memory and peripheral equipment, and used for size analysis, composition analysis, etc. of foreign objects.

ところで、診断すべきプロセスを経る前からウェハ1に
付着していた異物は、診断すべきプロセスによって付着
した異物ではないため、診断から除去してもよい、また
、SEMおよびX線アナライザによる大きさ分析や組成
分析には時間および費用等を要するため、重要でない異
物についての分析作業は真に必要な異物分析作業の妨げ
になる。
By the way, the foreign matter that was attached to the wafer 1 before going through the process to be diagnosed is not a foreign matter that was attached by the process to be diagnosed, so it may be removed from the diagnosis. Since analysis and compositional analysis require time and cost, analysis work on unimportant foreign substances obstructs truly necessary foreign substance analysis work.

したがって、診断すべきプロセスを経る前からウェハ1
に付着していたF!物についての分析作業は省略するこ
とが望ましい。
Therefore, before going through the process to be diagnosed, the wafer 1
F! which was attached to It is desirable to omit analysis work on objects.

そこで、本実施例において、CPU23は演算部26を
して、第2図に示されているような減算を実行させるこ
とにより、第2図telに示されているプロセスで付着
した異物の分布図33を仮想的に求め、その分布図33
に基いて移動台7を操作することにより、診断すべきプ
ロセスで付着した異物のみを電子銃18の照射点に導き
、分析検査を実行させる。すなわち、演算部26はm2
図(畠)に示されているプロセス通過後の異物分布図3
2から、同図(blに示されているプロセス通過前の異
物分布図31を引くことにより、同図TC)に示されて
いるプロセスで付着した異物の分布図33を演算するこ
とになる。
Therefore, in this embodiment, the CPU 23 causes the arithmetic unit 26 to perform the subtraction shown in FIG. 33 virtually, and its distribution diagram 33
By operating the movable stage 7 based on the above, only the foreign matter that has adhered during the process to be diagnosed is guided to the irradiation point of the electron gun 18, and an analysis test is performed. That is, the calculation unit 26 calculates m2
Foreign matter distribution diagram 3 after passing through the process shown in Figure (Hata)
By subtracting the distribution diagram 31 of foreign matter before passing through the process shown in BL from 2, the distribution diagram 33 of foreign matter deposited in the process shown in TC of the same figure can be calculated.

このようにして、本実施例においては、プロセスで付着
した5I!物のみが電子IA1Bに順次対向されて分析
作業を受けることになるため、分析作業の清率が高めら
れることになる。
In this way, in this example, 5I! Since only the objects are sequentially opposed to the electronic IA 1B and subjected to the analysis work, the efficiency of the analysis work is improved.

前記実施例によれば次の効果が得られる。According to the embodiment described above, the following effects can be obtained.

(11X物渣出手段の検出に基きウェハにおける異物の
分布図を記憶するメモリーと、メモリーのデータに基い
て複数の異物分布図を照合する演算部とを設けることに
より、プロセス通過後の異物分布図からプロセス通過前
の異物分布図を引くことによって、プロセスで付着した
異物の分布図を自動的に求めることができるため、プロ
セスにおける異物の付着傾向を正確かつ迅速に知ること
ができ、プロセスに対する診断ないしは評価を正確かつ
迅速化させることができる。
(By providing a memory that stores a distribution map of foreign particles on the wafer based on the detection of the 11X particle removal means and a calculation unit that collates multiple foreign particle distribution maps based on the data in the memory, the distribution of foreign particles after passing through the process can be By drawing a foreign matter distribution map before passing through the process from the diagram, the distribution map of foreign matter adhering in the process can be automatically obtained, so the tendency of foreign matter adhesion in the process can be accurately and quickly known, and the process Diagnosis or evaluation can be made more accurately and quickly.

(2)  プロセスで付着した異物の分布図を求めるこ
とにより、相対的に診断すべきプロセス通過前に付着し
ていた異物を分布図から排除することができるため、異
物の大きさや組成について分析検査を実施する場合、検
査能率を高めることができるとともに、プロセスに対す
る診断ないしは評価の正確さを高めることができる。
(2) By obtaining a distribution map of foreign matter that has adhered during the process, it is possible to exclude from the distribution map the foreign matter that has adhered before passing through the process, which should be relatively diagnosed. When implementing this, it is possible to increase inspection efficiency and improve the accuracy of diagnosis or evaluation of the process.

〔実施例2〕 第3図は本発明の他の実施例を示す第2図に相当する説
明図である。
[Embodiment 2] FIG. 3 is an explanatory diagram corresponding to FIG. 2 showing another embodiment of the present invention.

本実施例2は、診断すべきプロセスにおける異物の付着
傾向を求める場合に通用するものであり、本実施例にお
いても第1図に示されている異物検査値ぽが使用される
。この場合、メモリー25には同一プロセスをそれぞれ
通過した複数枚のウェハについてそのプロセスで付着し
た異物の分布図33A、33B・・・が順次記憶されて
行く、そして、所定数以上の分布図33人、33B・・
・がメモリー25に蓄積されたところで、演算部26は
茅3図に示されているように、全ての分布図33A、3
3Bを加算し同図(C1に示されている累積分布図34
を自動的に求める。
Embodiment 2 is applicable to determining the tendency of foreign matter to adhere in a process to be diagnosed, and the foreign matter test value shown in FIG. 1 is used in this embodiment as well. In this case, the memory 25 sequentially stores distribution maps 33A, 33B, etc. of foreign matter attached to a plurality of wafers that have passed through the same process, and a predetermined number or more distribution maps 33A, 33B, etc. , 33B...
・ is stored in the memory 25, the calculation unit 26 calculates all the distribution maps 33A, 3, as shown in the Kaya 3 diagram.
3B is added to the same figure (cumulative distribution diagram 34 shown in C1).
automatically.

この累積分布図34における異物の分布傾向を観察する
ことにより、そのプロセスにおける異物の発生傾向が診
断ないしは評価される。この場合、異物分布の累積が自
動的に行われるため、累積ミス等がなく診断・評価が正
確に行われるとともに、迅速かつオンラインでの診断・
評価も可能になり、生産性を高めることができる。
By observing the distribution tendency of foreign matter in this cumulative distribution diagram 34, the tendency of occurrence of foreign matter in the process can be diagnosed or evaluated. In this case, since the foreign material distribution is automatically accumulated, diagnosis and evaluation are performed accurately without any accumulation errors, and diagnosis and evaluation can be performed quickly and online.
Evaluation is also possible and productivity can be increased.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor.

例えば、ウェハにおける異物の分布検査後、異物の大き
さや組成についての分析検査を実施するように構成する
に限らず、異物検出だけをXfiI!する装置において
異物の分布を求めるように構成してもよい。
For example, after inspecting the distribution of foreign particles on a wafer, the XfiI! The device may be configured to determine the distribution of foreign matter.

分布を求める対象としての欠陥は異物に限らず、外観検
査における欠損欠陥や突起欠陥、寸法誤差欠陥等であっ
てもよい。
The defects whose distribution is to be determined are not limited to foreign objects, but may also be defective defects, protrusion defects, dimensional error defects, etc. in visual inspection.

欠陥検出手段としては、ウェハにレーザを照射してその
散乱光を検出するように構成されている光学的手段、を
使用するに限らず、ウェハに電子線等のrtIf8粒子
ビームを照射しその2次粒子または波を検出するように
構成されている手段等を使用してもよい。
The defect detection means is not limited to optical means configured to irradiate the wafer with a laser and detect the scattered light, but also to irradiate the wafer with an rtIf8 particle beam such as an electron beam. Means configured to detect subparticles or waves, etc. may be used.

以上の説明では主として本発明者によってなされた発明
をその背景となった利用分野であるウェハの異物検査技
術に通用した場合について説明したが、それに限定され
るものではなく、ホトマスク等の欠陥検査装設に通用す
ることができる8本発明は少なくとも複数の被検査物が
同一のプロセスを通過する場合における欠陥検査装冒全
般に通用することができる。
In the above explanation, the invention made by the present inventor has mainly been explained in the case where it is applied to the foreign matter inspection technology of wafers, which is the background application field, but the present invention is not limited to this, and the present invention is not limited to this. 8. The present invention can be applied to all defect inspection equipment in which at least a plurality of objects to be inspected pass through the same process.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、次の通りである。
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

異物検出手段の検出に基き被検査物における欠陥の分布
図を記憶する記憶部と、記憶部のデータに基いて複数の
欠陥分布図を照合する演算部とを設けることにより、プ
ロセスにおいて欠陥が発生する傾向を自動的に知ること
ができるため、プロセスに対する診断ないしは評価を迅
速に実行させることができるとともに、その正確度を高
めることができる。
By providing a storage unit that stores a distribution diagram of defects in the inspected object based on the detection by the foreign object detection means, and a calculation unit that collates multiple defect distribution diagrams based on the data in the storage unit, it is possible to prevent defects from occurring in the process. Since it is possible to automatically know the tendency of the process to occur, diagnosis or evaluation of the process can be performed quickly and its accuracy can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例である異物検査装面を示す模
式図、 第2図はその作用を説明するための説明図、第3図は本
発明の他の実施例を示す第2図に相当する説明図である
。 1・・・ウェハ(被検査物)、2・・・検査室、3・・
・予備室、4・・・異物検出ステージ、5・・・異物分
析ステージ、6・・・ホルダ、7・・・移動台、8・・
・リニアエンコーダ、L−−・送りねじ装置、lO・・
・モータ、11・・・ホルダコントローラ、12・・・
レーザ発振器、13・・・走査ミラー、14・・・レー
ザ、15・・・散乱光、16・・・ホトセンサ、17・
・・異物検出コントローラ、18・・・SEM電子1L
19・・・SEMコントローラ、20・・・2次電子検
出器、21・・・X線検出器、22・・・X線マイクロ
アナライザ、23・・・CPU。 24・・・コンソール、25・・・メモリー(欠陥分布
図記憶部)、26・・・演算部、27・・・出力機器、
31・・・プロセス通過前の異物分布図、32・・・プ
ロセス通過後の異物分布図、33.33A、33B・・
・プロセスで付着した異物分布図、34・・・異物分布
図。 第1図 ”  ””””   、、I’4−fz@9;QTKJ
¥S 2 図 ((Ll       (b) (a−>       (b) (C) (C)
FIG. 1 is a schematic diagram showing a foreign matter inspection device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram for explaining its operation, and FIG. 3 is a schematic diagram showing another embodiment of the present invention. FIG. 1...Wafer (object to be inspected), 2...Inspection room, 3...
・Preliminary room, 4... Foreign matter detection stage, 5... Foreign matter analysis stage, 6... Holder, 7... Moving table, 8...
・Linear encoder, L--・Feed screw device, lO・・
・Motor, 11...Holder controller, 12...
Laser oscillator, 13... Scanning mirror, 14... Laser, 15... Scattered light, 16... Photo sensor, 17.
...Foreign object detection controller, 18...SEM electronic 1L
19...SEM controller, 20...Secondary electron detector, 21...X-ray detector, 22...X-ray microanalyzer, 23...CPU. 24... Console, 25... Memory (defect distribution map storage unit), 26... Arithmetic unit, 27... Output device,
31... Foreign matter distribution diagram before passing through the process, 32... Foreign matter distribution diagram after passing through the process, 33.33A, 33B...
・Distribution diagram of foreign matter attached during the process, 34...Distribution diagram of foreign matter. Figure 1 """"",,I'4-fz@9;QTKJ
¥S 2 Figure ((Ll (b) (a-> (b) (C) (C)

Claims (1)

【特許請求の範囲】 1、被検査物における欠陥を検出する欠陥検出手段と、
欠陥検出手段の検出に基き被検査物における欠陥の分布
図を記憶する記憶部と、記憶部の記憶データに基き、複
数の欠陥分布図を照合する演算部とを備えていることを
特徴とする欠陥検査装置。 2、演算部が、欠陥分布図相互の差を求めるように構成
されていることを特徴とする特許請求の範囲第1項記載
の欠陥検査装置。 3、演算部が、欠陥分布図の積算を実行するように構成
されていることを特徴とする特許請求の範囲第1項記載
の欠陥検査装置。
[Claims] 1. Defect detection means for detecting defects in an object to be inspected;
It is characterized by comprising a storage unit that stores a distribution map of defects in the inspected object based on the detection by the defect detection means, and a calculation unit that collates a plurality of defect distribution maps based on the data stored in the storage unit. Defect inspection equipment. 2. The defect inspection apparatus according to claim 1, wherein the calculation section is configured to calculate a difference between the defect distribution maps. 3. The defect inspection apparatus according to claim 1, wherein the arithmetic unit is configured to perform integration of the defect distribution map.
JP61281813A 1986-11-28 1986-11-28 Defect inspection equipment Expired - Lifetime JP2609594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61281813A JP2609594B2 (en) 1986-11-28 1986-11-28 Defect inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61281813A JP2609594B2 (en) 1986-11-28 1986-11-28 Defect inspection equipment

Publications (2)

Publication Number Publication Date
JPS63135848A true JPS63135848A (en) 1988-06-08
JP2609594B2 JP2609594B2 (en) 1997-05-14

Family

ID=17644350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61281813A Expired - Lifetime JP2609594B2 (en) 1986-11-28 1986-11-28 Defect inspection equipment

Country Status (1)

Country Link
JP (1) JP2609594B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0344054A (en) * 1989-07-12 1991-02-25 Hitachi Ltd Inspection data analysis system
JPH03202760A (en) * 1989-10-19 1991-09-04 Sumitomo Electric Ind Ltd Total-reflection fluorescent x-ray analyzer
WO1997035337A1 (en) * 1996-03-19 1997-09-25 Hitachi, Ltd. Process control system
US6202037B1 (en) * 1998-02-26 2001-03-13 Mitsubishi Denki Kabushiki Kaisha Quality management system and recording medium
US6319733B1 (en) 1999-04-22 2001-11-20 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device, semiconductor equipment and manufacturing system
US6404911B2 (en) 1989-07-12 2002-06-11 Hitachi, Ltd. Semiconductor failure analysis system
US6411377B1 (en) 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
JP2006250739A (en) * 2005-03-11 2006-09-21 Hitachi High-Technologies Corp Foreign substance defect inspection method and its device
US7369223B2 (en) 2004-03-29 2008-05-06 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
US7417721B2 (en) 2002-11-27 2008-08-26 Hitachi, Ltd. Defect detector and defect detecting method
US7492452B2 (en) 2006-03-01 2009-02-17 Hitachi High-Technologies Corporation Defect inspection method and system
US7528942B2 (en) 2005-06-22 2009-05-05 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
US7535561B2 (en) 2006-03-14 2009-05-19 Hitachi High-Technologies Corporation Defect inspecting apparatus
US7664608B2 (en) 2006-07-14 2010-02-16 Hitachi High-Technologies Corporation Defect inspection method and apparatus
US7672799B2 (en) 2006-08-30 2010-03-02 Hitachi High-Technologies Corporation Defect inspection apparatus and defect inspection method
US7847927B2 (en) 2007-02-28 2010-12-07 Hitachi High-Technologies Corporation Defect inspection method and defect inspection apparatus
US8274652B2 (en) 2007-04-25 2012-09-25 Hitachi High-Technologies Corporation Defect inspection system and method of the same
US8755041B2 (en) 2006-07-14 2014-06-17 Hitachi High-Technologies Corporation Defect inspection method and apparatus
CN110148569A (en) * 2019-05-16 2019-08-20 武汉新芯集成电路制造有限公司 A kind of defects scanning method and equipment of bonding structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575057A (en) * 1980-06-12 1982-01-11 Canon Inc Document feeder
JPS57113356A (en) * 1980-12-30 1982-07-14 Fujitsu Ltd Article inspection system
JPS60218845A (en) * 1984-04-16 1985-11-01 Hitachi Ltd Apparatus for testing foreign matter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS575057A (en) * 1980-06-12 1982-01-11 Canon Inc Document feeder
JPS57113356A (en) * 1980-12-30 1982-07-14 Fujitsu Ltd Article inspection system
JPS60218845A (en) * 1984-04-16 1985-11-01 Hitachi Ltd Apparatus for testing foreign matter

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404911B2 (en) 1989-07-12 2002-06-11 Hitachi, Ltd. Semiconductor failure analysis system
US6529619B2 (en) 1989-07-12 2003-03-04 Hitachi, Ltd. Inspection data analyzing system
US6330352B1 (en) 1989-07-12 2001-12-11 Hitachi, Ltd. Inspection data analyzing system
US5841893A (en) * 1989-07-12 1998-11-24 Hitachi, Ltd. Inspection data analyzing system
JP2941308B2 (en) * 1989-07-12 1999-08-25 株式会社日立製作所 Inspection system and electronic device manufacturing method
US6185322B1 (en) 1989-07-12 2001-02-06 Hitachi, Ltd. Inspection system and method using separate processors for processing different information regarding a workpiece such as an electronic device
US6339653B1 (en) 1989-07-12 2002-01-15 Hitachi, Ltd. Inspection data analyzing system
US6628817B2 (en) 1989-07-12 2003-09-30 Hitachi, Ltd. Inspection data analyzing system
JPH0344054A (en) * 1989-07-12 1991-02-25 Hitachi Ltd Inspection data analysis system
JPH03202760A (en) * 1989-10-19 1991-09-04 Sumitomo Electric Ind Ltd Total-reflection fluorescent x-ray analyzer
US7098055B2 (en) 1991-04-02 2006-08-29 Hitachi, Ltd. Apparatus and method for testing defects
US6411377B1 (en) 1991-04-02 2002-06-25 Hitachi, Ltd. Optical apparatus for defect and particle size inspection
US7639350B2 (en) 1991-04-02 2009-12-29 Hitachi, Ltd Apparatus and method for testing defects
US7443496B2 (en) 1991-04-02 2008-10-28 Hitachi, Ltd. Apparatus and method for testing defects
US7037735B2 (en) 1991-04-02 2006-05-02 Hitachi, Ltd. Apparatus and method for testing defects
US7692779B2 (en) 1991-04-02 2010-04-06 Hitachi, Ltd. Apparatus and method for testing defects
US7940383B2 (en) 1991-04-02 2011-05-10 Hitachi, Ltd. Method of detecting defects on an object
US6542830B1 (en) 1996-03-19 2003-04-01 Hitachi, Ltd. Process control system
US6757621B2 (en) 1996-03-19 2004-06-29 Hitachi, Ltd. Process management system
WO1997035337A1 (en) * 1996-03-19 1997-09-25 Hitachi, Ltd. Process control system
US6202037B1 (en) * 1998-02-26 2001-03-13 Mitsubishi Denki Kabushiki Kaisha Quality management system and recording medium
US6319733B1 (en) 1999-04-22 2001-11-20 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing semiconductor device, semiconductor equipment and manufacturing system
US7417721B2 (en) 2002-11-27 2008-08-26 Hitachi, Ltd. Defect detector and defect detecting method
US8013989B2 (en) 2002-11-27 2011-09-06 Hitachi High-Technologies Corporation Defects inspecting apparatus and defects inspecting method
US8228495B2 (en) 2002-11-27 2012-07-24 Hitachi High-Technologies Corporation Defects inspecting apparatus and defects inspecting method
US8508727B2 (en) 2002-11-27 2013-08-13 Hitachi High-Technologies Corporation Defects inspecting apparatus and defects inspecting method
US7768634B2 (en) 2002-11-27 2010-08-03 Hitachi High-Technologies Corporation Defects inspecting apparatus and defects inspecting method
US7952700B2 (en) 2004-03-29 2011-05-31 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
US8289507B2 (en) 2004-03-29 2012-10-16 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
US7369223B2 (en) 2004-03-29 2008-05-06 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
US7817261B2 (en) 2004-03-29 2010-10-19 Hitachi High-Technologies Corporation Method of apparatus for detecting particles on a specimen
US7453561B2 (en) 2005-03-11 2008-11-18 Hitachi High-Technologies Corporation Method and apparatus for inspecting foreign particle defects
JP2006250739A (en) * 2005-03-11 2006-09-21 Hitachi High-Technologies Corp Foreign substance defect inspection method and its device
US7724360B2 (en) 2005-03-11 2010-05-25 Hitachi High-Technologies Corporation Method and apparatus for inspecting foreign particle defects
US7751037B2 (en) 2005-06-22 2010-07-06 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
US8462330B2 (en) 2005-06-22 2013-06-11 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
US8107065B2 (en) 2005-06-22 2012-01-31 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
US7528942B2 (en) 2005-06-22 2009-05-05 Hitachi High-Technologies Corporation Method and apparatus for detecting defects
US7859656B2 (en) 2006-03-01 2010-12-28 Hitachi High-Technologies Corporation Defect inspection method and system
US7492452B2 (en) 2006-03-01 2009-02-17 Hitachi High-Technologies Corporation Defect inspection method and system
US7535561B2 (en) 2006-03-14 2009-05-19 Hitachi High-Technologies Corporation Defect inspecting apparatus
US7733475B2 (en) 2006-03-14 2010-06-08 Hitachi High-Technologies Corporation Defect inspecting apparatus
US8134701B2 (en) 2006-03-14 2012-03-13 Hitachi High-Technologies Corporation Defect inspecting method and apparatus
US7664608B2 (en) 2006-07-14 2010-02-16 Hitachi High-Technologies Corporation Defect inspection method and apparatus
US8755041B2 (en) 2006-07-14 2014-06-17 Hitachi High-Technologies Corporation Defect inspection method and apparatus
US7672799B2 (en) 2006-08-30 2010-03-02 Hitachi High-Technologies Corporation Defect inspection apparatus and defect inspection method
US7953567B2 (en) 2006-08-30 2011-05-31 Hitachi High-Technologies Corporation Defect inspection apparatus and defect inspection method
US8228496B2 (en) 2007-02-28 2012-07-24 Hitachi High-Technologies Corporation Defect inspection method and defect inspection apparatus
US7847927B2 (en) 2007-02-28 2010-12-07 Hitachi High-Technologies Corporation Defect inspection method and defect inspection apparatus
US8274652B2 (en) 2007-04-25 2012-09-25 Hitachi High-Technologies Corporation Defect inspection system and method of the same
CN110148569A (en) * 2019-05-16 2019-08-20 武汉新芯集成电路制造有限公司 A kind of defects scanning method and equipment of bonding structure
CN110148569B (en) * 2019-05-16 2021-08-24 武汉新芯集成电路制造有限公司 Defect scanning method and device for bonding structure

Also Published As

Publication number Publication date
JP2609594B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
JPS63135848A (en) Defect inspection instrument
EP2927941B1 (en) X-ray inspection apparatus
US7312446B2 (en) Methods and systems for process monitoring using x-ray emission
JP2010236968A (en) Examining method and examining apparatus
JP2583250B2 (en) Defect inspection method
US7365320B2 (en) Methods and systems for process monitoring using x-ray emission
JPH03156947A (en) Method and apparatus for inspection
JP2982936B2 (en) Particle number measurement device
JPH06252230A (en) Method and apparatus for inspection of defect
JPH0521561A (en) Method and equipment for detecting foreign matter on mirror wafer and method and equipment for analyzing the foreign matter
JP2921910B2 (en) Total reflection X-ray fluorescence analyzer
JPS5981544A (en) Detecting method of internal defect
WO2024100849A1 (en) Aging condition evaluation device and setting method
JPH08148111A (en) Scanning electron microscope having automatic foreign matter search device
JP3627562B2 (en) Evaluation method of trace organic substances on silicon wafer surface
KR20240128560A (en) Device and method for examining materials
JP2002195959A (en) Method for inspecting semiconductor device
JP2000046767A (en) Apparatus for analyzing inclusion in metallic material
JP3191623B2 (en) Semiconductor device production method and its manufacturing equipment
JP2001044253A (en) Inspection of semiconductor device and inspection apparatus
JP2000214112A (en) Inclusion analysis method of sample by electron probe microanalyzer
JPH11274250A (en) Inspecting apparatus
JP2010123934A (en) Methods of processing and displaying data of semiconductor test device, and the semiconductor test device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term