WO2024100849A1 - Aging condition evaluation device and setting method - Google Patents

Aging condition evaluation device and setting method Download PDF

Info

Publication number
WO2024100849A1
WO2024100849A1 PCT/JP2022/041950 JP2022041950W WO2024100849A1 WO 2024100849 A1 WO2024100849 A1 WO 2024100849A1 JP 2022041950 W JP2022041950 W JP 2022041950W WO 2024100849 A1 WO2024100849 A1 WO 2024100849A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
haze
aging
signal
conditions
Prior art date
Application number
PCT/JP2022/041950
Other languages
French (fr)
Japanese (ja)
Inventor
貴則 近藤
美臣 甲斐
健一郎 米田
健次 岡
貴志 堤
真史 佐藤
将志 川畑
俊一 松本
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to PCT/JP2022/041950 priority Critical patent/WO2024100849A1/en
Publication of WO2024100849A1 publication Critical patent/WO2024100849A1/en

Links

Images

Definitions

  • the present invention relates to an aging condition evaluation device and an aging condition setting method for evaluating the aging conditions of process equipment such as plasma etching equipment used in semiconductor manufacturing processes.
  • a case containing, for example, N (multiple) wafers may be set, and the N wafers in the case may be processed as one lot.
  • the wafer is set in a chamber, a specific gas is supplied, and the gas is turned into plasma by discharging, and the wafer is etched with the generated plasma (Patent Document 1, etc.).
  • the chamber in order to perform stable processing, it is desirable for the chamber to be in a specified condition when processing the wafer.
  • the intervals at which wafer lots are supplied to the plasma etching apparatus are not constant but vary, and the temperature of the chamber drops if the waiting time for the arrival of the next lot becomes long.
  • the chamber condition may be ready when the Nth wafer is processed, but the first several wafers, especially the first wafer, will be processed before the chamber condition is ready.
  • condition variations can also be caused by differences in the degree of gas filling in the chamber.
  • this plasma etching apparatus in a process apparatus, there may be a difference in the chamber condition when the first and Nth wafers of a lot are processed. In this case, there will be a difference in the processing quality of the first and Nth wafers, and in severe cases, the first or first several wafers may be defective.
  • a process (referred to as an aging process in this specification) is performed to adjust the chamber conditions as necessary before processing the first wafer of a lot.
  • a "run-in discharge" is performed while a specific gas is supplied to the chamber in an attempt to suppress the difference in plasma light emission state during processing of the first wafer and the Nth wafer.
  • the process conditions applied to the processing of wafers in the process equipment are initially set by the process equipment manufacturer or the user's process department for each process and even for each type of wafer (for each wafer manufacturing stage, reclaimed wafers, new wafers, etc.). For example, they are set by adjusting parameters such as the microwave output, plasma discharge time, and gas flow rate of the plasma etching equipment.
  • the process equipment also sets the conditions for the aging process (hereinafter, aging conditions) that perform the acclimatization discharge during the waiting time mentioned above.
  • the aging conditions must be set for each process condition. Some of the process condition parameters are adjusted and set for the acclimatization discharge.
  • the aging conditions for adjusting the condition of the process equipment to a necessary and sufficient level will differ depending on the waiting time mentioned above, even if the corresponding process conditions are the same. In this way, like the process conditions, the aging conditions are selected and adjusted from a wide range of parameters depending on the process and type of wafer, which requires a great deal of effort and time.
  • the aging conditions are evaluated by, for example, comparing the quality of the first and Nth wafers from the same lot.
  • OCD Optical Critical Dimension
  • the test object is the CD (Critical Dimension)
  • the aging conditions cannot be evaluated using a wafer on which no pattern is formed. For this reason, when preparing wafers for evaluating aging conditions during the research and development stage of semiconductors, for example, it is necessary to manufacture patterned wafers, which is costly.
  • CD values are measured only at a small part of the wafer in the case of CD-SEM using an electron beam, and at only a few dozen measurement points on the wafer surface in the case of OCD, so the processing state of the entire wafer cannot be confirmed uniformly, and there are cases where defects in the aging conditions cannot be detected depending on the selection of inspection points.
  • the object of the present invention is to provide an aging condition evaluation device and setting method that can accurately evaluate the aging conditions applied to a process device in a short period of time.
  • the present invention provides an aging condition evaluation device that evaluates the aging conditions, which are the setting conditions for the aging treatment of a process device, and includes a sample stage that supports a sample that has been treated in the process device, an illumination optical system that irradiates illumination light onto the sample placed on the sample stage, a plurality of detection optical systems that collect light from the sample, convert it into an electrical signal, and output a detection signal, and a signal processing device that processes the detection signals of the plurality of detection optical systems, and the signal processing device scans an initial sample that has been treated early among a lot of samples that have been treated with aging treatment in the process device, extracts a haze signal of the initial sample, and provides an aging condition evaluation device that judges whether the aging conditions are appropriate based on the difference when the haze signal of the initial sample is compared with a reference haze signal.
  • the present invention makes it possible to evaluate the aging conditions applied to process equipment with high accuracy in a short period of time.
  • FIG. 1 is a schematic diagram of a configuration example of an aging condition evaluation device according to a first embodiment of the present invention
  • Schematic diagram showing the sample scanning trajectory Schematic diagram showing the sample scanning trajectory
  • Schematic diagram showing the attenuator A schematic diagram showing the positional relationship between the optical axis of illumination light guided obliquely to the surface of a sample and the illumination intensity distribution shape.
  • FIG. 1 is a functional block diagram of a main part of a signal processing device provided in an aging condition evaluation device according to a first embodiment of the present invention;
  • 1 is a schematic flowchart showing an example of a flow of evaluating aging conditions of a process device.
  • FIG. 1 is a flowchart showing the procedure of an aging condition evaluation process performed by an aging condition evaluation device according to a first embodiment of the present invention.
  • Conceptual diagram of machine learning according to a second embodiment of the present invention FIG. 13 is a schematic diagram showing a main part of an aging condition evaluation device according to a third embodiment of the present invention;
  • FIG. 13 is a schematic diagram for explaining the main functions of an aging condition evaluation device according to a fourth embodiment of the present invention;
  • the aging condition evaluation device (hereinafter, appropriately abbreviated as evaluation device) described in each of the following embodiments scans a sample, here a wafer (bare wafer, film-coated wafer, patterned wafer, etc.) during the semiconductor manufacturing process, and evaluates the aging condition from the wafer state.
  • a sample here a wafer (bare wafer, film-coated wafer, patterned wafer, etc.) during the semiconductor manufacturing process, and evaluates the aging condition from the wafer state.
  • an optical defect inspection device that inspects defects on a sample is used.
  • the optical defect inspection device outputs the number, coordinates, type, etc. of defects attached to or formed on the wafer as a signal based on reflected light or scattered light obtained by scanning the sample.
  • the optical defect inspection device has a very fast scan speed compared to diagnostic devices that use electron beams, X-rays, etc. as a light source. Therefore, while diagnostic devices that use electron beams, X-rays, etc. as an energy source can only measure a very small number of points on the sample due to time constraints, the optical defect inspection device, especially the dark-field inspection device that uses scattered light, can scan the entire surface of the sample and evaluate the aging condition from the state of the entire surface of the sample.
  • the light-based signal obtained by scanning the sample with this optical defect inspection device includes not only defect signals used for defect detection, but also a signal called a haze signal.
  • a defect signal corresponds to a high frequency component among signals based on light obtained from a sample.
  • a haze signal corresponds to a low frequency component.
  • a signal caused by relatively large irregularities attached to the sample, such as foreign matter is likely to be detected as a high frequency component
  • a signal caused by the characteristics of the wafer itself such as the thickness of a film on the sample or extremely small irregularities (roughness) on the sample surface, is likely to be detected as a low frequency component.
  • the evaluation device in each embodiment has a unique function of evaluating the conditions of the aging treatment (aging conditions) applied to the process equipment that processed the inspected sample, based on a haze signal obtained by scanning the entire surface of a sample that was processed in the process equipment along with an aging treatment.
  • the evaluation device utilizes a haze signal that is not generally used (removed) in sample defect inspection, and evaluates the aging conditions of the process equipment that processed the sample based on the haze signal obtained for the sample.
  • a haze signal is acquired for one lot (N sheets) of samples processed in a process device with aging treatment.
  • “With aging treatment” means that the lot was processed immediately after the aging treatment without processing another lot after the aging treatment.
  • N is a natural number of 2 or more, for example, about 25.
  • the chamber conditions in the process device were different between the first and Nth samples.
  • the first sample may be processed before the conditions of the process device (chamber temperature, gas saturation, etc.) are ready.
  • the chamber does not reach the desired condition when the first sample is processed, but the chamber reaches the desired condition as the second and third samples are processed. However, while most of the samples in the lot are processed well, the first one or two samples may not be processed sufficiently. If the processing state falls below the allowable level, the sample is deemed defective.
  • Such differences in the chamber conditions in the process equipment will affect the quality of the sample after processing, for example, if the sample is processed in a plasma etching equipment, the differences will be significant and will appear in the CD value, surface roughness, and surface film thickness of the sample.
  • the second, third, or fifth wafer depends on the aging conditions that have been set. Therefore, the first one or several wafers in a lot that are processed in a chamber that has not reached the desired condition due to inappropriate aging conditions are called "initial wafers," and it should be noted that this is not limited to just the first or second wafers.
  • FIG. 1 is a schematic diagram of an example of the configuration of an aging condition evaluation device according to a first embodiment of the present invention.
  • An XYZ orthogonal coordinate system with the Z axis extending vertically is defined as shown in Fig. 1.
  • the evaluation device 100 inspects a sample W and detects defects such as adhesion of foreign matter and abnormal film formation on the surface of the sample W.
  • the evaluation device 100 is a rotary scanning type device that scans the sample W by rotating it in a circumferential direction ( ⁇ direction) and moving it in a radial direction (r direction).
  • the stage ST is an apparatus including a sample stage ST1 and a scanning device ST2.
  • the sample stage ST1 is a stage that supports a sample W that has been processed in a process device such as a plasma etching device.
  • the scanning device ST2 is an apparatus that drives the sample stage ST1 to change the relative position between the sample W and the illumination optical system A, and is configured to include a translation stage, a rotation stage, and a Z stage, although detailed illustration is omitted.
  • a rotation stage is mounted on the translation stage via the Z stage, and the sample stage ST1 is supported on the rotation stage.
  • the translation stage translates in the horizontal direction together with the rotation stage.
  • the rotation stage rotates (spins) around a rotation axis that extends vertically.
  • the Z stage serves to adjust the height of the surface of the sample W.
  • FIG. 2 is a schematic diagram showing the scanning trajectory of the sample W by the scanning device ST2.
  • the beam spot BS which is the incident area of the illumination light emitted from the illumination optical system A on the surface of the sample W, is a minute point with a long illumination intensity distribution in one direction as shown in the figure.
  • the long axis direction of the beam spot BS is s2, and the direction intersecting the long axis (for example, the short axis direction perpendicular to the long axis) is s1.
  • the sample W rotates with the rotation of the rotating stage, and the beam spot BS is scanned in the s1 direction relative to the surface of the sample W, and the sample W moves in the horizontal direction with the translation stage translation, and the beam spot BS is scanned in the s2 direction relative to the surface of the sample W.
  • the beam spot BS moves in the s2 direction by a distance equal to or less than the length of the beam spot BS in the s2 direction during one rotation of the sample W.
  • the stage ST may be configured to have another translation stage, whose axis of movement extends in a direction intersecting the axis of movement of the translation stage in a horizontal plane, in place of (or in addition to) the rotation stage.
  • the beam spot BS scans the surface of the sample W by folding over a linear trajectory instead of a spiral trajectory.
  • the first translation stage is driven in translation at a constant speed in the s1 direction
  • the second translation stage is driven in the s2 direction by a predetermined distance (for example, a distance equal to or less than the length of the beam spot BS in the s2 direction)
  • the first translation stage is turned back in the s1 direction and driven in translation again.
  • the rotation scanning method of FIG. 2 does not involve a reciprocating motion that is repeatedly accelerated and decelerated, so the inspection time of the sample W can be shortened.
  • the illumination optical system A shown in Fig. 1 includes a group of optical elements for irradiating a desired illumination light onto a sample W placed on a sample stage ST1.
  • the illumination optical system A includes a laser light source A1, an attenuator A2, an emitted light adjustment unit A3, a beam expander A4, a polarization control unit A5, a focusing optical unit A6, reflection mirrors A7-A9, etc.
  • the laser light source A1 is a unit that emits a laser beam as illumination light.
  • the laser light source A1 is a unit that emits a high-output laser beam of 2 W or more in ultraviolet or vacuum ultraviolet with a short wavelength (wavelength of 355 nm or less) that does not easily penetrate into the inside of the sample W.
  • the laser light source A1 is a unit that emits a visible or infrared laser beam with a long wavelength that easily penetrates into the inside of the sample W.
  • FIG. 4 is a schematic diagram showing the attenuator A2.
  • the attenuator A2 is a unit that attenuates the light intensity of the illumination light from the laser light source A1.
  • the attenuator A2 is a combination of a first polarizing plate A2a, a half-wave plate A2b, and a second polarizing plate A2c.
  • the half-wave plate A2b is configured to be rotatable around the optical axis of the illumination light.
  • the illumination light incident on the attenuator A2 is converted into linearly polarized light by the first polarizing plate A2a, and then the polarization direction is adjusted to the slow axis azimuth angle of the half-wave plate A2b and passes through the second polarizing plate A2c.
  • the light intensity of the illumination light is attenuated at an arbitrary ratio by adjusting the azimuth angle of the half-wave plate A2b. If the degree of linear polarization of the illumination light incident on the attenuator A2 is sufficiently high, the first polarizing plate A2a can be omitted.
  • an attenuator in which the relationship between the incident illumination light and the light attenuation rate is calibrated in advance is used.
  • the attenuator A2 is not limited to the configuration illustrated in FIG. 4, but can also be configured using an ND filter having a gradation density distribution, and can be configured such that the attenuation effect can be adjusted by combining multiple ND filters having different densities.
  • the emitted light adjustment unit A3 shown in FIG. 1 is a unit that adjusts the angle of the optical axis of the illumination light attenuated by the attenuator A2, and in this embodiment, it is configured to include multiple reflecting mirrors A3a and A3b.
  • the reflecting mirrors A3a and A3b are configured to sequentially reflect the illumination light, but in this embodiment, the incident and exit surfaces of the illumination light to the reflecting mirror A3a are configured to be perpendicular to the incident and exit surfaces of the illumination light to the reflecting mirror A3b.
  • the incident and exit surfaces are surfaces that include the optical axis of the light incident on the reflecting mirror and the optical axis of the light emitted from the reflecting mirror.
  • the illumination light changes its traveling direction to the +Y direction by the reflecting mirror A3a and then to the +Z direction by the reflecting mirror A3b.
  • the incident and exit surfaces of the illumination light to the reflecting mirror A3a are the XY plane
  • the incident and exit surfaces to the reflecting mirror A3b are the YZ plane.
  • the reflecting mirrors A3a and A3b are provided with a mechanism (not shown) for translating the reflecting mirrors A3a and A3b and a mechanism (not shown) for tilting the reflecting mirrors A3a and A3b.
  • the reflecting mirrors A3a and A3b move, for example, in parallel in the incident or outgoing direction of the illumination light with respect to themselves, and tilt around the normal to the incident and outgoing surfaces. This allows the offset amount and angle in the XZ plane and the offset amount and angle in the YZ plane to be independently adjusted for the optical axis of the illumination light emitted in the +Z direction from the outgoing light adjustment unit A3.
  • a configuration using two reflecting mirrors A3a and A3b is illustrated, but a configuration using three or more reflecting mirrors may be used.
  • the beam expander A4 is a unit that expands the diameter of the luminous flux of the incident illumination light, and has a plurality of lenses A4a and A4b.
  • An example of the beam expander A4 is a Galilean type that uses a concave lens as the lens A4a and a convex lens as the lens A4b.
  • the beam expander A4 is provided with a mechanism for adjusting the distance between the lenses A4a and A4b (zoom mechanism), and the expansion rate of the luminous flux diameter changes by adjusting the distance between the lenses A4a and A4b.
  • the illumination light incident on the beam expander A4 is not a parallel luminous flux
  • collimation quadsi-parallelization of the luminous flux
  • the collimation of the luminous flux may be performed by a collimating lens installed upstream of the beam expander A4 separately from the beam expander A4.
  • Beam expander A4 is installed on a translation stage with two or more axes (two degrees of freedom) and is configured so that its position can be adjusted so that its center coincides with the incident illumination light. Beam expander A4 also has a swing angle adjustment function with two or more axes (two degrees of freedom) so that the incident illumination light coincides with the optical axis.
  • the state of the illumination light entering the beam expander A4 is measured by a beam monitor midway along the optical path of the illumination optical system A.
  • the polarization control unit A5 is an optical system that controls the polarization state of the illumination light, and is configured to include a half-wave plate A5a and a quarter-wave plate A5b.
  • a reflecting mirror A7 described later is inserted in the optical path to illuminate the sample W obliquely, the amount of scattered light from the surface of the sample W can be increased compared to polarized light other than P-polarized light by making the illumination light P-polarized by the polarization control unit A5.
  • the amount of scattered light from the sample surface can be increased more than P-polarized light by using S-polarized light depending on the material and thickness of the film.
  • the polarization control unit A5 By selecting the polarization according to the sample W, it is possible to switch between conditions under which haze light is likely to occur and conditions under which it is difficult to occur, thereby improving the sensitivity of defect inspection and improving the sensitivity of haze light to sample characteristics. For example, when the state of the sample W is evaluated using the output of haze light, it is advantageous to use S-polarized illumination light. It is also possible to use the polarization control unit A5 to make the illumination light circularly polarized or 45-degree polarized light intermediate between P-polarized light and S-polarized light.
  • the reflecting mirror A7 is moved in parallel in the direction of the arrow by a driving mechanism (not shown) and enters and exits the optical path of the illumination light toward the sample W. This switches the incidence path of the illumination light to the sample W.
  • the illumination light emitted from the polarization control unit A5 as described above is reflected by the reflecting mirror A7 and enters the sample W obliquely via the focusing optical unit A6 and the reflecting mirror A8.
  • the illumination light is made to enter the sample W from a direction oblique to the normal to the surface of the sample W in this way, which is referred to as "oblique incidence illumination".
  • the illumination light emitted from the polarization control unit A5 is made to enter the sample W perpendicularly via the reflecting mirror A9, the polarizing beam splitter B'3, the polarization control unit B'2, the reflecting mirror B'1, and the detection optical system B3.
  • the illumination light is made to enter the sample W perpendicularly to the surface of the sample W in this way, which is referred to as "vertical illumination".
  • FIGS. 5 and 6 are schematic diagrams showing the positional relationship between the optical axis of the illumination light guided obliquely to the surface of the sample W by the illumination optical system A and the illumination intensity distribution shape.
  • FIG. 5 shows a schematic cross-section of the sample W cut at the plane of incidence of the illumination light incident on the sample W.
  • FIG. 6 shows a schematic cross-section of the sample W cut at a plane that is perpendicular to the plane of incidence of the illumination light incident on the sample W and includes the normal to the surface of the sample W.
  • the plane of incidence is a plane that includes the optical axis OA of the illumination light incident on the sample W and the normal to the surface of the sample W. Note that FIGS. 5 and 6 show only a portion of the illumination optical system A, and for example, the exit light adjustment unit A3 and the reflecting mirrors A7 and A8 are not shown.
  • the illumination optical system A is configured to make the illumination light obliquely incident on the surface of the sample W.
  • This oblique incidence illumination has its light intensity adjusted by the attenuator A2, its light beam diameter adjusted by the beam expander A4, and its polarization adjusted by the polarization control unit A5, so that the illumination intensity distribution is uniform within the incident surface.
  • the illumination intensity distribution (illumination profile) LD1 shown in Figure 5 the beam spot formed on the sample W has a Gaussian light intensity distribution in the s2 direction.
  • the beam spot has a light intensity distribution with weak intensity at the periphery relative to the center of the optical axis OA, as shown in the illumination intensity distribution (illumination profile) LD2 in Figure 6.
  • This light intensity distribution is, for example, a Gaussian distribution that reflects the intensity distribution of the light incident on the focusing optical unit A6, or an intensity distribution similar to a first-order Bessel function of the first kind or a sinc function that reflects the aperture shape of the focusing optical unit A6.
  • the angle of incidence of the oblique incidence illumination on the sample W (the tilt angle of the incident optical axis with respect to the normal to the sample surface) is adjusted to an angle suitable for detecting minute defects by adjusting the positions and angles of the reflecting mirrors A7 and A8.
  • the angle of the reflecting mirror A8 is adjusted by an adjustment mechanism A8a. For example, the greater the angle of incidence of the illumination light on the sample W (the smaller the illumination elevation angle between the sample surface and the incident optical axis), the weaker the haze light that becomes noise in relation to the scattered light from minute defects on the sample surface.
  • the detection optical system Bn when the detection optical system Bn is described without special notice, it means any detection optical system among the detection optical systems B1-B13. The same applies to the sensors Cn and Cn'.
  • the number of detection optical systems Bn is not limited to 13 and can be increased or decreased as appropriate.
  • the layout of the aperture (objective lens) of the detection optical system Bn can also be changed as appropriate.
  • Fig. 7 is a diagram showing the area where the detection optical system Bn collects scattered light as viewed from above, which corresponds to the arrangement of each objective lens of the detection optical system Bn.
  • Fig. 8 is a diagram showing the zenith angles of the low-angle and high-angle optical systems of the detection optical system Bn
  • Fig. 9 is a plan view showing the azimuth angle of the low-angle detection optical system
  • Fig. 10 is a plan view showing the azimuth angle of the high-angle detection optical system.
  • the incident direction of the oblique incidence illumination on the sample W is used as a reference, and the traveling direction of the incident light with respect to the beam spot BS on the surface of the sample W when viewed from above (to the right in Figure 7) is referred to as the front, and the opposite direction (to the left in the same figure) is referred to as the rear.
  • the lower side in the figure with respect to the beam spot BS is the right side, and the upper side is the left side.
  • the angle ⁇ 2 ( Figure 8) that the incident optical axis (center line of the aperture) of each detection optical system Bn makes with the normal N (Figure 8) of the sample W that passes through the beam spot BS is described as the zenith angle.
  • the angle ⁇ 1 ( Figures 9 and 10) that the incident optical axis (center line of the aperture) of each detection optical system Bn makes with the incident plane of the oblique incidence illumination in a planar view is described as the azimuth angle.
  • the detection optical systems Bn are arranged so that their directions (azimuth angle ⁇ 1 and zenith angle ⁇ 2) relative to the beam spot BS are different.
  • the objective lenses (apertures ⁇ 1- ⁇ 6, ⁇ 1- ⁇ 6, ⁇ ) of the detection optical system Bn are arranged along the upper hemispherical surface of a sphere (celestial sphere) centered on the beam spot BS on the sample W.
  • the light incident on the apertures ⁇ 1- ⁇ 6, ⁇ 1- ⁇ 6, ⁇ is focused by the corresponding detection optical system Bn.
  • Aperture ⁇ overlaps the zenith (intersects with normal N) and is located directly above the beam spot BS formed on the surface of sample W.
  • the openings ⁇ 1- ⁇ 6 are opened at a low angle so as to equally divide an annular area surrounding 360 degrees around the beam spot BS.
  • the openings ⁇ 1- ⁇ 6 are arranged in the order of openings ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 in a counterclockwise direction from the incident direction of the oblique incidence illumination in a plan view.
  • the openings ⁇ 1- ⁇ 6 are also laid out to avoid the incident light path of the oblique incidence illumination and the regular reflection light path.
  • the openings ⁇ 1- ⁇ 3 are arranged on the right side of the beam spot BS, the opening ⁇ 1 is located to the right rear of the beam spot BS, the opening ⁇ 2 is located to the right, and the opening ⁇ 3 is located to the right front.
  • the openings ⁇ 4- ⁇ 6 are arranged on the left side of the beam spot BS, the opening ⁇ 4 is located to the left front of the beam spot BS, the opening ⁇ 5 is located to the left, and the opening ⁇ 6 is located to the left rear.
  • the arrangement of the openings ⁇ 4, ⁇ 5, ⁇ 6 is symmetrical to the openings ⁇ 3, ⁇ 2, ⁇ 1 with respect to the incident plane of the oblique incidence illumination.
  • Apertures ⁇ 1- ⁇ 6 are opened so as to equally divide an annular area surrounding 360 degrees around beam spot BS at high angles (between apertures ⁇ 1- ⁇ 6 and aperture ⁇ ). Apertures ⁇ 1- ⁇ 6 are arranged in the order of apertures ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, ⁇ 5, ⁇ 6 in a counterclockwise direction from the incidence direction of oblique incidence illumination in a plan view. Of apertures ⁇ 1- ⁇ 6, apertures ⁇ 1 and ⁇ 4 are laid out at a position that intersects with the incidence plane, aperture ⁇ 1 is located rearward relative to beam spot BS, and aperture ⁇ 4 is located forward.
  • Apertures ⁇ 2 and ⁇ 3 are arranged on the right side of beam spot BS, aperture ⁇ 2 is located to the rear right of beam spot BS, and aperture ⁇ 3 is located to the front right.
  • Apertures ⁇ 5 and ⁇ 6 are arranged on the left side of beam spot BS, aperture ⁇ 5 is located to the front left of beam spot BS, and aperture ⁇ 6 is located to the rear left.
  • the scattered light from the beam spot BS in various directions enters the apertures ⁇ 1- ⁇ 6, ⁇ 1- ⁇ 6, and ⁇ , and is collected by the detection optical system Bn and guided to the corresponding sensors Cn and Cn'.
  • FIG. 11 is a schematic diagram showing an example of the configuration of the detection optical system.
  • each detection optical system Bn (or a part of the detection optical system) is configured as shown in FIG. 11, and the polarization direction of the scattered light that is transmitted can be controlled by the polarizing plate Bb.
  • the detection optical system Bn includes an objective lens (collecting lens) Ba, a polarizing plate Bb, a polarizing beam splitter Bc, imaging lenses (tube lenses) Bd, Bd', field stops Be, Be', and sensors Cn, Cn'.
  • the scattered light incident on the detection optical system Bn from the sample W is collected and collimated by the objective lens Ba, and its polarization direction is controlled by the polarizing plate Bb.
  • the polarizing plate Bb is a half-wave plate that can be rotated by a driving mechanism (not shown).
  • the driving mechanism is controlled by the control device E1, and the polarization direction of the scattered light incident on the sensor is controlled by adjusting the rotation angle of the polarizing plate Bb.
  • the scattered light whose polarization has been controlled by the polarizing plate Bb, has its optical path split by the polarizing beam splitter Bc according to the polarization direction and enters the imaging lenses Bd and Bd'.
  • the combination of the polarizing plate Bb and the polarizing beam splitter Bc cuts linearly polarized light components in any direction.
  • the polarizing plate Bb is composed of a quarter-wave plate and a half-wave plate that can be rotated independently of each other.
  • the scattered illumination light that passes through the imaging lens Bd and is collected is photoelectrically converted by the sensor Cn via the field diaphragm Be, and the detection signal is input to the signal processing device D.
  • the scattered illumination light that passes through the imaging lens Bd' and is collected is photoelectrically converted by the sensor Cn' via the field diaphragm Be', and the detection signal is input to the signal processing device D.
  • the field diaphragms Be, Be' are installed so that their centers are aligned with the optical axis of the detection optical system Bn, and cut out light generated from positions other than the position to be inspected, such as light generated from positions away from the center of the beam spot BS of the sample W and stray light generated inside the detection optical system Bn. This has the effect of suppressing noise that interferes with defect detection.
  • the above configuration makes it possible to simultaneously detect two mutually orthogonal polarized components of scattered light generated at the same coordinates, which is effective when detecting multiple types of defects or haze light with different polarization characteristics.
  • the outer periphery of the objective lens Ba may be cut out so as not to interfere with the sample W or other objective lenses, as in the example of Figure 11.
  • the sensors Cn and Cn' convert the scattered light collected by the corresponding detection optical system into an electric signal and output the detection signal.
  • the sensors C1 (C1'), C2 (C2'), C3 (C3') ... correspond to the detection optical systems B1, B2, B3 ....
  • single-pixel point sensors such as photomultiplier tubes and SiPM (silicon photomultiplier tubes) that photoelectrically convert weak signals with high gain can be used.
  • sensors in which multiple pixels are arranged one-dimensionally or two-dimensionally such as CCD sensors, CMOS sensors, and PSDs (position sensing detectors), may be used for the sensors Cn and Cn'.
  • the detection signals output from the sensors Cn and Cn' are input to the signal processing device D as needed.
  • the control device E1 is a computer that controls the evaluation device 100, and includes a processing device (arithmetic control device) such as a CPU, a GPU, and an FPGA in addition to a ROM, a RAM, and other storage devices.
  • the control device E1 is connected to the input device E2, the monitor E3, and the signal processing device D by wire or wirelessly.
  • the input device E2 is a device through which a user inputs settings of inspection conditions, etc. to the control device E1, and various input devices such as a keyboard, a mouse, and a touch panel can be appropriately adopted.
  • the control device E1 receives the output of the encoder of the rotation stage and the translation stage (r ⁇ coordinates of the beam spot BS on the sample), and the inspection conditions input by the operator via the input device E2.
  • the inspection conditions include the type, size, shape, material, illumination conditions, detection conditions, etc. of the sample W, as well as, for example, the sensitivity settings of each sensor Cn, Cn', and gain values and threshold values used for defect judgment and aging condition evaluation (evaluation of the aging conditions of the process device).
  • the control device E1 also outputs command signals to command the operation of the stage ST, illumination optical system A, etc. according to the inspection conditions, and outputs coordinate data of the beam spot BS synchronized with the defect detection signal to the signal processing device D.
  • the control device E1 also displays and outputs an inspection condition setting screen and sample inspection data (inspection image, etc.) on the monitor E3.
  • the inspection data can also display the individual inspection results from these sensors Cn, Cn'.
  • control device E1 may be connected to a Review SEM (Review Scanning Electron Microscope), which is an electron microscope used for defect inspection.
  • Review SEM Review Scanning Electron Microscope
  • the control device E1 can receive data on the defect inspection results from the Review SEM and transmit it to the signal processing device D.
  • the control device E1 can be configured as a single computer that forms a unit with the main body of the evaluation device 100 (stage, illumination optical system, detection optical system, sensor, etc.), but it can also be configured as multiple computers connected via a network.
  • the inspection conditions can be input to a computer connected via a network, and a computer attached to the main body of the device can be configured to control the main body of the device and the signal processing device D.
  • the signal processing device D is a computer having a function of processing detection signals input from the sensors Cn, Cn' of the detection optical system Bn to detect defects in the sample W.
  • the signal processing device D is configured to include a memory D1 (FIG. 12) including at least one of RAM, ROM, HDD, SSD, and other storage devices, as well as a processing device such as a CPU, GPU, or FPGA, just like the control device E1.
  • This signal processing device D can be configured as a single computer that forms a unit with the main body of the evaluation device 100 (stage, illumination optical system, detection optical system, sensor, etc.), but can also be configured as multiple computers connected by a network.
  • a configuration can be adopted in which a computer attached to the main body of the device acquires defect detection signals from the main body of the device, processes the detection data as necessary and transmits it to a server, and the server executes processes such as defect detection and classification.
  • a configuration in which the signal processing device D and the control device E1 are both performed by a single computer is also conceivable.
  • FIG. 12 is an example of a functional block diagram of the main parts of a signal processing device D provided in an aging condition evaluation device according to a first embodiment of the present invention.
  • the signal processing device D is provided with a memory D1, a defect determination circuit D2, a low-pass filter circuit D3, and an aging condition evaluation circuit D4.
  • the signal processing device D receives detection signals (scattered light intensity signals) from the sensors Cn and Cn', and the encoder output of the stage ST (r ⁇ coordinate of the beam spot BS on the sample) from the control device E1. In the signal processing device D, these detection signals and encoder outputs are associated with each other and recorded in the memory D1.
  • the defect judgment circuit D2 reads out the detection signals input from the sensors Cn, Cn' from the memory D1 in chronological order, sequentially judges whether these detection signals are defect signals indicating detected defects, records the judgment results in the memory D1 or the storage device DB, and also outputs them to the control device E1.
  • the defect judgment circuit D2 for example, high-frequency components of the detection signals are extracted as defect signals relating to defects such as foreign matter. High-frequency components are components with high fluctuating frequencies, specifically components whose time fluctuations exceed a preset value.
  • the control device E1 displays and outputs the judgment results on the monitor E3 automatically, or in response to operation signals from the input device E2 input in conjunction with the operation of the operator.
  • the low-pass filter circuit D3 reads out the detection signals from the sensors Cn and Cn' from the memory D1 in chronological order, extracts the haze signals excluding the defect signals for each region of the sample W, and creates a haze map, which is the light intensity distribution of the entire surface, by adding coordinate information to the haze signals on the surface of the sample W.
  • the haze signal refers to the low-frequency components of the light signals obtained from the sample, and is a signal that is mainly caused by the characteristics of the sample.
  • the low-frequency components of the detection signal that is, components whose fluctuation frequency (time fluctuation of the signal intensity) is lower than a preset value, are extracted as the haze signal.
  • the optical defect inspection device is capable of high-speed scanning, it is possible to extract the haze signal for the entire surface of the sample, or a haze map based on it.
  • the region from which the haze signal is extracted may be a sampling point, or the haze signal may be extracted by dividing the region into regions partitioned by a mesh of any mesh size.
  • haze signals When extracting haze signals by dividing into regions defined by a mesh like mesh, multiple haze signals are obtained for each region.
  • the statistical values (average, median, etc.) of these multiple haze signals can be used as the haze signal for that region.
  • One side of the mesh that divides the region can be set to, for example, about 1 mm to several mm. Although it depends on the size of the mesh, for example, with a 1 mm mesh, the sample surface is divided into more than 60,000 regions, and a detailed haze map is generated. Therefore, the haze map contains the intensity data of the haze light for each region of the sample W.
  • the smaller the mesh size the better, and by setting the mesh to a large size within a necessary and sufficient range, the calculation load on the signal processing device D can be reduced according to the reduction in the number of regions on the sample surface.
  • the aging condition evaluation circuit D4 evaluates the aging conditions of the process equipment that processed the sample W based on the haze signal extracted by the low-pass filter circuit D3.
  • the aging conditions are evaluated by comparing the haze signal of the entire surface or each region of at least the first sample W processed in one lot of samples with aging processing in the process equipment with the reference haze signal of the corresponding region.
  • the comparison may be made in the form of a haze map.
  • the signal processing device D detects the change in the condition of the chamber of the process equipment, which appears as the microscopic surface shape of the first sample W, based on the difference between the haze signal and the reference haze signal.
  • the haze signal for the entire surface or each divided region of the first sample W is compared with the reference haze signal for the corresponding region, and if the difference between the haze signal and the reference haze signal exceeds a preset value, or if the number of regions exceeds an allowable value, a defect in the aging conditions is presumed.
  • An algorithm can also be employed that generates a difference image between a haze map related to the haze signal obtained from sample W and a haze map related to the reference haze signal, and makes a similar judgment based on the difference (brightness difference) between the haze signal and the reference haze signal.
  • the aging condition evaluation circuit D4 displays and outputs information on the monitor E3 regarding the evaluation results of the aging conditions applied to the process equipment. For example, the evaluation results of the aging conditions are recorded in the memory D1 or the storage device DB, and are also output to the control device E1.
  • the control device E1 displays and outputs the evaluation results on the monitor E3 automatically or in response to an operation signal from the input device E2 input in conjunction with the operation of the operator.
  • the aging conditions by sequentially processing the detection signals input from the sensors Cn, Cn' in association with the defect inspection of the sample W by the signal processing device D.
  • the system it is also possible to configure the system so that the detection signals acquired by scanning the entire surface of the sample W are temporarily stored in the storage device DB, and the stored data is post-processed at a desired timing (for example, at a fixed time every day) to evaluate the aging conditions.
  • the aging condition evaluation circuit D4 has a function of setting and presenting appropriate aging conditions for any process equipment. This function is useful when determining new appropriate aging conditions, for example, when designing a new semiconductor wafer manufacturing line, when introducing a new process equipment into an existing manufacturing line, when manufacturing new semiconductors on an existing manufacturing line, etc.
  • the aging condition evaluation circuit D4 evaluates and compares multiple aging conditions. Specifically, when determining new aging conditions, the aging condition evaluation circuit D4 compares the haze signal of the first sample W of each of multiple lots processed with aging treatments with different conditions in the process equipment with the reference haze signal. The aging conditions applied to each of these multiple lots become candidates for the appropriate aging conditions to be finally set.
  • the candidates for appropriate aging conditions are, for example, multiple aging conditions that add variation conditions set by appropriately adjusting each parameter of the basic conditions to the basic conditions that have been identified as appropriate. Then, the aging condition evaluation circuit D4 sets the aging conditions applied to the lot to which the sample W belongs, for which the difference between the haze signal and the reference haze signal is within the tolerance and is smallest, as the appropriate aging conditions, and displays and outputs the same on, for example, the monitor E3.
  • the reference haze signal used to evaluate the aging condition is defined for each of the sensors Cn and Cn' for the entire surface of the sample W or for each predetermined region (r ⁇ coordinate in this embodiment) and is stored in, for example, a storage device DB. That is, a reference haze map is prepared for each of the sensors C and C'.
  • the reference haze signal defined for the same sensor may be different for each region of the sample W.
  • the reference haze signal may be an actual measurement value obtained by scanning the last sample W (the Nth sample W) of a lot of samples W aged under the aging conditions to be evaluated.
  • the reference haze signal may be not only the last sample W processed, but also a value obtained by measuring an arbitrary sample W in the latter half of the lot when the conditions of the process equipment are stable, or a statistical value (average value, median value, etc.) of the actual measurement values of multiple samples W processed in the latter half (including the last).
  • the reference haze signal may be, for example, obtained by scanning a reference sample.
  • the reference sample is a sample that meets the standards in quality inspection, and is preferably a sample of the same type as the sample W and in the same process as the sample W.
  • the reference haze signal may be set by daily calculating statistical data (for example, average value, median value) of the haze signal obtained by the evaluation device 100 in the semiconductor manufacturing process for samples (products or semi-finished products) that are judged to be non-defective, rather than measuring the reference sample.
  • the reference haze signal may also be set by simulating the haze signal that can be obtained for each detection optical system Bn based on the design data of the sample W. In other words, actual values or theoretical values can be used as the reference haze signal.
  • the haze map of the sample W (including the measured reference haze signal) can be created from the haze signal obtained by scanning the sample W during defect inspection in the evaluation device 100.
  • defect inspection generally applies inspection conditions that make it difficult for haze light to occur, it is conceivable that the haze light of the intensity required for evaluating the aging conditions may not be sufficiently detected.
  • a haze map may be obtained by scanning the sample W under conditions that make it easy for haze light to occur, particularly for the sample W used to evaluate the aging conditions, for example the first and Nth samples W, separately from the defect inspection.
  • the storage device DB prestores a correlation between the detection optical system Bn (in other words, the emission direction of the haze light) and a fluctuation factor of the haze signal.
  • each step has different materials (such as the film quality of the sample and the type of gas used in the chamber) and processing conditions.
  • the surface roughness of the sample W after etching is likely to change, while in other steps the surface film thickness is likely to change.
  • a characteristic tendency may be likely to emerge in accordance with the direction of gas flow in the chamber of the process device.
  • the "parameters that are likely to vary" differ for each step. Therefore, it is desirable for the evaluation device 100 to evaluate the aging conditions using the signal from a detector that is likely to detect changes in the parameters that are likely to vary.
  • the process-dependent variation factors and the detection optical system that is highly sensitive to the variation factors are associated and stored as correlation data in the storage device DB.
  • a specific detection optical system Bn is selected by the signal processing device D based on this correlation data, and the haze signal of the selected detection optical system Bn for the first sample W of a lot that involves aging processing is monitored, thereby accurately evaluating the aging conditions of the process device.
  • the above correlation data is merely one example of the correlation between the fluctuation factors of the haze signal and the detection optical system Bn.
  • the correlation data can be set based on that knowledge.
  • the change in the condition of the process device may appear not only in the haze signal detected individually by the detection optical system Bn, but also in the difference or sum of the haze signals detected by multiple detection optical systems Bn.
  • the correlation data based on the correlation is defined, and the difference or sum of the haze signals detected by multiple detection optical systems Bn can be compared as one form of haze signal with the difference or sum of the reference haze signals related to the same set of detection optical systems Bn, and used to evaluate the aging conditions.
  • the signal processing device D When evaluating the aging conditions, the signal processing device D reads the correlation data from the storage device DB and automatically selects the detection optical system that correlates with the evaluation of the aging conditions of the process device. However, the signal processing device D can also select the detection optical system according to the specification made by the operator via the input device E2. Then, the signal processing device D evaluates the aging conditions of the process device based on the haze signal output from the selected detection optical system. For example, following the example described above, the signal processing device D selects the detection optical system Bn corresponding to the openings ⁇ 3, ⁇ 4, ⁇ 1, and ⁇ 6 located in the regular reflection direction of the illumination light with respect to the beam spot BS.
  • the detection optical system Bn is equipped with a polarizing beam splitter Bc that splits the light according to the polarization direction, and multiple sensors Cn, Cn' that detect the light with different polarization directions split by the polarizing beam splitter Bc (FIG. 11). Therefore, in this embodiment, in each detection optical system Bn, two haze signals with different polarization directions can be obtained for the same coordinates on the sample.
  • the polarization direction of the haze light can be added as a parameter of the correlation data between the above-mentioned fluctuation factor of the haze signal and the detection optical system Bn, and a more precise relationship between the haze signal and its fluctuation factor can be specified and stored in the storage device DB.
  • the parameters of the correlation data are increased, and the change in the condition of the process device can be detected more precisely from the haze signal.
  • the aging conditions can be precisely evaluated by accurately detecting the change in the condition of the process device for the first sample W of the lot processed with the aging conditions.
  • the haze map can identify areas that have changed significantly compared to the sample used to obtain the reference haze signal (areas where there is a high possibility that some kind of defective workmanship has occurred). If a defect in the aging conditions is detected, attention can be focused on this area on the sample, and the parameters of the aging conditions can be revised so that the difference between the haze signal of this area and the reference haze signal is eliminated.
  • Fig. 13 is a flow chart showing a typical scene for evaluating the aging conditions of process equipment in the process from semiconductor research and development to manufacturing (high volume manufacturing).
  • steps S100-S600 shown in Fig. 13 steps S100-S300 are the processes of the semiconductor research and development line, and steps S400-S600 are the processes of the semiconductor manufacturing line.
  • Step S100 the manufacturer of the process equipment extracts candidate conditions that are candidates for the final aging conditions for the process equipment. Even for the same type of process equipment, the aging conditions differ depending on the process used and the type of sample W to be processed.
  • process conditions for processing the sample W e.g., etching, film formation, polishing, etc.
  • the aging conditions are set according to the process conditions set in advance. In other words, the aging conditions are set so that when multiple samples W are processed in the target process equipment with the set process conditions at an interval of a predetermined time or more from the first or previous processing, the processing state of the multiple samples W does not vary.
  • the candidate conditions include basic conditions according to the process in which the process equipment is used and the type of sample W to be processed, as well as multiple variations of conditions in which each parameter of the basic conditions is finely changed. Examples of parameters include microwave and plasma discharge time, gas flow rate, etc.
  • the sample W is processed under predetermined process conditions in the process equipment with aging treatment for each candidate condition, and the processing state of the first sample W is compared with that of a reference sample (e.g., the Nth sample W).
  • a reference sample e.g., the Nth sample W.
  • the candidate condition with the least variation in the processing state is set as the aging condition for the target process equipment, assuming that the difference in the processing state is within the allowable value, and is presented to the semiconductor manufacturer. If no aging condition can produce a satisfactory result, further different aging conditions are tried.
  • Step S200 the aging conditions presented by the manufacturer of the process equipment are adjusted in the semiconductor manufacturer using the process equipment before being applied to the semiconductor manufacturing line.
  • the aging conditions are set based on the aging conditions presented by the manufacturer of the process equipment, with adjustments made according to the interval between lots actually flowing through the line (standby time of the process equipment).
  • aging processing and processing of the lot of the sample W are performed under the conditions set in the process equipment according to the standby time of the process equipment, and the processing state of each first sample W and the reference sample are compared as in step S100 to confirm that the difference is within the tolerance.
  • Step S300 is a final confirmation test before applying the aging conditions set in step S200 to the manufacturing line.
  • Each set aging condition is tried on the manufacturing line or on equipment simulating a manufacturing line, and the processing state of the sample W after processing is compared in the same manner as in steps S100 and S200. If it is confirmed that the difference in the processing state between the first sample W and the reference sample is within the allowable value, the aging conditions (set) tried here are determined as the final aging conditions for the target process equipment. If the difference does not fall within the allowable value, the process returns to step S200 and the set of aging conditions is reset.
  • Step S400 is a process in which the aging conditions determined in the research and development line are applied to the semiconductor manufacturing line and operation is started. After this, in the manufacturing line, aging processing is performed in the process equipment as necessary under conditions according to the waiting time. The sample W processed in the process equipment is inspected for defects in-line. Also, as necessary, it is subjected to inspection for the suitability of the aging processing.
  • Steps S500 and S600 The suitability of the aging conditions applied to the semiconductor manufacturing line is inspected appropriately (e.g., periodically or at appropriate times) during the semiconductor manufacturing process (step S500). If the processing state of the sample W is good, the manufacturing line continues to operate, and if the processing state of the sample W indicates that the aging conditions are insufficient, the aging conditions are adjusted (step S600). When adjusting the aging conditions, the process equipment that performs the adjustment is stopped if necessary, and operation is resumed once the aging conditions have been adjusted.
  • Fig. 14 is a schematic flow chart showing an example of the flow of aging condition evaluation of a process device.
  • the flow of Fig. 14 is appropriately performed, for example, in the evaluation of aging conditions performed in the semiconductor research and development stage of steps S100-S300 in Fig. 13, and in the evaluation of aging conditions performed in the semiconductor manufacturing stage of steps S500 and S600.
  • a plasma etching device will be described as a specific example of a process device.
  • step S10 In the flow of FIG. 14, first, in the plasma etching device, a lot of samples W is plasma etched with aging processing under the aging conditions to be evaluated (step S10).
  • the evaluation device 100 which is also an optical defect inspection device, is used to perform in-line defect inspection of a lot of samples W processed in a plasma etching device.
  • "In-line” means “as one process of semiconductor manufacturing” or “in the course of semiconductor research, development, and manufacturing line.”
  • the signal processing device D (FIG. 12) described above evaluates the validity of the aging conditions applied to the plasma etching device based on the haze signal obtained from at least the first sample W of the lot processed in the plasma etching device (step S21).
  • the haze signal used to evaluate this aging condition may be a haze signal obtained during defect inspection of the sample W, or a haze signal obtained by scanning the sample W under conditions under which haze light is easily detected before or after defect inspection. Then, in the evaluation device 100, the haze signal obtained from the sample W is compared with the reference haze signal, and it is determined whether the difference between the two is within a reference range (step S22).
  • a reference haze signal obtained from the sample W is compared with the reference haze signal, and it is determined whether the difference between the two is within a reference range.
  • step S22 If the evaluation device 100 determines in step S22 that the difference is within the reference range, it is presumed that the chamber was in the desired condition when the first sample W was processed, that is, the aging process was necessary and sufficient. In this case, the evaluation device 100 notifies this via monitor E3, and the flow in FIG. 14 ends. For example, when the flow in FIG. 14 is executed on a production line, if no defects in the aging conditions are detected, the production line will continue to operate as is. However, when the flow in FIG. 14 is executed in step S100 of FIG. 13, there is a possibility that other candidates for better aging conditions remain, so the flow in FIG. 14 is then executed for the untried aging conditions.
  • step S30 If the difference is outside the reference range in step S22, it is assumed that the chamber was not in the desired condition when processing the first sample W, i.e., the aging process was insufficient, and an alarm is output from the evaluation device 100 to the monitor E3 (step S30).
  • step S40 An operator or the like who has confirmed the alarm takes appropriate measures for the aging conditions related to the alarm (step S40).
  • An appropriate measure for the situation would be to adjust the defective aging conditions in the processes of steps S200, S300, and S600 in FIG. 13, or to remove the defective aging conditions from the candidates in the process of step S100.
  • Adjusting the aging conditions may require, in some cases, an analysis of factors that cause fluctuations in the condition of the process equipment. Analysis of factors that cause fluctuations in the condition of the process equipment may involve, for example, cutting out defective areas that have occurred in the sample W using a FIB (Focused Ion Beam) and observing them with a TEM (Transmission Electron Microscope).
  • FIB Fluorused Ion Beam
  • the evaluation process of the quality of the samples processed by a general process device is shown by dotted lines.
  • the CD values of one to several samples of the first and Nth samples W of a lot processed by a plasma etching device are measured by sampling, for example, by OCD (step S26).
  • the etching rate (surface film thickness) of one to several wafers is also measured by sampling, for example, by a spectroscopic ellipsometer (step S28).
  • the order of measuring the CD values and etching rates can be arbitrarily changed.
  • step S27, S29 it is determined whether the difference in the CD values and etching rates of the first and Nth samples W measured initially falls within a reference range. If the difference in the measurement results falls outside the reference range, it is suspected that the chamber used to process the first sample W was not in the desired condition, and the procedure moves to step S30. If the difference in the inspection results is within the reference range, it is presumed that the chamber was in the desired condition when the first sample W was processed, and the flow in Fig. 14 ends. As mentioned above, since none of the measuring devices routinely measures all samples in a lot, and sampling measurements are often performed, the first sample measured first is not necessarily the first sample in that lot that was processed in the process device.
  • the measurement target is CD
  • the CD value is only measured on a partial area of the sample W, and it is not possible to check the processing state of the entire surface of the sample W evenly, and there are cases where deficiencies in the aging conditions cannot be detected.
  • CD-SEM Critical Dimension-Scanning Electron Microscope
  • the measurement of the etching rate in step S28 does not require a pattern to be formed on the sample W, but like the measurement of the CD value, it is performed only on a portion of the sample W, and the measurement area is localized, so there is a possibility that defects will be missed.
  • CD values and etching rates are highly correlated with the shape (processing state) of the sample W and are relatively easy to measure, so they are primarily measured to evaluate the aging conditions of process equipment in semiconductor manufacturing processes.
  • CD value and etching rate inspections there have long been other inspections that are used to evaluate aging conditions. For example, defect observation using a TEM.
  • TEM is effective for analyzing aging conditions because it allows detailed observation of defects that occur in the sample W. Although it allows detailed observation, it takes a much longer time to perform measurements than OCD or CD-SEM.
  • TEM is generally called destructive testing, and test pieces for TEM observation must be cut out of the wafer using, for example, an FIB, and wafers with parts cut out lose their product value and cannot be returned to the line.
  • the test piece observed with a TEM is only a tiny portion of the sample W, the evaluation accuracy of the aging conditions is greatly affected by the location of the test piece.
  • Other process equipment includes an OES (Optical Emission Spectrometer) or a temperature sensor that can collect data on the state inside the chamber during processing.
  • OES optical Emission Spectrometer
  • the OES can monitor the plasma light emission state inside the chamber.
  • a temperature sensor can measure the temperature of the sample W or inside the chamber during processing.
  • the OES can observe the plasma light emission state, it cannot divide the state of the entire chamber space into small regions and monitor the state of each region.
  • the temperature measurement of the sample W by the temperature sensor is also local. Therefore, the data collected by the plasma etching equipment is too rough to be sufficient for verifying the correlation between the processing state of the sample W and the aging conditions.
  • Fig. 15 is a schematic diagram showing the change over time in temperature of a chamber of a process device
  • Fig. 16 is a schematic diagram showing the effect on a wafer caused by the change over time in temperature of a chamber of a process device.
  • the horizontal axis of Fig. 15 represents time, and the vertical axis represents the temperature in the chamber.
  • a plasma etching device will be used as a specific example of a process device.
  • the lot of sample W to be processed in the examples of Figs. 15 and 16 will be referred to as "Lot F".
  • the chamber cools down and the chamber temperature falls below the stable temperature at which the sample W can be successfully processed if plasma etching is performed under the set process conditions.
  • an aging process such as a run-in discharge is performed in the plasma etching apparatus before processing the first sample W in lot F.
  • the chamber may not be in the desired condition when processing the first sample W.
  • FIG. 16 shows an example of a haze map (haze distribution on the sample surface) obtained by the evaluation device 100 for the first, second, ..., Nth sample W that has been subjected to plasma etching processing in the temperature environment as shown in FIG. 15.
  • the chamber temperature reaches a stable temperature and the chamber conditions, including the degree of gas saturation in the chamber, are set. In this case, as shown in FIG.
  • the first sample W that has been processed at a temperature below the stable temperature shows a difference in the intensity of the haze signal at any point, such as the edge (outer edge) X1 or local area X2, compared to the second and subsequent samples W that have been processed after the stable temperature has been reached.
  • the aging conditions applied to the aging process of lot F in the plasma etching device are evaluated by the signal processing device D as described above, based on the haze signal obtained by scanning the first sample W of lot F using the evaluation device 100.
  • the CD measurement using an OCD or the like the etching rate measurement using a spectroscopic ellipsometer or the like, the monitoring of the plasma state using an OES, and the localized detailed observation of a sample using a TEM, all of which are compatible with inspection using haze light, as previously explained as conventional examples. It goes without saying that aging conditions can be evaluated using haze light in conjunction with these measurements.
  • FIG. 17 is a flowchart showing the procedure of the evaluation process of the aging condition by the evaluation device 100 according to the present embodiment.
  • the process in the figure is executed in steps S21 and S22 in the flowchart in FIG. 14.
  • the case where the aging condition is evaluated using the lot F (the number of samples W is N) used in the description of FIG. 15 is illustrated.
  • the scanning of the lot F is completed at the start of the flow in FIG. 17, and the haze signals of at least the first and Nth samples W are stored in the storage device DB (FIG. 1) are illustrated.
  • the case where the haze signal obtained from the Nth sample W is used as the reference haze signal is illustrated.
  • the flow in FIG. 17 can be configured to be executed in parallel with the scanning of the first sample W.
  • the procedure of step S202 described later is the first procedure of the loop.
  • the signal processing device D of the evaluation device 100 reads the reference haze signal, that is, the haze signal obtained from the Nth sample W, from the storage device DB (step S201).
  • the signal processing device D also reads the haze signal obtained from the first sample W from the storage device DB (step S202).
  • the order of steps S201 and S202 may be reversed.
  • the signal processing device D compares the haze signal obtained from the first sample W with the reference haze for an arbitrary region of the sample W (step S203) and determines whether the difference between the two is within a preset value (step S204).
  • the arbitrary region may be the entire surface of the sample W, or may be limited to a specific region within the sample W. Alternatively, the sample W may be divided into a plurality of regions and the comparison may be performed for each region in sequence. If the difference between the haze signal and the reference haze is within the preset value, the signal processing device D records the region as an even region with no significant difference between the haze signal and the reference haze (the difference is within the preset value) (step S205).
  • the signal processing device D records the region as a difference region with a significant difference between the haze signal and the reference haze (the difference exceeds the preset value) (step S206).
  • the reference sample is the Nth sample W, so the entire surface is not necessarily in a normal processing state, but if we assume that the Nth sample W is formed normally over its entire surface, the difference region is an area where there is a high possibility that some kind of abnormality has occurred.
  • the signal processing device D repeats the processing of steps S203-S206 for each region, and once processing has been performed for all regions of the sample W, it determines whether the evaluation results are within the standard range, specifically, whether the number of difference regions is equal to or less than a preset tolerance (step S207).
  • the signal processing device D presumes that there is no problem with the aging conditions of the aging process performed as pre-processing for lot F. In this case, the signal processing device D generates data indicating that there is no problem with the aging condition process device, records it, for example, in the storage device DB, and displays it on the monitor E3 via the control device E1, and ends the procedure (step S208). On the other hand, if the difference from the reference haze exceeds a set value or the number of difference areas exceeds an allowable value, a defect in the aging conditions is suspected.
  • the signal processing device D generates alarm data indicating that there is a suspected defect in the aging process performed as pre-processing for lot F, records it, for example, in the storage device DB, and outputs it to the monitor E3, and ends the procedure (step S209).
  • an algorithm may be used that generates a difference image between the haze map of the first sample W and the haze map of the reference haze signal and compares them. It is also possible to employ an algorithm that counts the number of difference regions in the difference image between the haze maps of the sample W and the reference haze signal.
  • the distribution of the haze map can also be added to the judgment criteria.
  • an algorithm can be applied that divides the surface of the sample W into a circular center portion and an annular outer periphery surrounding it, focuses on changes in the haze signal in a specific portion of the center and outer periphery, for example the outer periphery, and infers that there is some kind of deficiency in the aging conditions if there is a certain level of change in the outer periphery.
  • Other possible judgment conditions could be that there is a certain level of change in the haze signal in both the center and outer periphery, or that there is a certain level of change in the haze signal only in the center or only in the outer periphery.
  • the output to monitor E3 in steps S208 and S209 may be an output that does not go through a monitor.
  • the output format may be a sound or text message, or a haze map for sample W may also be output.
  • data on changes in characteristics that appear in sample W e.g., changes in surface roughness and surface film thickness
  • the first sample W processed in one lot with aging treatment in the process equipment is optically scanned, and the haze signal obtained from the sample W is compared with the reference haze signal to evaluate the aging condition.
  • the evaluation device 100 which is also a defect inspection device for the sample W, can evaluate the aging condition other than the defect. Since the results can be obtained much faster than the TEM used for detailed observation to adjust the aging condition, the time required for the aging condition evaluation can be significantly reduced.
  • the entire surface of the sample W can be inspected thoroughly for changes that occur in the sample W in response to fluctuations in the conditions of the process equipment.
  • a plasma processing device such as a plasma etching device
  • inspecting the entire surface of the sample W thoroughly it is possible to ensure high reliability in the evaluation of the aging conditions from the viewpoint of suppressing inspection omissions.
  • the distribution of the haze signal over the entire surface of the sample W that is, the haze map, it is possible to visualize the processing state by the process device and, in turn, the condition inside the chamber of the process device.
  • the plasma gas phase state such as gas concentration and radical density
  • the plasma gas phase state can be grasped based on the haze map, it will lead to smooth setting of not only the aging conditions but also the process conditions.
  • the evaluation device 100 can detect deficiencies in the aging conditions of the process equipment in a timely manner in conjunction with the defect inspection of samples W that is performed daily in-line. Since the evaluation results of the aging conditions based on this haze light can be obtained in conjunction with the defect inspection, there is no increase in the workload or inspection costs imposed on the operator. Since deficiencies in the aging conditions of the process equipment are detected early in the defect inspection that is performed daily, the occurrence of defects in samples W is suppressed, and the occurrence of samples W that are subjected to analysis of the cause of defects using a TEM or the like is also suppressed. Furthermore, it is expected that the effects of preventing the occurrence of defects in samples W and improving the operating rate of the process equipment will also be expected, and an improvement in yield can also be expected.
  • the aging conditions can be evaluated even on a sample W on which no pattern is formed.
  • a sample W on which no pattern is formed e.g., a bare wafer
  • the aging conditions can be determined in a short period of time.
  • destructive inspection is not required as in the case of using a TEM, the processing time using FIB, etc. can be reduced.
  • the evaluation is performed using a high-speed optical defect inspection device, the measurement time is also short to begin with.
  • the measurement time is also short to begin with.
  • multiple detection optical systems Bn are arranged with each system facing in a different direction relative to the beam spot BS. This makes it possible to select one or more detection optical systems Bn that are effective in capturing intensity changes in haze light, and to evaluate the aging conditions using only the selected ones of the multiple detection optical systems Bn. If the signals of multiple detection optical systems Bn were merged and output regardless of their sensitivity to haze light, the changes detected with high sensitivity by a specific detection optical system Bn would be diluted, and the inspection sensitivity would decrease. In contrast, in this embodiment, a configuration with multiple detection optical systems Bn facing different directions is used to perform aging condition evaluation with high sensitivity.
  • the correlation between the haze signal and its fluctuation factor for each detection optical system Bn is stored in the storage device DB, and the detection optical system Bn with a specific azimuth angle ⁇ 1 can be selectively used for aging condition evaluation based on this correlation.
  • This makes it possible to evaluate the aging condition according to the fluctuation factor of the haze light intensity, such as the surface film thickness and surface roughness of the sample surface.
  • an example has been described in which a change in the condition of a process device related to a change in a specified range of the surface roughness of the sample W is detected from the difference between the haze signal incident on the openings ⁇ 3 and ⁇ 4 located in the direction of specular reflection of the illumination light with respect to the beam spot BS and the reference haze signal. Also, an example has been described in which a change in the condition of a process device related to a change in a specified range of the surface film thickness of the sample W is detected from the difference between the haze signal incident on the openings ⁇ 1 and ⁇ 6 located in the opposite direction to the specular reflection of the illumination light with respect to the beam spot BS and the reference haze signal.
  • the detection optical system Bn separates the haze light according to its polarization direction using the polarizing beam splitter Bc, and can detect two lights with different polarization directions for the haze light emitted in the same direction from the same coordinates on the sample W.
  • a more precise aging condition evaluation that includes the polarization direction of the haze light as a parameter, based on correlation data that specifies the intensity, polarization direction, and fluctuation factors of the haze signal for each detection optical system Bn, i.e., for each emission direction of the haze light.
  • Second Example In the first embodiment, an example was described in which the haze signal of each region of the sample W was compared with the reference haze signal to evaluate the aging condition.
  • the aging condition can also be evaluated based on the learned model.
  • the trained model is an inference program in which trained parameters are incorporated through machine learning of training data, and outputs evaluation results of aging conditions for input data related to a haze signal.
  • This trained model is created by the signal processing device D or the control device E1, and is stored, for example, in the storage device DB.
  • the signal processing device D uses this trained model to evaluate the aging conditions based on the haze signal acquired during defect inspection of a sample W that has been processed with an aging process.
  • An example of learning data is actual data accumulated in the daily semiconductor manufacturing process, such as the haze map of sample W, the polarization direction of haze light, the standby time of the process equipment, the evaluation results of the aging conditions, the adjustment history of the aging conditions, and the positive or negative evaluation results.
  • the standby time of the process equipment is, for example, received from the process equipment or data accumulated in the storage device DB by input by an operator, etc.
  • the adjustment history of the aging conditions and the positive or negative evaluation results are a type of feedback data, and can be input by, for example, a person who adjusted the aging conditions using the input device E2 according to a previously prepared input screen.
  • the positive or negative evaluation results are, for example, the judgment of the person who adjusted the aging conditions, and are matters such as whether or not the alarm notified from the evaluation device 100 was truly a notification of a deficiency in the aging conditions.
  • FIG. 18 is a conceptual diagram of machine learning.
  • the signal processing device D searches for and reads from the storage device DB performance data such as the haze map of the sample W described above, waiting time of the process device, evaluation results of aging conditions, and adjustment history, to generate training data.
  • the signal processing device D loads this training data into the neural network D9, and optimizes the weighting of the connections between neurons in the input layer, intermediate layer, and output layer.
  • a trained model for evaluating the aging conditions is generated from the haze signal data obtained for the sample W, such as the scattering direction, light intensity, polarization direction, and coordinates.
  • the trained model is not limited to being generated by the signal processing device D, and may be generated by another computer.
  • the signal processing device D or the control device E1 can perform machine learning using the haze map and the adjustment history of the aging conditions as input, identify correlations with the haze map for each parameter of the aging conditions, and present adjustment suggestions for the aging conditions.
  • this embodiment is similar to the first embodiment.
  • a trained model is generated that also takes into account feedback data such as the adjustment history of the aging conditions and the pros and cons of the evaluation results, and it is expected that the evaluation accuracy of the aging conditions will be improved.
  • feedback data such as the adjustment history of the aging conditions and the pros and cons of the evaluation results
  • Fig. 19 is a schematic diagram of the essential parts of an aging condition evaluation device according to one modification of the present invention.
  • elements that are the same as or correspond to those described in the first and second embodiments are given the same reference numerals as in the previously mentioned drawings, and description thereof will be omitted.
  • This embodiment is an example in which data obtained by multiple evaluation devices is included in the basic data of the reference haze signal (first embodiment) or the trained model (second embodiment) described above.
  • the evaluation device 100 is connected to a data server DS via a network (not shown) as appropriate.
  • Other evaluation devices 100' and 100", different from the evaluation device 100, are connected to this data server DS via a network as appropriate.
  • the evaluation devices 100, 100', and 100" are preferably of the same type or similar types (same series, same manufacturer, etc.), but may be devices of different types. Although two other evaluation devices 100' and 100" are illustrated in FIG. 19, the number of other evaluation devices connected to the data server DS may be one or three or more.
  • Evaluation data and the like are input to the data server DS from the evaluation devices 100, 100', 100", and this data is stored.
  • This stored data can include, for example, evaluation data on aging conditions including haze signals and evaluation results for each evaluation device, as well as design data for the sample W, adjustment history of aging conditions, the pros and cons of the evaluation results, and inspection data for the sample W.
  • inspection conditions inspection recipe
  • defect review data defective material analysis data, and the like can also be stored in the data server DS.
  • Defective material analysis data is, for example, information obtained by energy dispersive X-ray analysis. This may be a stand-alone device.
  • a reference haze signal and a trained model for evaluating the aging conditions are calculated based on this accumulated data.
  • the calculation of the reference haze signal and the trained model can be performed in the data server DS at regular intervals, or can be performed when a certain amount of new data is accumulated.
  • Each evaluation device 100, 100', 100" receives the latest reference haze signal or trained model from the data server DS at the opportunity to evaluate the aging conditions and performs an evaluation of the aging conditions.
  • a reference haze signal or a learned model is calculated using a large amount of data from the other evaluation devices 100, 100' as basic data. Therefore, a large amount of basic data is accumulated in a short period of time, and the evaluation accuracy of the aging conditions can be improved over time.
  • Fig. 20 is a schematic diagram for explaining the main functions of an aging condition evaluation device according to a fourth embodiment of the present invention.
  • elements that are the same as or correspond to those explained in the first to third embodiments are given the same reference numerals as in the previously mentioned drawings, and explanations thereof will be omitted.
  • This embodiment is a variation of the method of acquiring a haze signal.
  • a sample transfer position Pa and an inspection start position Pb are set on the movement axis of the translation stage of the stage ST, and by driving the translation stage, the stage ST moves along a straight line passing through these positions.
  • the inspection start position Pb is the position where the sample W is irradiated with illumination light to start inspection of the sample W, and is the position where the center of the sample W coincides with the beam spot BS of the illumination optical system A.
  • the sample transfer position Pa is the position where the sample W is attached to and detached (loaded and unloaded) from the stage ST by the arm Am, and the stage ST, having received the sample W, moves from the sample transfer position Pa to the inspection start position Pb.
  • the detection optical system Bn is positioned close to the sample W.
  • the gap G between the stage ST and the detection optical system Bn is about a few mm or less. Because it is difficult to insert the sample W into the gap G with the arm Am at the inspection start position Pb and place it on the stage ST, a configuration is adopted in which the sample W is transferred at a sample transfer position Pa away from the inspection start position Pb.
  • the sample W is generally scanned with P-polarized illumination light while the stage ST moves from the inspection start position Pb, but in this embodiment, a preliminary scan is performed while the stage ST moves from the sample transfer position Pa to the inspection start position Pb.
  • the illumination light is set to S-polarized light, and the sample W is scanned in a spiral trajectory from the outer periphery toward the center. Then, an evaluation process of the aging conditions is performed based on the haze signal obtained in this preliminary scan.
  • this embodiment is similar to the first, second, or third embodiment.
  • the inspection conditions are set so as to suppress the generation of haze light, which generally becomes noise in defect inspection (for example, the illumination light is set to P-polarized light). Therefore, depending on other conditions, it may be possible that the defect inspection of sample W cannot adequately detect haze light, making it difficult to evaluate the aging conditions based on the haze signal.
  • the sample W can be moved from the sample transfer position Pa to the inspection start position Pb, allowing a preliminary inspection to be performed under conditions different from those for the defect inspection to collect a haze signal.
  • the transport operation of the sample W to collect a haze signal in this way, it is possible to achieve both defect inspection and aging condition evaluation without changing the series of machine operations during defect inspection.
  • Modification For example, when scanning the sample W by rotating it as shown in FIG. 2, it is assumed that the intensity of the haze light changes depending on the rotation angle of the sample W even if the detection optical system Bn is the same.
  • the selection of the detection optical system Bn in the aging condition evaluation for the same sample W can be configured to be switched periodically according to the rotation angle of the sample W. For example, when a patterned wafer is rotated and scanned as the sample W, the scattering direction of the haze light may change regularly due to the influence of diffraction occurring in a fine linear pattern formed periodically vertically and horizontally.
  • haze signal In addition to the haze signal, it is also possible to analyze or machine-learn the correlation between the aging conditions, etc. and the haze signal and defect signal data set for the same sample W, and evaluate the aging conditions based on the haze signal and defect signal. It is possible that a defect will occur in the first sample W due to improper aging conditions, or that the defect will affect the haze light, and the accuracy of the aging condition evaluation may be improved by monitoring the defect signal along with the haze signal.
  • the plasma etching apparatus may be equipped with an OES for monitoring the plasma discharge state. It is also possible to analyze or learn machine learning the monitor data during plasma etching by this OES together with the haze signal in a signal processing device D or server. If it is possible to identify the correlation between the monitor data of the plasma discharge state and the haze signal, it is expected that the accuracy of the aging condition evaluation can be further improved.
  • defect inspection is performed after one or several steps in the semiconductor manufacturing process, and haze signals can be obtained during defect inspection before and after the process by the process equipment being diagnosed. It is also possible to calculate the difference in haze signals obtained by inspection before and after the process for the same sample W, and use this difference to evaluate the degree of processing by the process equipment. In other words, calculating the difference in haze signals obtained by inspection before and after the process for a reference sample as a reference haze signal related to the degree of processing by the process equipment, and comparing a similar difference related to sample W with the reference haze signal can be considered as one form of aging condition evaluation.
  • the sample W is scanned under conditions in which haze light is likely to occur and a haze signal is acquired separately from the defect inspection.
  • haze light is also acquired during the defect inspection, and a new correlation between the haze signal and aging conditions can be identified by comparing and analyzing the difference between the haze signals sampled under conditions in which haze light is likely to occur and conditions in which it is unlikely to occur.
  • haze signals incident on the openings ⁇ 3, ⁇ 4, ⁇ 1, and ⁇ 6 are used to evaluate the aging condition.
  • haze signals incident on other openings can also be used to evaluate the aging condition.
  • a correlation with the aging condition can be found for the sum or difference signal of the haze signals incident on the openings ⁇ 2, ⁇ 5, ⁇ 2, ⁇ 3, ⁇ 5, and ⁇ 6 located to the left and right of the beam spot BS and the haze signals incident on the openings ⁇ 3, ⁇ 4, ⁇ 1, and ⁇ 6.

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The present invention provides an aging condition evaluation device for evaluating an aging condition that is a setting condition for aging processing by a process device. The aging condition evaluation device includes a specimen stage for supporting a specimen subjected to processing by the process device, an illumination optical system that irradiates the specimen placed on the specimen stage with illumination light, a plurality of detection optical systems that collect light from the specimen and perform conversion thereof into electrical signals and output detection signals, and a signal processing device that processes the detection signals from the plurality of detection optical systems. The signal processing device scans an initial specimen that is initially processed, out of one lot of specimens subjected to processing involving the aging processing by the process device, extracts a haze signal of the initial specimen, and determines the appropriateness of the aging condition by difference in comparison of the haze signal of the initial specimen with a reference haze signal.

Description

エージング条件の評価装置及び設定方法Apparatus and method for evaluating aging conditions
 本発明は、例えば半導体製造工程に用いるプラズマエッチング装置等のプロセス装置のエージング条件を評価するエージング条件評価装置及びエージング条件設定方法に関する。 The present invention relates to an aging condition evaluation device and an aging condition setting method for evaluating the aging conditions of process equipment such as plasma etching equipment used in semiconductor manufacturing processes.
 半導体ウェハを処理するプロセス装置では、例えばN枚(複数枚)のウェハを収納したケースがセットされ、ケース内のN枚のウェハが1ロットとして処理される場合がある。例えばプラズマエッチング装置では、ウェハをチャンバ内にセットし、所定のガスを供給して放電することでガスをプラズマ化し、生成されたプラズマでウェハをエッチング処理する(特許文献1等)。 In a process device for processing semiconductor wafers, a case containing, for example, N (multiple) wafers may be set, and the N wafers in the case may be processed as one lot. For example, in a plasma etching device, the wafer is set in a chamber, a specific gas is supplied, and the gas is turned into plasma by discharging, and the wafer is etched with the generated plasma (Patent Document 1, etc.).
特開2011-100865号公報JP 2011-100865 A
 例えばプラズマエッチング装置において、安定した処理を実施するためには、ウェハを処理する際にチャンバが所定のコンディションにあることが望まれる。しかし、プラズマエッチング装置にウェハのロットが供給される間隔は一定ではなくまちまちであり、次のロットの到着を待つ待機時間が長くなるとチャンバの温度が低下してしまう。仮にその後に到着するロットをチャンバが冷えた状態で処理すると、N枚目のウェハの処理時にはチャンバのコンディションが整う得るものの、最初の何枚か、特に1枚目のウェハは、チャンバのコンディションが整わないうちに処理されることになる。このようなコンディションのばらつきは、チャンバ内のガスの充満度の違いでも生じ得る。このプラズマエッチング装置の例のように、プロセス装置にあっては、ロットの1枚目とN枚目のウェハの処理時におけるチャンバのコンディションに差が生じ得る。この場合、1枚目とN枚目のウェハの処理の出来に差が生じ、甚だしい場合には1枚目又は最初の何枚かのウェハが不良となる場合がある。 For example, in a plasma etching apparatus, in order to perform stable processing, it is desirable for the chamber to be in a specified condition when processing the wafer. However, the intervals at which wafer lots are supplied to the plasma etching apparatus are not constant but vary, and the temperature of the chamber drops if the waiting time for the arrival of the next lot becomes long. If the subsequent lot is processed in a cooled chamber, the chamber condition may be ready when the Nth wafer is processed, but the first several wafers, especially the first wafer, will be processed before the chamber condition is ready. Such condition variations can also be caused by differences in the degree of gas filling in the chamber. As in the example of this plasma etching apparatus, in a process apparatus, there may be a difference in the chamber condition when the first and Nth wafers of a lot are processed. In this case, there will be a difference in the processing quality of the first and Nth wafers, and in severe cases, the first or first several wafers may be defective.
 そこで、一般的にプロセス装置においては、必要に応じて、ロットの1枚目のウェハを処理する前にチャンバのコンディションを整える処理(本願明細書ではエージング処理と記載する)が実行される。例えばプラズマエッチング装置では、所定のガスをチャンバに供給しつつ“ならし放電”を実行することにより、1枚目のウェハとN枚目のウェハの処理時におけるプラズマ発光状態の差の抑制が試みられる。 Therefore, in general, in process equipment, a process (referred to as an aging process in this specification) is performed to adjust the chamber conditions as necessary before processing the first wafer of a lot. For example, in a plasma etching device, a "run-in discharge" is performed while a specific gas is supplied to the chamber in an attempt to suppress the difference in plasma light emission state during processing of the first wafer and the Nth wafer.
 但し、プロセス装置でウェハの処理に適用されるプロセス条件は、工程毎、更にはウェハの種類毎に(ウェハの製造段階や、再生ウェハ、新品ウェハ等のウェハの種類毎に)プロセス装置メーカ又はユーザのプロセス部門において初期設定される。例えばプラズマエッチング装置のマイクロ波出力やプラズマ放電時間、ガス流量等のパラメータを調整することで設定する。プロセス装置ではプロセス条件の他に、前述の、待機時間にならし放電を行うエージング処理の条件(以下、エージング条件)も設定する。エージング条件はプロセス条件毎に設定する必要がある。プロセス条件の一部のパラメータを、ならし放電用に調整して設定する。また、プロセス装置のコンディションを必要十分な程度に整えるためのエージング条件は、対応するプロセス条件が同一であっても、先に述べた待機時間により異なってくる。このように、プロセス条件と同様にエージング条件も工程やウェハの種類に応じて多岐にわたるパラメータから選択・調整されるため、多大な労力及び時間を要する。 However, the process conditions applied to the processing of wafers in the process equipment are initially set by the process equipment manufacturer or the user's process department for each process and even for each type of wafer (for each wafer manufacturing stage, reclaimed wafers, new wafers, etc.). For example, they are set by adjusting parameters such as the microwave output, plasma discharge time, and gas flow rate of the plasma etching equipment. In addition to the process conditions, the process equipment also sets the conditions for the aging process (hereinafter, aging conditions) that perform the acclimatization discharge during the waiting time mentioned above. The aging conditions must be set for each process condition. Some of the process condition parameters are adjusted and set for the acclimatization discharge. In addition, the aging conditions for adjusting the condition of the process equipment to a necessary and sufficient level will differ depending on the waiting time mentioned above, even if the corresponding process conditions are the same. In this way, like the process conditions, the aging conditions are selected and adjusted from a wide range of parameters depending on the process and type of wafer, which requires a great deal of effort and time.
 エージング条件は、例えば同一ロットの1枚目とN枚目のウェハの出来を比較することで是非が評価される。このウェハの出来栄えの比較検査には、例えばOCD(Optical Critical Dimension)が用いられる場合がある。OCDを用いる検査では、検査対象がCD(Critical Dimension)であるため、パターンが形成されていないウェハによりエージング条件を評価することができない。そのため、例えば半導体の研究開発段階でエージング条件の評価用にウェハを用意する場合には、パターン付きウェハを製造しなければならずコストがかかる。また、CD値の測定は、電子線を用いたCD-SEMの場合にはウェハ内ごく一部、OCDの場合にも、ウェハ表面の、数十程度の測定箇所について行われるのみで、ウェハ全面の処理状態を満遍なく確認することができず、検査箇所の選択によってエージング条件の不備を検知できない場合もある。 The aging conditions are evaluated by, for example, comparing the quality of the first and Nth wafers from the same lot. For example, OCD (Optical Critical Dimension) may be used to compare the quality of wafers. In an OCD test, the test object is the CD (Critical Dimension), so the aging conditions cannot be evaluated using a wafer on which no pattern is formed. For this reason, when preparing wafers for evaluating aging conditions during the research and development stage of semiconductors, for example, it is necessary to manufacture patterned wafers, which is costly. Furthermore, CD values are measured only at a small part of the wafer in the case of CD-SEM using an electron beam, and at only a few dozen measurement points on the wafer surface in the case of OCD, so the processing state of the entire wafer cannot be confirmed uniformly, and there are cases where defects in the aging conditions cannot be detected depending on the selection of inspection points.
 本発明の目的は、プロセス装置に適用するエージング条件を短時間で精度良く評価することができるエージング条件の評価装置及び設定方法を提供することにある。 The object of the present invention is to provide an aging condition evaluation device and setting method that can accurately evaluate the aging conditions applied to a process device in a short period of time.
 上記目的を達成するために、本発明は、プロセス装置のエージング処理の設定条件であるエージング条件を評価するエージング条件評価装置であって、前記プロセス装置で処理された試料を支持する試料台と、前記試料台に載せた試料に照明光を照射する照明光学系と、前記試料からの光を集光して電気信号に変換し検出信号を出力する複数の検出光学系と、前記複数の検出光学系の検出信号を処理する信号処理装置とを備え、前記信号処理装置は、前記プロセス装置でエージング処理を伴って処理された1ロットの試料のうち初期に処理された初期試料をスキャンして前記初期試料のヘイズ信号を抽出し、前記初期試料の前記ヘイズ信号を基準ヘイズ信号とを比較した際の差によってエージング条件の適否を判定するエージング条件評価装置を提供する。 In order to achieve the above object, the present invention provides an aging condition evaluation device that evaluates the aging conditions, which are the setting conditions for the aging treatment of a process device, and includes a sample stage that supports a sample that has been treated in the process device, an illumination optical system that irradiates illumination light onto the sample placed on the sample stage, a plurality of detection optical systems that collect light from the sample, convert it into an electrical signal, and output a detection signal, and a signal processing device that processes the detection signals of the plurality of detection optical systems, and the signal processing device scans an initial sample that has been treated early among a lot of samples that have been treated with aging treatment in the process device, extracts a haze signal of the initial sample, and provides an aging condition evaluation device that judges whether the aging conditions are appropriate based on the difference when the haze signal of the initial sample is compared with a reference haze signal.
 本発明によれば、プロセス装置に適用するエージング条件を短時間で精度良く評価することができる。 The present invention makes it possible to evaluate the aging conditions applied to process equipment with high accuracy in a short period of time.
本発明の第1実施例に係るエージング条件評価装置の一構成例の模式図FIG. 1 is a schematic diagram of a configuration example of an aging condition evaluation device according to a first embodiment of the present invention; 試料のスキャン軌道を表した模式図Schematic diagram showing the sample scanning trajectory 試料のスキャン軌道を表した模式図Schematic diagram showing the sample scanning trajectory アッテネータを抜き出して表した模式図Schematic diagram showing the attenuator 斜方から試料の表面に導かれる照明光の光軸と照明強度分布形状との位置関係を表す模式図A schematic diagram showing the positional relationship between the optical axis of illumination light guided obliquely to the surface of a sample and the illumination intensity distribution shape. 斜方から試料の表面に導かれる照明光の光軸と照明強度分布形状との位置関係を表す模式図A schematic diagram showing the positional relationship between the optical axis of illumination light guided obliquely to the surface of a sample and the illumination intensity distribution shape. 上方から見て検出光学系が散乱光を捕集する領域を表した図A diagram showing the area where the detection optics collects scattered light, viewed from above. 低角及び高角の検出光学系の天頂角を模式的に表した図A schematic diagram showing the zenith angles of low-angle and high-angle detection optical systems. 低角の検出光学系の方位角を表す平面図Plan view showing the azimuth angle of the low-angle detection optics 高角の検出光学系の方位角を表す平面図Plan view showing the azimuth angle of the high-angle detection optics 検出光学系の構成図の例を抜き出して表した模式図A schematic diagram showing an example of the configuration of the detection optical system 本発明の第1実施例に係るエージング条件評価装置に備わった信号処理装置の要部の機能ブロック図の一例FIG. 1 is a functional block diagram of a main part of a signal processing device provided in an aging condition evaluation device according to a first embodiment of the present invention; 半導体の研究開発から製造までの工程においてプロセス装置のエージング条件を評価する典型的な場面を表すフローチャートA flow chart showing typical steps for evaluating the aging conditions of process equipment in the semiconductor R&D to manufacturing process. プロセス装置のエージング条件評価の流れの例を表す模式的なフローチャート1 is a schematic flowchart showing an example of a flow of evaluating aging conditions of a process device. プロセス装置のチャンバの温度の経時変化を表す模式図A schematic diagram showing the change in temperature over time in a chamber of a process device. プロセス装置のチャンバの温度の経時変化に伴って試料に現れる影響を表す模式図A schematic diagram showing the effect on a sample as the temperature of a process device chamber changes over time. 本発明の第1実施例に係るエージング条件評価装置によるエージング条件の評価処理の手順を表すフローチャート1 is a flowchart showing the procedure of an aging condition evaluation process performed by an aging condition evaluation device according to a first embodiment of the present invention. 本発明の第2実施例に係る機械学習の概念図Conceptual diagram of machine learning according to a second embodiment of the present invention 本発明の第3実施例に係るエージング条件評価装置の要部を抜き出して表す模式図FIG. 13 is a schematic diagram showing a main part of an aging condition evaluation device according to a third embodiment of the present invention; 本発明の第4実施例に係るエージング条件評価装置の機能の要部を説明するための模式図FIG. 13 is a schematic diagram for explaining the main functions of an aging condition evaluation device according to a fourth embodiment of the present invention;
 以下に図面を用いて本発明の実施例を説明する。
  以下の各実施例で説明するエージング条件評価装置(以下、評価装置と適宜略記する)は、半導体製造プロセスの過程で試料、ここではウェハ(ベアウェハ、膜付きウェハ、パターン付きウェハ等)をスキャンし、そのウェハ状態からエージング条件を評価する。この評価装置の一例として、試料の欠陥を検査する光学欠陥検査装置を用いる。光学欠陥検査装置は、試料をスキャンして得た反射光又は散乱光に基づく信号で、通常、ウェハに付着または形成された欠陥の数や座標、種類等を出力する。光学欠陥検査装置は、電子線やX線等を光源とする診断装置に比べ、スキャンスピードが非常に速い。そのため、電子線やX線等をエネルギー源とする診断装置では試料の極数点しか時間制約の都合測定できないところ、光学欠陥検査装置、特に散乱光を用いる暗視野式検査装置では試料全面をスキャンし、試料全面の状態からエージング条件を評価することができる。この光学欠陥検査装置で試料をスキャンして得られる光に基づく信号には、欠陥検出のために用いられる欠陥信号だけでなく、ヘイズ信号と呼ばれる信号がある。変動周波数(信号強度の時間変動)が所定値より高い信号を高周波、低い信号を低周波とすると、欠陥信号は、試料から得られる光に基づく信号のうち高周波成分にあたる。逆に、ヘイズ信号は低周波成分にあたる。例えば異物のように、試料に付着した相対的に大きな凹凸起因の信号は高周波成分、試料上の膜の厚みや、試料表面の極微小な凹凸(ラフネス)といったウェハ自体の特性起因の信号は低周波成分として検出されやすい。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The aging condition evaluation device (hereinafter, appropriately abbreviated as evaluation device) described in each of the following embodiments scans a sample, here a wafer (bare wafer, film-coated wafer, patterned wafer, etc.) during the semiconductor manufacturing process, and evaluates the aging condition from the wafer state. As an example of this evaluation device, an optical defect inspection device that inspects defects on a sample is used. The optical defect inspection device outputs the number, coordinates, type, etc. of defects attached to or formed on the wafer as a signal based on reflected light or scattered light obtained by scanning the sample. The optical defect inspection device has a very fast scan speed compared to diagnostic devices that use electron beams, X-rays, etc. as a light source. Therefore, while diagnostic devices that use electron beams, X-rays, etc. as an energy source can only measure a very small number of points on the sample due to time constraints, the optical defect inspection device, especially the dark-field inspection device that uses scattered light, can scan the entire surface of the sample and evaluate the aging condition from the state of the entire surface of the sample. The light-based signal obtained by scanning the sample with this optical defect inspection device includes not only defect signals used for defect detection, but also a signal called a haze signal. If a signal with a fluctuation frequency (time fluctuation of signal intensity) higher than a certain value is considered to be a high frequency, and a signal with a lower frequency is considered to be a low frequency, then a defect signal corresponds to a high frequency component among signals based on light obtained from a sample. Conversely, a haze signal corresponds to a low frequency component. For example, a signal caused by relatively large irregularities attached to the sample, such as foreign matter, is likely to be detected as a high frequency component, while a signal caused by the characteristics of the wafer itself, such as the thickness of a film on the sample or extremely small irregularities (roughness) on the sample surface, is likely to be detected as a low frequency component.
 各実施例の評価装置は、プロセス装置でエージング処理を伴って処理された試料を全面スキャンして得たヘイズ信号に基づき、検査した試料を処理したプロセス装置に適用されたエージング処理の条件(エージング条件)を評価する特異な機能を持つ。評価装置は、試料の欠陥検査では一般に使用されていない(除去される)ヘイズ信号を活用し、試料について得られるヘイズ信号を基にその試料を処理したプロセス装置のエージング条件を評価する。 The evaluation device in each embodiment has a unique function of evaluating the conditions of the aging treatment (aging conditions) applied to the process equipment that processed the inspected sample, based on a haze signal obtained by scanning the entire surface of a sample that was processed in the process equipment along with an aging treatment. The evaluation device utilizes a haze signal that is not generally used (removed) in sample defect inspection, and evaluates the aging conditions of the process equipment that processed the sample based on the haze signal obtained for the sample.
 評価装置において、エージング処理を伴ってプロセス装置で処理された1ロット(N枚)の試料についてヘイズ信号を取得する場合を考える。「エージング処理を伴って」とは、エージング処理後に他のロットの処理を挟まずに、エージング処理に連続してそのロットの処理が行われたことを意味する。Nは2以上の自然数であり、一例としては25程度である。この場合、1枚目の試料と最後のN枚目の試料とでヘイズ信号の値や分布に差が生じたとすれば、プロセス装置におけるチャンバのコンディションが1枚目とN枚目とで異なっていたことが推定される。更に言えば、プロセス装置におけるエージング条件が妥当性を欠く場合、エージング処理を伴って行うロットの処理では、プロセス装置のコンディション(チャンバの温度やガスの充満度等)が整わないうちに1枚目が処理され得る。この場合でも、1枚目の処理時にはチャンバは所望のコンディションにならないものの、2枚目、3枚目と処理が続くうちにチャンバは所望のコンディションになる。しかし、結果的にロットの大部分の試料は良好に処理されるものの、最初の1,2枚の試料は処理が不十分になる場合がある。処理状態が許容水準を下回る場合、その試料は不良となる。こうしたプロセス装置におけるチャンバのコンディションの差は、処理後の試料の出来、例えばプラズマエッチング装置で処理した試料であれば、その差が顕著であると試料のCD値、表面粗さや表面膜厚に現れる。但し、CD値、表面粗さや表面膜厚を測る装置は、ユーザの運用として、特にスキャンスピードが遅い測定装置では測定コストの関係から、1ロット内の1~数枚をサンプリングで測定し、多くのウェハを測定せず次のプロセスに回す場合が多い。また、不適切なエージング条件による処理試料への影響が、CD値、表面粗さや表面膜厚として捉えられない微小、複合あるいは別の状態差として表れる場合もある。この場合、プロセス装置で処理した後にエージング条件の是非を確認することができない。各実施例の評価装置では、高速に全面スキャンができる利点を活かし、試料に現れるエージング条件の是非をヘイズ信号を基に評価すされる。 In the evaluation device, consider the case where a haze signal is acquired for one lot (N sheets) of samples processed in a process device with aging treatment. "With aging treatment" means that the lot was processed immediately after the aging treatment without processing another lot after the aging treatment. N is a natural number of 2 or more, for example, about 25. In this case, if there is a difference in the value or distribution of the haze signal between the first sample and the last Nth sample, it is presumed that the chamber conditions in the process device were different between the first and Nth samples. Furthermore, if the aging conditions in the process device are not appropriate, in the processing of a lot with aging treatment, the first sample may be processed before the conditions of the process device (chamber temperature, gas saturation, etc.) are ready. Even in this case, the chamber does not reach the desired condition when the first sample is processed, but the chamber reaches the desired condition as the second and third samples are processed. However, while most of the samples in the lot are processed well, the first one or two samples may not be processed sufficiently. If the processing state falls below the allowable level, the sample is deemed defective. Such differences in the chamber conditions in the process equipment will affect the quality of the sample after processing, for example, if the sample is processed in a plasma etching equipment, the differences will be significant and will appear in the CD value, surface roughness, and surface film thickness of the sample. However, in the case of equipment that measures the CD value, surface roughness, and surface film thickness, users often measure one or several wafers in one lot by sampling, and many wafers are not measured and sent to the next process, due to the cost of measurement, especially in measurement equipment with slow scan speeds. In addition, the effect of inappropriate aging conditions on the processed sample may appear as a small, complex, or other condition difference that cannot be captured as the CD value, surface roughness, or surface film thickness. In this case, it is not possible to confirm the appropriateness of the aging conditions after processing in the process equipment. In the evaluation equipment of each embodiment, taking advantage of the advantage of being able to scan the entire surface at high speed, the appropriateness of the aging conditions that appear on the sample is evaluated based on the haze signal.
 尚、所望のコンディションになるのが1枚目からか、2枚目、3枚目または5枚目からかは設定したエージング条件次第である。そのため、不適切なエージング条件により所望のコンディションになっていないチャンバで処理された1ロットの最初の1又は数枚を「初期ウェハ」とし、実際には1、2枚目だけに限られないことを付記しておく。 Whether the desired condition is reached from the first wafer, the second, third, or fifth wafer depends on the aging conditions that have been set. Therefore, the first one or several wafers in a lot that are processed in a chamber that has not reached the desired condition due to inappropriate aging conditions are called "initial wafers," and it should be noted that this is not limited to just the first or second wafers.
 以下に評価装置の具体例を説明する。 Specific examples of evaluation equipment are described below.
 (第1実施例)
 -エージング条件評価装置-
 図1は本発明の第1実施例に係るエージング条件評価装置の一構成例の模式図である。Z軸を鉛直方向に延ばしたXYZ直交座標系を、図1に示したように定義する。評価装置100は、試料Wを検査対象とし、この試料Wの表面の異物の付着や成膜異常等の欠陥を検出する。評価装置100は、試料Wを周方向(θ方向)に回転させつつ径方向(r方向)に移動させてスキャンする回転スキャン方式の装置である。
(First embodiment)
- Aging condition evaluation device -
Fig. 1 is a schematic diagram of an example of the configuration of an aging condition evaluation device according to a first embodiment of the present invention. An XYZ orthogonal coordinate system with the Z axis extending vertically is defined as shown in Fig. 1. The evaluation device 100 inspects a sample W and detects defects such as adhesion of foreign matter and abnormal film formation on the surface of the sample W. The evaluation device 100 is a rotary scanning type device that scans the sample W by rotating it in a circumferential direction (θ direction) and moving it in a radial direction (r direction).
 評価装置100は、ステージST、照明光学系A、複数の検出光学系Bn(n=1,2…)、センサCn,Cn’(n=1,2…)、信号処理装置D、記憶装置DB、制御装置E1、入力装置E2、モニタE3を含んでいる。 The evaluation device 100 includes a stage ST, an illumination optical system A, a plurality of detection optical systems Bn (n=1, 2, etc.), sensors Cn, Cn' (n=1, 2, etc.), a signal processing device D, a memory device DB, a control device E1, an input device E2, and a monitor E3.
 -ステージ-
 ステージSTは、試料台ST1及びスキャン装置ST2を含んで構成された装置である。試料台ST1は、プラズマエッチング装置等のプロセス装置で処理された試料Wを支持する台である。スキャン装置ST2は、試料台ST1を駆動して試料Wと照明光学系Aの相対位置を変化させる装置であり、詳しい図示は省略するが、並進ステージ、回転ステージ及びZステージを含んで構成されている。並進ステージにZステージを介して回転ステージが搭載され、回転ステージに試料台ST1が支持されている。並進ステージは、回転ステージと共に水平方向に並進移動する。回転ステージは、上下に延びる回転軸を中心にして回転(自転)する。Zステージは、試料Wの表面の高さを調整する機能を果たす。
-stage-
The stage ST is an apparatus including a sample stage ST1 and a scanning device ST2. The sample stage ST1 is a stage that supports a sample W that has been processed in a process device such as a plasma etching device. The scanning device ST2 is an apparatus that drives the sample stage ST1 to change the relative position between the sample W and the illumination optical system A, and is configured to include a translation stage, a rotation stage, and a Z stage, although detailed illustration is omitted. A rotation stage is mounted on the translation stage via the Z stage, and the sample stage ST1 is supported on the rotation stage. The translation stage translates in the horizontal direction together with the rotation stage. The rotation stage rotates (spins) around a rotation axis that extends vertically. The Z stage serves to adjust the height of the surface of the sample W.
 図2はスキャン装置ST2による試料Wのスキャン軌道を表した模式図である。後述するが、照明光学系Aから出射される照明光の試料Wの表面に対する入射領域であるビームスポットBSは、同図に示すように一方向に長い照明強度分布を持つ微小な点である。ビームスポットBSの長軸方向をs2、長軸に交わる方向(例えば長軸に直交する短軸方向)をs1とする。回転ステージの回転に伴って試料Wが回転し、ビームスポットBSが試料Wの表面に相対してs1方向にスキャンされ、並進ステージの並進に伴って試料Wが水平方向に移動し、ビームスポットBSが試料Wの表面に相対してs2方向にスキャンされる。ビームスポットBSは、試料Wが1回転する間にビームスポットBSのs2方向の長さ以下の距離だけs2方向へ移動する。このようなスキャン装置ST2の動作により試料Wが回転しながら並進することで、図2に示すように、試料Wの中心から外縁又はその付近まで螺旋状の軌跡を描いてビームスポットBSが移動し、試料Wの表面の全体がスキャンされる。 FIG. 2 is a schematic diagram showing the scanning trajectory of the sample W by the scanning device ST2. As will be described later, the beam spot BS, which is the incident area of the illumination light emitted from the illumination optical system A on the surface of the sample W, is a minute point with a long illumination intensity distribution in one direction as shown in the figure. The long axis direction of the beam spot BS is s2, and the direction intersecting the long axis (for example, the short axis direction perpendicular to the long axis) is s1. The sample W rotates with the rotation of the rotating stage, and the beam spot BS is scanned in the s1 direction relative to the surface of the sample W, and the sample W moves in the horizontal direction with the translation stage translation, and the beam spot BS is scanned in the s2 direction relative to the surface of the sample W. The beam spot BS moves in the s2 direction by a distance equal to or less than the length of the beam spot BS in the s2 direction during one rotation of the sample W. By such an operation of the scanning device ST2, the sample W rotates and translates, as shown in FIG. 2, and the beam spot BS moves in a spiral trajectory from the center of the sample W to the outer edge or its vicinity, and the entire surface of the sample W is scanned.
 なお、ステージSTは、並進ステージの移動軸と水平面内で交わる方向に移動軸を延ばしたもう1つの並進ステージを回転ステージに代えて(又は加えて)備えた構成も採用され得る。この場合、図3に示したように、ビームスポットBSは螺旋軌道ではなく直線軌道を折り重ねて試料Wの表面をスキャンする。同図の例では、第1の並進ステージをs1方向に定速で並進駆動し、第2の並進ステージを所定距離(例えばビームスポットBSのs2方向の長さ以下の距離)だけs2方向に駆動した後、再び第1の並進ステージをs1方向に折り返して並進駆動する。これによりビームスポットBSがs1方向への直線スキャンとs2方向への移動を繰り返し、試料Wの全表面をスキャンする。このXYスキャン方式に比べ、図2の回転スキャン方式は、加減速を繰り返す往復動作を伴わないので試料Wの検査時間を短縮することができる。 The stage ST may be configured to have another translation stage, whose axis of movement extends in a direction intersecting the axis of movement of the translation stage in a horizontal plane, in place of (or in addition to) the rotation stage. In this case, as shown in FIG. 3, the beam spot BS scans the surface of the sample W by folding over a linear trajectory instead of a spiral trajectory. In the example shown in the figure, the first translation stage is driven in translation at a constant speed in the s1 direction, the second translation stage is driven in the s2 direction by a predetermined distance (for example, a distance equal to or less than the length of the beam spot BS in the s2 direction), and then the first translation stage is turned back in the s1 direction and driven in translation again. This causes the beam spot BS to repeat linear scanning in the s1 direction and movement in the s2 direction, scanning the entire surface of the sample W. Compared to this XY scanning method, the rotation scanning method of FIG. 2 does not involve a reciprocating motion that is repeatedly accelerated and decelerated, so the inspection time of the sample W can be shortened.
 -照明光学系-
 図1に示した照明光学系Aは、試料台ST1に載せた試料Wに所望の照明光を照射するために光学素子群を含んで構成されている。この照明光学系Aは、図1に示したように、レーザ光源A1、アッテネータA2、出射光調整ユニットA3、ビームエキスパンダA4、偏光制御ユニットA5、集光光学ユニットA6、反射ミラーA7-A9等を備えている。
- Illumination optical system -
The illumination optical system A shown in Fig. 1 includes a group of optical elements for irradiating a desired illumination light onto a sample W placed on a sample stage ST1. As shown in Fig. 1, the illumination optical system A includes a laser light source A1, an attenuator A2, an emitted light adjustment unit A3, a beam expander A4, a polarization control unit A5, a focusing optical unit A6, reflection mirrors A7-A9, etc.
 ・レーザ光源
 レーザ光源A1は、照明光としてレーザビームを出射するユニットである。評価装置100で試料Wの表面近傍の微小な欠陥を検出する場合、試料Wの内部に浸透し難い短波長(波長355nm以下)の紫外又は真空紫外で出力2W以上の高出力のレーザビームを発振するものがレーザ光源A1として用いられる。評価装置100で試料Wの内部の欠陥を検出する場合、波長が長く試料Wの内部に浸透し易い可視又は赤外のレーザビームを発振するものがレーザ光源A1として用いられる。
Laser Light Source The laser light source A1 is a unit that emits a laser beam as illumination light. When the evaluation device 100 detects minute defects near the surface of the sample W, the laser light source A1 is a unit that emits a high-output laser beam of 2 W or more in ultraviolet or vacuum ultraviolet with a short wavelength (wavelength of 355 nm or less) that does not easily penetrate into the inside of the sample W. When the evaluation device 100 detects defects inside the sample W, the laser light source A1 is a unit that emits a visible or infrared laser beam with a long wavelength that easily penetrates into the inside of the sample W.
 ・アッテネータ
 図4はアッテネータA2を抜き出して表した模式図である。アッテネータA2は、レーザ光源A1からの照明光の光強度を減衰させるユニットであり、本実施例では、第1偏光板A2a、1/2波長板A2b、第2偏光板A2cを組み合わせた構成を例示している。1/2波長板A2bは、照明光の光軸周りに回転可能に構成されている。アッテネータA2に入射した照明光は、第1偏光板A2aで直線偏光に変換された後、1/2波長板A2bの遅相軸方位角に偏光方向が調整されて第2偏光板A2cを通過する。1/2波長板A2bの方位角調整により、照明光の光強度が任意の比率で減衰される。アッテネータA2に入射する照明光の直線偏光度が十分に高い場合、第1偏光板A2aは省略可能である。アッテネータA2には、入射する照明光と減光率との関係が事前に較正されたものを用いる。なお、アッテネータA2は、図4に例示した構成には限定されず、グラデーション濃度分布を持つNDフィルタを用いて構成することもでき、濃度の異なる複数のNDフィルタの組み合わせにより減衰効果が調整可能な構成とすることができる。
Attenuator FIG. 4 is a schematic diagram showing the attenuator A2. The attenuator A2 is a unit that attenuates the light intensity of the illumination light from the laser light source A1. In this embodiment, the attenuator A2 is a combination of a first polarizing plate A2a, a half-wave plate A2b, and a second polarizing plate A2c. The half-wave plate A2b is configured to be rotatable around the optical axis of the illumination light. The illumination light incident on the attenuator A2 is converted into linearly polarized light by the first polarizing plate A2a, and then the polarization direction is adjusted to the slow axis azimuth angle of the half-wave plate A2b and passes through the second polarizing plate A2c. The light intensity of the illumination light is attenuated at an arbitrary ratio by adjusting the azimuth angle of the half-wave plate A2b. If the degree of linear polarization of the illumination light incident on the attenuator A2 is sufficiently high, the first polarizing plate A2a can be omitted. For the attenuator A2, an attenuator in which the relationship between the incident illumination light and the light attenuation rate is calibrated in advance is used. It should be noted that the attenuator A2 is not limited to the configuration illustrated in FIG. 4, but can also be configured using an ND filter having a gradation density distribution, and can be configured such that the attenuation effect can be adjusted by combining multiple ND filters having different densities.
 ・出射光調整ユニット
 図1に示した出射光調整ユニットA3は、アッテネータA2で減衰した照明光の光軸の角度を調整するユニットであり、本実施例では複数の反射ミラーA3a,A3bを含んで構成されている。反射ミラーA3a,A3bで照明光を順次反射する構成であるが、本実施例においては、反射ミラーA3aに対する照明光の入射・出射面が、反射ミラーA3bに対する照明光の入射・出射面に直交するように構成されている。入射・出射面とは、反射ミラーに入射する光の光軸と反射ミラーから出射される光の光軸を含む面である。反射ミラーA3aに照明光が+X方向に入射する構成とする場合、模式的な図1とは異なるが、例えば照明光は反射ミラーA3aで+Y方向に、その後反射ミラーA3bで+Z方向に進行方向を変える。反射ミラーA3aに対する照明光の入射・出射面をXY平面、反射ミラーA3bに対する入射・出射面をYZ平面とする例である。そして、反射ミラーA3a,A3bには、反射ミラーA3a,A3bをそれぞれ並進移動させる機構(不図示)及びチルトさせる機構(不図示)が備わっている。反射ミラーA3a,A3bは、例えば自己に対する照明光の入射方向又は出射方向に平行移動し、また入射・出射面との法線周りにチルトする。これにより、例えば出射光調整ユニットA3から+Z方向に出射する照明光の光軸について、XZ平面内におけるオフセット量及び角度と、YZ面内におけるオフセット量及び角度とを独立して調整することができる。本実施例では2枚の反射ミラーA3a,A3bを使用した構成を例示しているが、3枚以上の反射ミラーを用いた構成としても構わない。
Emitted light adjustment unit The emitted light adjustment unit A3 shown in FIG. 1 is a unit that adjusts the angle of the optical axis of the illumination light attenuated by the attenuator A2, and in this embodiment, it is configured to include multiple reflecting mirrors A3a and A3b. The reflecting mirrors A3a and A3b are configured to sequentially reflect the illumination light, but in this embodiment, the incident and exit surfaces of the illumination light to the reflecting mirror A3a are configured to be perpendicular to the incident and exit surfaces of the illumination light to the reflecting mirror A3b. The incident and exit surfaces are surfaces that include the optical axis of the light incident on the reflecting mirror and the optical axis of the light emitted from the reflecting mirror. In a configuration in which the illumination light is incident on the reflecting mirror A3a in the +X direction, which is different from the schematic FIG. 1, for example, the illumination light changes its traveling direction to the +Y direction by the reflecting mirror A3a and then to the +Z direction by the reflecting mirror A3b. In this example, the incident and exit surfaces of the illumination light to the reflecting mirror A3a are the XY plane, and the incident and exit surfaces to the reflecting mirror A3b are the YZ plane. The reflecting mirrors A3a and A3b are provided with a mechanism (not shown) for translating the reflecting mirrors A3a and A3b and a mechanism (not shown) for tilting the reflecting mirrors A3a and A3b. The reflecting mirrors A3a and A3b move, for example, in parallel in the incident or outgoing direction of the illumination light with respect to themselves, and tilt around the normal to the incident and outgoing surfaces. This allows the offset amount and angle in the XZ plane and the offset amount and angle in the YZ plane to be independently adjusted for the optical axis of the illumination light emitted in the +Z direction from the outgoing light adjustment unit A3. In this embodiment, a configuration using two reflecting mirrors A3a and A3b is illustrated, but a configuration using three or more reflecting mirrors may be used.
 ・ビームエキスパンダ
 ビームエキスパンダA4は、入射する照明光の光束直径を拡大するユニットであり、複数のレンズA4a,A4bを有する。レンズA4aとして凹レンズ、レンズA4bとして凸レンズを用いたガリレオ型をビームエキスパンダA4の一例として挙げることができる。ビームエキスパンダA4にはレンズA4a,A4bの間隔調整機構(ズーム機構)が備わっており、レンズA4a,A4bの間隔を調整することで光束直径の拡大率が変わる。ビームエキスパンダA4に入射する照明光が平行光束でない場合、レンズA4a,A4bの間隔調整によって光束直径と併せてコリメート(光束の準平行光化)も可能である。但し、光束のコリメートについては、ビームエキスパンダA4の上流にビームエキスパンダA4とは別個に設置したコリメートレンズで行う構成としても良い。
Beam Expander The beam expander A4 is a unit that expands the diameter of the luminous flux of the incident illumination light, and has a plurality of lenses A4a and A4b. An example of the beam expander A4 is a Galilean type that uses a concave lens as the lens A4a and a convex lens as the lens A4b. The beam expander A4 is provided with a mechanism for adjusting the distance between the lenses A4a and A4b (zoom mechanism), and the expansion rate of the luminous flux diameter changes by adjusting the distance between the lenses A4a and A4b. If the illumination light incident on the beam expander A4 is not a parallel luminous flux, collimation (quasi-parallelization of the luminous flux) is also possible by adjusting the distance between the lenses A4a and A4b. However, the collimation of the luminous flux may be performed by a collimating lens installed upstream of the beam expander A4 separately from the beam expander A4.
 なお、ビームエキスパンダA4は、2軸(2自由度)以上の並進ステージに設置され、入射する照明光と中心が一致するように位置が調整できるように構成されている。また、入射する照明光と光軸が一致するように、ビームエキスパンダA4には2軸(2自由度)以上のあおり角調整機能も備わっている。 Beam expander A4 is installed on a translation stage with two or more axes (two degrees of freedom) and is configured so that its position can be adjusted so that its center coincides with the incident illumination light. Beam expander A4 also has a swing angle adjustment function with two or more axes (two degrees of freedom) so that the incident illumination light coincides with the optical axis.
 また、特に図示していないが、照明光学系Aの光路の途中において、ビームエキスパンダA4に入射する照明光の状態がビームモニタによって計測される。 Although not specifically shown, the state of the illumination light entering the beam expander A4 is measured by a beam monitor midway along the optical path of the illumination optical system A.
 ・偏光制御ユニット
 偏光制御ユニットA5は、照明光の偏光状態を制御する光学系であり、1/2波長板A5a及び1/4波長板A5bを含んで構成されている。例えば、後述する反射ミラーA7を光路に入れて試料Wを斜めに照明する場合、偏光制御ユニットA5により照明光をP偏光とすることで、P偏光以外の偏光に比べて試料Wの表面からの散乱光量を増加させることができる。試料Wの表面に酸化膜がある場合、膜の材質と厚さによってはS偏光を用いることでP偏光よりも試料表面からの散乱光量を増加させることができる。試料Wに応じて偏光を選択することで、ヘイズ光が発生し易い条件と発生し難い条件とを切り換え、欠陥検査の感度を向上させたり、ヘイズ光の、試料特性に対する感度を向上したりすることができる。例えばヘイズ光による出力で、試料Wの状態を評価する場合、照明光をS偏光にすると有利である。偏光制御ユニットA5により照明光を円偏光にしたりP偏光とS偏光の中間の45度偏光にしたりすることも可能である。
Polarization control unit The polarization control unit A5 is an optical system that controls the polarization state of the illumination light, and is configured to include a half-wave plate A5a and a quarter-wave plate A5b. For example, when a reflecting mirror A7 described later is inserted in the optical path to illuminate the sample W obliquely, the amount of scattered light from the surface of the sample W can be increased compared to polarized light other than P-polarized light by making the illumination light P-polarized by the polarization control unit A5. When an oxide film is present on the surface of the sample W, the amount of scattered light from the sample surface can be increased more than P-polarized light by using S-polarized light depending on the material and thickness of the film. By selecting the polarization according to the sample W, it is possible to switch between conditions under which haze light is likely to occur and conditions under which it is difficult to occur, thereby improving the sensitivity of defect inspection and improving the sensitivity of haze light to sample characteristics. For example, when the state of the sample W is evaluated using the output of haze light, it is advantageous to use S-polarized illumination light. It is also possible to use the polarization control unit A5 to make the illumination light circularly polarized or 45-degree polarized light intermediate between P-polarized light and S-polarized light.
 ・反射ミラー
 図1に示したように、反射ミラーA7は、駆動機構(不図示)により矢印方向に平行移動し、試料Wに向かう照明光の光路に対して出入りする。これにより、試料Wに対する照明光の入射経路が切り替わる。反射ミラーA7を光路に挿入することで、上記の通り偏光制御ユニットA5から出射した照明光は、反射ミラーA7で反射して集光光学ユニットA6及び反射ミラーA8を介し試料Wに斜めに入射する。このように試料Wの表面の法線に対し傾斜した方向から試料Wに照明光を入射させることを、本願明細書では「斜入射照明」と記載する。他方、反射ミラーA7を光路から外すと、偏光制御ユニットA5から出射した照明光は、反射ミラーA9、偏光ビームスプリッタB’3、偏光制御ユニットB’2、反射ミラーB’1、検出光学系B3を介して試料Wに垂直に入射する。このように試料Wの表面に対し垂直に照明光を入射させることを、本願明細書では「垂直照明」と記載する。
Reflecting Mirror As shown in FIG. 1, the reflecting mirror A7 is moved in parallel in the direction of the arrow by a driving mechanism (not shown) and enters and exits the optical path of the illumination light toward the sample W. This switches the incidence path of the illumination light to the sample W. By inserting the reflecting mirror A7 into the optical path, the illumination light emitted from the polarization control unit A5 as described above is reflected by the reflecting mirror A7 and enters the sample W obliquely via the focusing optical unit A6 and the reflecting mirror A8. In this specification, the illumination light is made to enter the sample W from a direction oblique to the normal to the surface of the sample W in this way, which is referred to as "oblique incidence illumination". On the other hand, when the reflecting mirror A7 is removed from the optical path, the illumination light emitted from the polarization control unit A5 is made to enter the sample W perpendicularly via the reflecting mirror A9, the polarizing beam splitter B'3, the polarization control unit B'2, the reflecting mirror B'1, and the detection optical system B3. In this specification, the illumination light is made to enter the sample W perpendicularly to the surface of the sample W in this way, which is referred to as "vertical illumination".
 図5及び図6は照明光学系Aにより斜方から試料Wの表面に導かれる照明光の光軸と照明強度分布形状との位置関係を表す模式図である。図5は試料Wに入射する照明光の入射面で試料Wを切断した断面を模式的に表している。図6は試料Wに入射する照明光の入射面に直交し試料Wの表面の法線を含む面で試料Wを切断した断面を模式的に表している。入射面とは、試料Wに入射する照明光の光軸OAと試料Wの表面の法線とを含む面である。なお、図5及び図6では照明光学系Aの一部を抜き出して表しており、例えば出射光調整ユニットA3や反射ミラーA7,A8は図示省略してある。 FIGS. 5 and 6 are schematic diagrams showing the positional relationship between the optical axis of the illumination light guided obliquely to the surface of the sample W by the illumination optical system A and the illumination intensity distribution shape. FIG. 5 shows a schematic cross-section of the sample W cut at the plane of incidence of the illumination light incident on the sample W. FIG. 6 shows a schematic cross-section of the sample W cut at a plane that is perpendicular to the plane of incidence of the illumination light incident on the sample W and includes the normal to the surface of the sample W. The plane of incidence is a plane that includes the optical axis OA of the illumination light incident on the sample W and the normal to the surface of the sample W. Note that FIGS. 5 and 6 show only a portion of the illumination optical system A, and for example, the exit light adjustment unit A3 and the reflecting mirrors A7 and A8 are not shown.
 前述した通り、反射ミラーA7を光路に挿入する場合、レーザ光源A1から射出された照明光は、集光光学ユニットA6で集光され、反射ミラーA8で反射して試料Wに斜めに入射する。このように照明光学系Aは、試料Wの表面に照明光を斜めに入射させられるように構成されている。この斜入射照明は、アッテネータA2で光強度、ビームエキスパンダA4で光束直径、偏光制御ユニットA5で偏光をそれぞれ調整され、入射面内において照明強度分布が均一化される。図5に示した照明強度分布(照明プロファイル)LD1のように、試料Wに形成されるビームスポットは、s2方向にガウス分布状の光強度分布を持つ。 As mentioned above, when the reflecting mirror A7 is inserted into the optical path, the illumination light emitted from the laser light source A1 is collected by the collecting optical unit A6, reflected by the reflecting mirror A8, and obliquely incident on the sample W. In this way, the illumination optical system A is configured to make the illumination light obliquely incident on the surface of the sample W. This oblique incidence illumination has its light intensity adjusted by the attenuator A2, its light beam diameter adjusted by the beam expander A4, and its polarization adjusted by the polarization control unit A5, so that the illumination intensity distribution is uniform within the incident surface. As shown in the illumination intensity distribution (illumination profile) LD1 shown in Figure 5, the beam spot formed on the sample W has a Gaussian light intensity distribution in the s2 direction.
 入射面と試料表面に直交する面内では、図6に示した照明強度分布(照明プロファイル)LD2のように、ビームスポットは光軸OAの中心に対して周辺の強度が弱い光強度分布を持つ。この光強度分布は、例えば、集光光学ユニットA6に入射する光の強度分布を反映したガウス分布、又は集光光学ユニットA6の開口形状を反映した第一種第一次のベッセル関数若しくはsinc関数に類似した強度分布となる。 In the plane perpendicular to the incident plane and the sample surface, the beam spot has a light intensity distribution with weak intensity at the periphery relative to the center of the optical axis OA, as shown in the illumination intensity distribution (illumination profile) LD2 in Figure 6. This light intensity distribution is, for example, a Gaussian distribution that reflects the intensity distribution of the light incident on the focusing optical unit A6, or an intensity distribution similar to a first-order Bessel function of the first kind or a sinc function that reflects the aperture shape of the focusing optical unit A6.
 また、斜入射照明の試料Wに対する入射角(試料表面の法線に対する入射光軸の傾き角)は、反射ミラーA7,A8の位置と角度で微小な欠陥の検出に適した角度に調整される。反射ミラーA8の角度は調整機構A8aで調整される。例えば試料Wに対する照明光の入射角が大きいほど(試料表面と入射光軸とのなす照明仰角が小さいほど)、試料表面の微小な欠陥からの散乱光に対してノイズとなるヘイズ光が弱まる。 In addition, the angle of incidence of the oblique incidence illumination on the sample W (the tilt angle of the incident optical axis with respect to the normal to the sample surface) is adjusted to an angle suitable for detecting minute defects by adjusting the positions and angles of the reflecting mirrors A7 and A8. The angle of the reflecting mirror A8 is adjusted by an adjustment mechanism A8a. For example, the greater the angle of incidence of the illumination light on the sample W (the smaller the illumination elevation angle between the sample surface and the incident optical axis), the weaker the haze light that becomes noise in relation to the scattered light from minute defects on the sample surface.
 -検出光学系-
 検出光学系Bn(n=1,2…)は、試料表面からの散乱光を集光するユニットであり、集光レンズ(対物レンズ)を含む複数の光学素子を含んで構成されている。検出光学系Bnのnは検出光学系の数であり、本実施例の評価装置100では13の検出光学系が備わっている(n=13)。以下、特に断りなく検出光学系Bnと記載した場合には、検出光学系B1-B13のうちの任意の検出光学系を意味することとする。センサCn,Cn’についても同様とする。但し、検出光学系Bnの数は13に限定されず適宜増減され得る。また、検出光学系Bnの開口(対物レンズ)のレイアウトも適宜変更可能である。
-Detection optical system-
The detection optical system Bn (n=1, 2, . . . ) is a unit that collects scattered light from the sample surface, and is configured to include a plurality of optical elements including a collecting lens (objective lens). The n in the detection optical system Bn is the number of detection optical systems, and the evaluation device 100 of this embodiment is equipped with 13 detection optical systems (n=13). Hereinafter, when the detection optical system Bn is described without special notice, it means any detection optical system among the detection optical systems B1-B13. The same applies to the sensors Cn and Cn'. However, the number of detection optical systems Bn is not limited to 13 and can be increased or decreased as appropriate. In addition, the layout of the aperture (objective lens) of the detection optical system Bn can also be changed as appropriate.
 図7は上方から見て検出光学系Bnが散乱光を捕集する領域を表した図であり、検出光学系Bnの各対物レンズの配置に対応している。図8は検出光学系Bnのうち低角及び高角の光学系の天頂角を模式的に表した図、図9は低角の検出光学系の方位角を表す平面図、図10は高角の検出光学系の方位角を表す平面図である。 Fig. 7 is a diagram showing the area where the detection optical system Bn collects scattered light as viewed from above, which corresponds to the arrangement of each objective lens of the detection optical system Bn. Fig. 8 is a diagram showing the zenith angles of the low-angle and high-angle optical systems of the detection optical system Bn, Fig. 9 is a plan view showing the azimuth angle of the low-angle detection optical system, and Fig. 10 is a plan view showing the azimuth angle of the high-angle detection optical system.
 以下の説明において、試料Wへの斜入射照明の入射方向を基準として、上から見て試料Wの表面上のビームスポットBSに対して入射光の進行方向(図7中の右方向)を前方、反対方向(同左方向)を後方とする。ビームスポットBSに対して同図中の下側が右側、上側が左側である。また、ビームスポットBSを通る試料Wの法線N(図8)に対し、各検出光学系Bnの入射光軸(開口の中心線)のなす角φ2(図8)を天頂角と記載する。また、平面視において、斜入射照明の入射面に対して各検出光学系Bnの入射光軸(開口の中心線)がなす角φ1(図9、図10)を方位角と記載する。 In the following explanation, the incident direction of the oblique incidence illumination on the sample W is used as a reference, and the traveling direction of the incident light with respect to the beam spot BS on the surface of the sample W when viewed from above (to the right in Figure 7) is referred to as the front, and the opposite direction (to the left in the same figure) is referred to as the rear. The lower side in the figure with respect to the beam spot BS is the right side, and the upper side is the left side. Furthermore, the angle φ2 (Figure 8) that the incident optical axis (center line of the aperture) of each detection optical system Bn makes with the normal N (Figure 8) of the sample W that passes through the beam spot BS is described as the zenith angle. Furthermore, the angle φ1 (Figures 9 and 10) that the incident optical axis (center line of the aperture) of each detection optical system Bn makes with the incident plane of the oblique incidence illumination in a planar view is described as the azimuth angle.
 図7-図10に示すように、検出光学系Bnは、ビームスポットBSに対する方向(方位角φ1や天頂角φ2)がそれぞれ異なるように配置されている。本実施例において、検出光学系Bnの各対物レンズ(開口α1-α6,β1-β6,γ)は、試料Wに対するビームスポットBSを中心とする球(天球)の上半の半球面に沿って配置されている。開口α1-α6,β1-β6,γに入射した光が各々対応する検出光学系Bnで集光される。 As shown in Figures 7 to 10, the detection optical systems Bn are arranged so that their directions (azimuth angle φ1 and zenith angle φ2) relative to the beam spot BS are different. In this embodiment, the objective lenses (apertures α1-α6, β1-β6, γ) of the detection optical system Bn are arranged along the upper hemispherical surface of a sphere (celestial sphere) centered on the beam spot BS on the sample W. The light incident on the apertures α1-α6, β1-β6, γ is focused by the corresponding detection optical system Bn.
 開口γは、天頂に重なっており(法線Nと交わっており)、試料Wの表面に形成されるビームスポットBSの真上に位置する。 Aperture γ overlaps the zenith (intersects with normal N) and is located directly above the beam spot BS formed on the surface of sample W.
 開口α1-α6は、低角でビームスポットBSの周囲360度を囲う環状の領域を等分するようにして開口している。開口α1-α6は、平面視で斜入射照明の入射方向から左回りに開口α1,α2,α3,α4,α5,α6の順に並んでいる。また、開口α1-α6は、斜入射照明の入射光路及び正反射光路を避けてレイアウトされている。開口α1-α3はビームスポットBSに対して右側に配置され、開口α1はビームスポットBSの右後方、開口α2は右側方、開口α3は右前方に位置する。開口α4-α6はビームスポットBSに対して左側に配置され、開口α4はビームスポットBSの左前方、開口α5は左側方、開口α6は左後方に位置する。開口α4,α5,α6の配置は、斜入射照明の入射面について開口α3,α2,α1と左右対称である。  The openings α1-α6 are opened at a low angle so as to equally divide an annular area surrounding 360 degrees around the beam spot BS. The openings α1-α6 are arranged in the order of openings α1, α2, α3, α4, α5, α6 in a counterclockwise direction from the incident direction of the oblique incidence illumination in a plan view. The openings α1-α6 are also laid out to avoid the incident light path of the oblique incidence illumination and the regular reflection light path. The openings α1-α3 are arranged on the right side of the beam spot BS, the opening α1 is located to the right rear of the beam spot BS, the opening α2 is located to the right, and the opening α3 is located to the right front. The openings α4-α6 are arranged on the left side of the beam spot BS, the opening α4 is located to the left front of the beam spot BS, the opening α5 is located to the left, and the opening α6 is located to the left rear. The arrangement of the openings α4, α5, α6 is symmetrical to the openings α3, α2, α1 with respect to the incident plane of the oblique incidence illumination.
 開口β1-β6は、高角(開口α1-α6と開口γとの間)においてビームスポットBSの周囲360度を囲う環状の領域を等分するようにして開口している。開口β1-β6は、平面視で斜入射照明の入射方向から左回りに開口β1,β2,β3,β4,β5,β6の順に並んでいる。開口β1-β6のうち、開口β1,β4は入射面に交差する位置にレイアウトされており、開口β1はビームスポットBSに対して後方、開口β4は前方に位置する。開口β2,β3はビームスポットBSに対して右側に配置され、開口β2はビームスポットBSの右後方、開口β3は右前方に位置する。開口β5,β6はビームスポットBSに対して左側に配置され、開口β5はビームスポットBSの左前方、開口β6は左後方に位置する。 Apertures β1-β6 are opened so as to equally divide an annular area surrounding 360 degrees around beam spot BS at high angles (between apertures α1-α6 and aperture γ). Apertures β1-β6 are arranged in the order of apertures β1, β2, β3, β4, β5, β6 in a counterclockwise direction from the incidence direction of oblique incidence illumination in a plan view. Of apertures β1-β6, apertures β1 and β4 are laid out at a position that intersects with the incidence plane, aperture β1 is located rearward relative to beam spot BS, and aperture β4 is located forward. Apertures β2 and β3 are arranged on the right side of beam spot BS, aperture β2 is located to the rear right of beam spot BS, and aperture β3 is located to the front right. Apertures β5 and β6 are arranged on the left side of beam spot BS, aperture β5 is located to the front left of beam spot BS, and aperture β6 is located to the rear left.
 ビームスポットBSから様々な方向に散乱する散乱光が開口α1-α6,β1-β6,γに入射し、それぞれ検出光学系Bnで集光され、対応するセンサCn,Cn’に導かれる。 The scattered light from the beam spot BS in various directions enters the apertures α1-α6, β1-β6, and γ, and is collected by the detection optical system Bn and guided to the corresponding sensors Cn and Cn'.
 図11は検出光学系の構成図の例を抜き出して表した模式図である。本実施例の評価装置100は、各検出光学系Bn(又は一部の検出光学系)が図11に示したように構成されており、透過させる散乱光の偏光方向を偏光板Bbで制御することができる。具体的には、検出光学系Bnは、対物レンズ(集光レンズ)Ba、偏光板Bb、偏光ビームスプリッタBc、結像レンズ(チューブレンズ)Bd,Bd’、視野絞りBe,Be’、センサCn,Cn’を含んで構成されている。 FIG. 11 is a schematic diagram showing an example of the configuration of the detection optical system. In the evaluation device 100 of this embodiment, each detection optical system Bn (or a part of the detection optical system) is configured as shown in FIG. 11, and the polarization direction of the scattered light that is transmitted can be controlled by the polarizing plate Bb. Specifically, the detection optical system Bn includes an objective lens (collecting lens) Ba, a polarizing plate Bb, a polarizing beam splitter Bc, imaging lenses (tube lenses) Bd, Bd', field stops Be, Be', and sensors Cn, Cn'.
 試料Wから検出光学系Bnに入射した散乱光は、対物レンズBaで集光されてコリメートされ、偏光板Bbでその偏光方向が制御される。偏光板Bbは1/2波長板であり、駆動機構(不図示)により回転可能である。制御装置E1により駆動機構を制御し、偏光板Bbの回転角を調整することでセンサに入射する散乱光の偏光方向が制御される。 The scattered light incident on the detection optical system Bn from the sample W is collected and collimated by the objective lens Ba, and its polarization direction is controlled by the polarizing plate Bb. The polarizing plate Bb is a half-wave plate that can be rotated by a driving mechanism (not shown). The driving mechanism is controlled by the control device E1, and the polarization direction of the scattered light incident on the sensor is controlled by adjusting the rotation angle of the polarizing plate Bb.
 偏光板Bbで偏光制御された散乱光は、偏光方向に応じて偏光ビームスプリッタBcで光路分岐されて結像レンズBd,Bd’に入射する。偏光板Bbと偏光ビームスプリッタBcの組み合わせにより、任意の方向の直線偏光成分がカットされる。楕円偏光を含む任意の偏光成分をカットする場合、互いに独立して回転可能な1/4波長板と1/2波長板とで偏光板Bbを構成する。 The scattered light, whose polarization has been controlled by the polarizing plate Bb, has its optical path split by the polarizing beam splitter Bc according to the polarization direction and enters the imaging lenses Bd and Bd'. The combination of the polarizing plate Bb and the polarizing beam splitter Bc cuts linearly polarized light components in any direction. To cut any polarized light component, including elliptically polarized light, the polarizing plate Bb is composed of a quarter-wave plate and a half-wave plate that can be rotated independently of each other.
 結像レンズBdを通過して集光された散乱照明光は、視野絞りBeを介してセンサCnで光電変換され、信号処理装置Dにその検出信号が入力される。結像レンズBd’を通過して集光された散乱照明光は、視野絞りBe’を介してセンサCn’で光電変換され、信号処理装置Dにその検出信号が入力される。視野絞りBe,Be’は、その中心が検出光学系Bnの光軸に合うよう設置され、試料WのビームスポットBSの中心から離れた位置から発生する光、検出光学系Bnの内部で発生した迷光等、検査目的の位置以外から発生した光をカットする。それにより欠陥検出の妨げになるノイズを抑制する効果を持つ。 The scattered illumination light that passes through the imaging lens Bd and is collected is photoelectrically converted by the sensor Cn via the field diaphragm Be, and the detection signal is input to the signal processing device D. The scattered illumination light that passes through the imaging lens Bd' and is collected is photoelectrically converted by the sensor Cn' via the field diaphragm Be', and the detection signal is input to the signal processing device D. The field diaphragms Be, Be' are installed so that their centers are aligned with the optical axis of the detection optical system Bn, and cut out light generated from positions other than the position to be inspected, such as light generated from positions away from the center of the beam spot BS of the sample W and stray light generated inside the detection optical system Bn. This has the effect of suppressing noise that interferes with defect detection.
 上記構成によれば、同一座標で発生した散乱光について互いに直交する2つの偏光成分を同時に検出でき、偏光特性が異なる複数種の欠陥やヘイズ光を検出する場合に有効である。 The above configuration makes it possible to simultaneously detect two mutually orthogonal polarized components of scattered light generated at the same coordinates, which is effective when detecting multiple types of defects or haze light with different polarization characteristics.
 密に配置した複数のレンズで対物レンズBaを構成するに当たり、レンズ間の隙間による検出光量のロスを低減するため、図11の例のように対物レンズBaの外周部を試料Wや他の対物レンズと干渉しないように切り欠く場合がある。 When constructing the objective lens Ba from multiple closely-spaced lenses, in order to reduce loss of detected light due to gaps between the lenses, the outer periphery of the objective lens Ba may be cut out so as not to interfere with the sample W or other objective lenses, as in the example of Figure 11.
 -センサ-
 センサCn,Cn’は、対応する検出光学系で集光された散乱光を電気信号に変換して検出信号を出力するセンサである。センサC1(C1’),C2(C2’),C3(C3’)…は、検出光学系B1,B2,B3…に対応している。これらセンサCn,Cn’には、高ゲインで微弱信号を光電変換する例えば光電子増倍管、SiPM(シリコン光電子増倍管)といった単画素のポイントセンサを用いることができる。この他、CCDセンサ、CMOSセンサ、PSD(ポジションセンシングディテクタ)等といった複数画素を一次元又は二次元に配列したセンサを、センサCn,Cn’に用いる場合もある。センサCn,Cn’から出力された検出信号は、信号処理装置Dに随時入力される。
-Sensor-
The sensors Cn and Cn' convert the scattered light collected by the corresponding detection optical system into an electric signal and output the detection signal. The sensors C1 (C1'), C2 (C2'), C3 (C3') ... correspond to the detection optical systems B1, B2, B3 .... For these sensors Cn and Cn', single-pixel point sensors such as photomultiplier tubes and SiPM (silicon photomultiplier tubes) that photoelectrically convert weak signals with high gain can be used. In addition, sensors in which multiple pixels are arranged one-dimensionally or two-dimensionally, such as CCD sensors, CMOS sensors, and PSDs (position sensing detectors), may be used for the sensors Cn and Cn'. The detection signals output from the sensors Cn and Cn' are input to the signal processing device D as needed.
 -制御装置-
 制御装置E1は、評価装置100を統括して制御するコンピュータであり、ROM、RAM、その他の記憶装置の他、CPUやGPU、FPGA等の処理装置(演算制御装置)を含んで構成される。制御装置E1は、入力装置E2やモニタE3、信号処理装置Dと有線又は無線で接続される。入力装置E2は、ユーザが検査条件の設定等を制御装置E1に入力する装置であり、キーボードやマウス、タッチパネル等の各種入力装置を適宜採用することができる。制御装置E1には、回転ステージや並進ステージのエンコーダの出力(ビームスポットBSの試料上のrθ座標)や、オペレータにより入力装置E2を介して入力される検査条件等が入力される。検査条件には、試料Wの種類や大きさ、形状、材質、照明条件、検出条件等の他、例えば、各センサCn,Cn’の感度設定、欠陥判定やエージング条件評価(プロセス装置のエージング条件の評価)に用いるゲイン値やしきい値が含まれる。
-Control device-
The control device E1 is a computer that controls the evaluation device 100, and includes a processing device (arithmetic control device) such as a CPU, a GPU, and an FPGA in addition to a ROM, a RAM, and other storage devices. The control device E1 is connected to the input device E2, the monitor E3, and the signal processing device D by wire or wirelessly. The input device E2 is a device through which a user inputs settings of inspection conditions, etc. to the control device E1, and various input devices such as a keyboard, a mouse, and a touch panel can be appropriately adopted. The control device E1 receives the output of the encoder of the rotation stage and the translation stage (rθ coordinates of the beam spot BS on the sample), and the inspection conditions input by the operator via the input device E2. The inspection conditions include the type, size, shape, material, illumination conditions, detection conditions, etc. of the sample W, as well as, for example, the sensitivity settings of each sensor Cn, Cn', and gain values and threshold values used for defect judgment and aging condition evaluation (evaluation of the aging conditions of the process device).
 また、制御装置E1は、検査条件に応じてステージSTや照明光学系A等の動作を指令する指令信号を出力したり、欠陥の検出信号と同期するビームスポットBSの座標データを信号処理装置Dに出力したりする。制御装置E1はまた、検査条件の設定画面や、試料の検査データ(検査画像等)をモニタE3に表示出力する。検査データは、各センサCn,Cn’の信号を統合して得られる最終的な検査結果の他、これらセンサCn,Cn’による個別の検査結果も表示可能である。 The control device E1 also outputs command signals to command the operation of the stage ST, illumination optical system A, etc. according to the inspection conditions, and outputs coordinate data of the beam spot BS synchronized with the defect detection signal to the signal processing device D. The control device E1 also displays and outputs an inspection condition setting screen and sample inspection data (inspection image, etc.) on the monitor E3. In addition to the final inspection result obtained by combining the signals from each sensor Cn, Cn', the inspection data can also display the individual inspection results from these sensors Cn, Cn'.
 また、図1に示したように、制御装置E1には欠陥検査用の電子顕微鏡であるReview SEM(Review Scanning Electron Microscope)が接続される場合もある。この場合には、Review SEMからの欠陥検査結果のデータを制御装置E1で受信し、信号処理装置Dに送信することも可能である。 Also, as shown in Figure 1, the control device E1 may be connected to a Review SEM (Review Scanning Electron Microscope), which is an electron microscope used for defect inspection. In this case, the control device E1 can receive data on the defect inspection results from the Review SEM and transmit it to the signal processing device D.
 なお、この制御装置E1は、評価装置100の装置本体(ステージや照明光学系、検出光学系、センサ等)とユニットをなす単一のコンピュータで構成することができるが、ネットワークで接続された複数のコンピュータで構成することもできる。例えば、ネットワークで接続されたコンピュータに検査条件を入力し、装置本体に付属するコンピュータで装置本体や信号処理装置Dの制御を実行する構成とすることができる。 The control device E1 can be configured as a single computer that forms a unit with the main body of the evaluation device 100 (stage, illumination optical system, detection optical system, sensor, etc.), but it can also be configured as multiple computers connected via a network. For example, the inspection conditions can be input to a computer connected via a network, and a computer attached to the main body of the device can be configured to control the main body of the device and the signal processing device D.
 -信号処理装置-
 信号処理装置Dは、検出光学系BnのセンサCn,Cn’から入力される検出信号を処理して試料Wの欠陥を検出する機能を有するコンピュータである。信号処理装置Dは、制御装置E1と同じく、RAM、ROM、HDD、SSDその他の記憶装置の少なくとも1つを含むメモリD1(図12)の他、CPUやGPU、FPGA等の処理装置を含んで構成される。この信号処理装置Dは、評価装置100の装置本体(ステージや照明光学系、検出光学系、センサ等)とユニットをなす単一のコンピュータで構成することができるが、ネットワークで接続された複数のコンピュータで構成することもできる。例えば、装置本体に付属するコンピュータで装置本体からの欠陥の検出信号を取得し、必要に応じて検出データを加工してサーバに送信し、欠陥の検出や分類等の処理をサーバで実行する構成とすることができる。信号処理装置Dと制御装置E1を1つのコンピュータで兼ねる構成とすることも考えられる。
- Signal processing device -
The signal processing device D is a computer having a function of processing detection signals input from the sensors Cn, Cn' of the detection optical system Bn to detect defects in the sample W. The signal processing device D is configured to include a memory D1 (FIG. 12) including at least one of RAM, ROM, HDD, SSD, and other storage devices, as well as a processing device such as a CPU, GPU, or FPGA, just like the control device E1. This signal processing device D can be configured as a single computer that forms a unit with the main body of the evaluation device 100 (stage, illumination optical system, detection optical system, sensor, etc.), but can also be configured as multiple computers connected by a network. For example, a configuration can be adopted in which a computer attached to the main body of the device acquires defect detection signals from the main body of the device, processes the detection data as necessary and transmits it to a server, and the server executes processes such as defect detection and classification. A configuration in which the signal processing device D and the control device E1 are both performed by a single computer is also conceivable.
 図12は本発明の第1実施例に係るエージング条件評価装置に備わった信号処理装置Dの要部の機能ブロック図の一例である。図12に示すように、信号処理装置Dには、メモリD1、欠陥判定回路D2、ローパスフィルタ回路D3、エージング条件評価回路D4が備わっている。 FIG. 12 is an example of a functional block diagram of the main parts of a signal processing device D provided in an aging condition evaluation device according to a first embodiment of the present invention. As shown in FIG. 12, the signal processing device D is provided with a memory D1, a defect determination circuit D2, a low-pass filter circuit D3, and an aging condition evaluation circuit D4.
 試料Wをスキャン中、信号処理装置Dには、センサCn,Cn’から検出信号(散乱光強度信号)が、制御装置E1からステージSTのエンコーダ出力(ビームスポットBSの試料上のrθ座標)が入力される。信号処理装置Dでは、これら検出信号とエンコーダ出力とが対応付けられ、メモリD1に記録される。 While scanning the sample W, the signal processing device D receives detection signals (scattered light intensity signals) from the sensors Cn and Cn', and the encoder output of the stage ST (rθ coordinate of the beam spot BS on the sample) from the control device E1. In the signal processing device D, these detection signals and encoder outputs are associated with each other and recorded in the memory D1.
 欠陥判定回路D2は、センサCn,Cn’から入力される検出信号を時系列順にメモリD1から読み出し、これら検出信号が欠陥を検出した欠陥信号であるかを順次判定し、判定結果をメモリD1或いは記憶装置DBに記録し、また制御装置E1に出力する。欠陥判定回路D2では、例えば検出信号の高周波成分が異物等の欠陥に関する欠陥信号として抽出される。高周波成分とは、変動周波数が高い成分、具体的には値の時間変動が予め設定した設定値を超える成分である。制御装置E1は、オペレータの操作に伴って入力される入力装置E2からの操作信号に応じて又は自動的にモニタE3に判定結果を表示出力する。 The defect judgment circuit D2 reads out the detection signals input from the sensors Cn, Cn' from the memory D1 in chronological order, sequentially judges whether these detection signals are defect signals indicating detected defects, records the judgment results in the memory D1 or the storage device DB, and also outputs them to the control device E1. In the defect judgment circuit D2, for example, high-frequency components of the detection signals are extracted as defect signals relating to defects such as foreign matter. High-frequency components are components with high fluctuating frequencies, specifically components whose time fluctuations exceed a preset value. The control device E1 displays and outputs the judgment results on the monitor E3 automatically, or in response to operation signals from the input device E2 input in conjunction with the operation of the operator.
 ローパスフィルタ回路D3は、センサCn,Cn’からの検出信号を時系列順にメモリD1から読み出し、欠陥信号を除くヘイズ信号を試料Wの各領域について抽出し、試料Wの表面のヘイズ信号に座標情報を加えた全面の光強度分布であるヘイズマップを作成する。ヘイズ信号は、試料から得られる光の信号のうち主に低周波成分を指し、主に試料の特性に起因する信号である。ここでは、例えば検出信号の低周波成分、すなわち変動周波数(信号強度の時間変動)が予め設定した設定値よりも低い成分がヘイズ信号として抽出される。光学欠陥検査装置は高速スキャンが可能なため、試料全面に対するヘイズ信号、あるいはそれに基づくヘイズマップを抽出可能である。但し、試料全面ではなく、試料の部分的に診断したい場合も考えられえる。この場合、ヘイズ信号を抽出する領域として、サンプリング点であっても良いし、任意の目の大きさの網目状のメッシュで区画した領域に分けてヘイズ信号を抽出しても良い。 The low-pass filter circuit D3 reads out the detection signals from the sensors Cn and Cn' from the memory D1 in chronological order, extracts the haze signals excluding the defect signals for each region of the sample W, and creates a haze map, which is the light intensity distribution of the entire surface, by adding coordinate information to the haze signals on the surface of the sample W. The haze signal refers to the low-frequency components of the light signals obtained from the sample, and is a signal that is mainly caused by the characteristics of the sample. Here, for example, the low-frequency components of the detection signal, that is, components whose fluctuation frequency (time fluctuation of the signal intensity) is lower than a preset value, are extracted as the haze signal. Since the optical defect inspection device is capable of high-speed scanning, it is possible to extract the haze signal for the entire surface of the sample, or a haze map based on it. However, there may be cases where it is desired to diagnose only a part of the sample, rather than the entire surface. In this case, the region from which the haze signal is extracted may be a sampling point, or the haze signal may be extracted by dividing the region into regions partitioned by a mesh of any mesh size.
 網目状のメッシュで区画した領域に分けてヘイズ信号を抽出する場合、1つの領域について複数のヘイズ信号が取得される。それら複数のヘイズ信号の統計値(平均値、中央値等)をその領域のヘイズ信号とすることができる。領域を区画するメッシュの1辺は、例えば1mm-数mm程度に設定することができる。メッシュの大きさにもよるが、例えば1mmメッシュなら試料表面は6万を超える領域に分割され、精細なヘイズマップが生成される。従って、ヘイズマップには、試料Wの領域毎のヘイズ光の強度データが含まれる。但し、メッシュの大きさは必ずしも小さいほど良いとは限らず、必要十分な範囲でメッシュを大きく設定することで、試料表面の領域数の減少に応じて信号処理装置Dの演算負荷を抑えることができる。 When extracting haze signals by dividing into regions defined by a mesh like mesh, multiple haze signals are obtained for each region. The statistical values (average, median, etc.) of these multiple haze signals can be used as the haze signal for that region. One side of the mesh that divides the region can be set to, for example, about 1 mm to several mm. Although it depends on the size of the mesh, for example, with a 1 mm mesh, the sample surface is divided into more than 60,000 regions, and a detailed haze map is generated. Therefore, the haze map contains the intensity data of the haze light for each region of the sample W. However, the smaller the mesh size, the better, and by setting the mesh to a large size within a necessary and sufficient range, the calculation load on the signal processing device D can be reduced according to the reduction in the number of regions on the sample surface.
 エージング条件評価回路D4は、ローパスフィルタ回路D3で抽出されたヘイズ信号を基に、試料Wを処理したプロセス装置のエージング条件を評価する。エージング条件は、プロセス装置でエージング処理を伴って処理された1ロットの試料のうち少なくとも1枚目に処理された試料Wの全面又は領域毎のヘイズ信号を対応する領域の基準ヘイズ信号と比較して評価される。ヘイズマップの形式で比較しても良い。つまり、信号処理装置Dは、1枚目の試料Wの微視的な表面形状として現れるプロセス装置のチャンバのコンディションの変化を、ヘイズ信号及び基準ヘイズ信号の差に基づき検知する。但し、2枚目以降に処理された試料Wのヘイズ信号と基準ヘイズ信号との比較処理を排除する必要はない。 The aging condition evaluation circuit D4 evaluates the aging conditions of the process equipment that processed the sample W based on the haze signal extracted by the low-pass filter circuit D3. The aging conditions are evaluated by comparing the haze signal of the entire surface or each region of at least the first sample W processed in one lot of samples with aging processing in the process equipment with the reference haze signal of the corresponding region. The comparison may be made in the form of a haze map. In other words, the signal processing device D detects the change in the condition of the chamber of the process equipment, which appears as the microscopic surface shape of the first sample W, based on the difference between the haze signal and the reference haze signal. However, it is not necessary to exclude the comparison process between the haze signal of the second or subsequent sample W processed and the reference haze signal.
 具体的には、1枚目の試料Wの全面又は分割された各領域についてヘイズ信号を対応領域の基準ヘイズ信号と比較し、ヘイズ信号及び基準ヘイズ信号の差分が予め設定された設定値を超える場合、又は領域数が許容値を超える場合にエージング条件の不備が推定される。試料Wで得たヘイズ信号に係るヘイズマップと基準ヘイズ信号に係るヘイズマップの差分画像を生成し、ヘイズ信号及び基準ヘイズ信号の差(輝度差)で同様の判定をするアルゴリズムを採用することもできる。 Specifically, the haze signal for the entire surface or each divided region of the first sample W is compared with the reference haze signal for the corresponding region, and if the difference between the haze signal and the reference haze signal exceeds a preset value, or if the number of regions exceeds an allowable value, a defect in the aging conditions is presumed. An algorithm can also be employed that generates a difference image between a haze map related to the haze signal obtained from sample W and a haze map related to the reference haze signal, and makes a similar judgment based on the difference (brightness difference) between the haze signal and the reference haze signal.
 なお、エージング条件評価回路D4は、プロセス装置に適用されたエージング条件の評価結果についてモニタE3に情報を表示出力する。例えば、エージング条件の評価結果は、メモリD1或いは記憶装置DBに記録されると共に、制御装置E1に出力される。制御装置E1は、オペレータの操作に伴って入力される入力装置E2からの操作信号に応じて又は自動的に、評価結果をモニタE3に表示出力する。 The aging condition evaluation circuit D4 displays and outputs information on the monitor E3 regarding the evaluation results of the aging conditions applied to the process equipment. For example, the evaluation results of the aging conditions are recorded in the memory D1 or the storage device DB, and are also output to the control device E1. The control device E1 displays and outputs the evaluation results on the monitor E3 automatically or in response to an operation signal from the input device E2 input in conjunction with the operation of the operator.
 また、プロセス装置のエージング条件不備の早期把握の観点で、試料Wの欠陥検査に伴ってセンサCn,Cn’から入力される検出信号を信号処理装置Dで逐次処理してエージング条件を評価することが望ましい。但し、試料Wの全面のスキャンで取得された検出信号を記憶装置DBに一旦保存しておき、保存したデータを所望のタイミングで(例えば毎日定刻に)事後処理してエージング条件を評価する構成とすることもできる。 In addition, from the viewpoint of early detection of deficiencies in the aging conditions of the process equipment, it is desirable to evaluate the aging conditions by sequentially processing the detection signals input from the sensors Cn, Cn' in association with the defect inspection of the sample W by the signal processing device D. However, it is also possible to configure the system so that the detection signals acquired by scanning the entire surface of the sample W are temporarily stored in the storage device DB, and the stored data is post-processed at a desired timing (for example, at a fixed time every day) to evaluate the aging conditions.
 加えて、エージング条件評価回路D4は、任意のプロセス装置の適正なエージング条件を設定し提示する機能を持つ。この機能は、例えば半導体ウェハの製造ラインを新規に設計する場合、既存の製造ラインに新たなプロセス装置を導入する場合、既存の製造ラインで新たな半導体を製造する場合等において、適正なエージング条件を新たに決定する際に有用である。適正なエージング条件を設定する場合、エージング条件評価回路D4は、複数のエージング条件の評価及び比較をする。具体的には、新規にエージング条件を決定する場合、エージング条件評価回路D4は、プロセス装置でそれぞれ条件が異なるエージング処理を伴って処理された複数のロットの各1枚目の試料Wのヘイズ信号をそれぞれ基準ヘイズ信号と比較する。これら複数のロットにそれぞれ適用されるエージング条件が、最終的に設定される適正なエージング条件の候補となる。適正なエージング条件の候補となるのは、例えば妥当であると目星をつけた基礎条件に、基礎条件の各パラメータを適宜調整して設定したバリエーションの条件を加えた複数のエージング条件である。そして、エージング条件評価回路D4は、ヘイズ信号と基準ヘイズ信号との差が許容値内でかつ最も小さい試料Wが属するロットに適用されたエージング条件を適正なエージング条件として設定し、例えばモニタE3に表示出力する。 In addition, the aging condition evaluation circuit D4 has a function of setting and presenting appropriate aging conditions for any process equipment. This function is useful when determining new appropriate aging conditions, for example, when designing a new semiconductor wafer manufacturing line, when introducing a new process equipment into an existing manufacturing line, when manufacturing new semiconductors on an existing manufacturing line, etc. When setting appropriate aging conditions, the aging condition evaluation circuit D4 evaluates and compares multiple aging conditions. Specifically, when determining new aging conditions, the aging condition evaluation circuit D4 compares the haze signal of the first sample W of each of multiple lots processed with aging treatments with different conditions in the process equipment with the reference haze signal. The aging conditions applied to each of these multiple lots become candidates for the appropriate aging conditions to be finally set. The candidates for appropriate aging conditions are, for example, multiple aging conditions that add variation conditions set by appropriately adjusting each parameter of the basic conditions to the basic conditions that have been identified as appropriate. Then, the aging condition evaluation circuit D4 sets the aging conditions applied to the lot to which the sample W belongs, for which the difference between the haze signal and the reference haze signal is within the tolerance and is smallest, as the appropriate aging conditions, and displays and outputs the same on, for example, the monitor E3.
 -基準ヘイズ信号-
 本実施例において、エージング条件の評価に用いる基準ヘイズ信号は、センサCn,Cn’のそれぞれについて、試料Wの表面の全面又は所定の領域(本実施例ではrθ座標)毎に規定され、例えば記憶装置DBに格納される。つまり、センサC,C’のそれぞれについて、基準となるヘイズマップが用意される。同一センサについて規定される基準ヘイズ信号は、試料Wの領域毎に異なっても良い。
- Reference haze signal -
In this embodiment, the reference haze signal used to evaluate the aging condition is defined for each of the sensors Cn and Cn' for the entire surface of the sample W or for each predetermined region (rθ coordinate in this embodiment) and is stored in, for example, a storage device DB. That is, a reference haze map is prepared for each of the sensors C and C'. The reference haze signal defined for the same sensor may be different for each region of the sample W.
 基準ヘイズ信号には、例えば評価対象とするエージング条件でエージング処理された1ロットの試料Wのうち最後に処理された試料W(N枚目の試料W)をスキャンして得られる実測値を用いることができる。また、最後に処理された試料Wに限らず、プロセス装置のコンディションが安定するロット後半の任意の試料Wを実測した値、或いは後半(最後を含む)に処理された複数の試料Wの実測値の統計値(平均値や中央値等)を、基準ヘイズ信号とすることもできる。更には、基準ヘイズ信号は、例えば基準試料をスキャンして得たものでも良い。基準試料は、品質検査で基準に適合する試料であり、好ましくは試料Wと同一種でかつ試料Wと同一工程の試料である。その他、基準ヘイズ信号は、基準試料の測定ではなく、良品判定される試料(製品又は半製品)について半導体製造プロセスにおいて評価装置100で得られるヘイズ信号の統計データ(例えば平均値、中央値)を日々演算することによって設定することも可能である。試料Wの設計データを基に検出光学系Bn毎に得られ得るヘイズ信号をシミュレーションして基準ヘイズ信号を設定することもできる。つまり、実績値や理論値を基準ヘイズ信号として採用することもできる。 For example, the reference haze signal may be an actual measurement value obtained by scanning the last sample W (the Nth sample W) of a lot of samples W aged under the aging conditions to be evaluated. The reference haze signal may be not only the last sample W processed, but also a value obtained by measuring an arbitrary sample W in the latter half of the lot when the conditions of the process equipment are stable, or a statistical value (average value, median value, etc.) of the actual measurement values of multiple samples W processed in the latter half (including the last). Furthermore, the reference haze signal may be, for example, obtained by scanning a reference sample. The reference sample is a sample that meets the standards in quality inspection, and is preferably a sample of the same type as the sample W and in the same process as the sample W. In addition, the reference haze signal may be set by daily calculating statistical data (for example, average value, median value) of the haze signal obtained by the evaluation device 100 in the semiconductor manufacturing process for samples (products or semi-finished products) that are judged to be non-defective, rather than measuring the reference sample. The reference haze signal may also be set by simulating the haze signal that can be obtained for each detection optical system Bn based on the design data of the sample W. In other words, actual values or theoretical values can be used as the reference haze signal.
 また、試料Wのヘイズマップ(実測する基準ヘイズ信号を含む)は、評価装置100における試料Wの欠陥検査時のスキャンで得られるヘイズ信号で作成することができる。但し、一般に欠陥検査にはヘイズ光が発生し難い検査条件が適用されるため、エージング条件の評価に必要な強度のヘイズ光が十分に検出できない場合も想定される。その場合、特にエージング条件の評価に用いる試料W、例えば1枚目とN枚目の試料Wについて、欠陥検査とは別にヘイズ光の発生し易い条件で試料Wをスキャンしてヘイズマップを得ても良い。 Furthermore, the haze map of the sample W (including the measured reference haze signal) can be created from the haze signal obtained by scanning the sample W during defect inspection in the evaluation device 100. However, since defect inspection generally applies inspection conditions that make it difficult for haze light to occur, it is conceivable that the haze light of the intensity required for evaluating the aging conditions may not be sufficiently detected. In that case, a haze map may be obtained by scanning the sample W under conditions that make it easy for haze light to occur, particularly for the sample W used to evaluate the aging conditions, for example the first and Nth samples W, separately from the defect inspection.
 -相関データ-
 また、記憶装置DBには、基準ヘイズ信号と共に、検出光学系Bn(言い換えればヘイズ光の出射方向)とヘイズ信号の変動要因との相関が予め格納されている。
-Correlation data-
Further, in addition to the reference haze signal, the storage device DB prestores a correlation between the detection optical system Bn (in other words, the emission direction of the haze light) and a fluctuation factor of the haze signal.
 半導体製造工程において、プラズマ処理を行う工程は数十工程ある。その工程ごとに材料(試料の膜質や、チャンバ内で使用するガス等の種類等)や処理条件が異なる。エッチング処理した後の試料Wにおいて、表面粗さに変化が出やすい工程もあれば、表面膜厚に変化が出やすい工程もある。あるいは、プロセス装置のチャンバ内でのガスの流れる方向に合わせて特徴的な傾向が出やすい場合もある。工程ごとに「変動しやすいパラメータ」は異なる。よって、評価装置100は、変動しやすいパラメータに応じて、その変化を捉えやすい検出器の信号を用いてエージング条件を評価することが望ましい。 In the semiconductor manufacturing process, there are several dozen steps in which plasma processing is performed. Each step has different materials (such as the film quality of the sample and the type of gas used in the chamber) and processing conditions. In some steps, the surface roughness of the sample W after etching is likely to change, while in other steps the surface film thickness is likely to change. In other cases, a characteristic tendency may be likely to emerge in accordance with the direction of gas flow in the chamber of the process device. The "parameters that are likely to vary" differ for each step. Therefore, it is desirable for the evaluation device 100 to evaluate the aging conditions using the signal from a detector that is likely to detect changes in the parameters that are likely to vary.
 例えば、試料Wの表面粗さがある範囲内で変動しやすい場合、主にビームスポットBSに対して照明光の正反射方向に位置する開口α3,α4に入射する散乱光強度の変化として現れる傾向がある。また、試料Wの表面膜厚がある範囲内で変動しやすい場合、主にビームスポットBSに対して正反射方向と反対側に位置する開口α1,α6に入射する散乱光強度の変化として現れる傾向がある。このような関係に基づき、工程に応じた変動要因と、その変動要因に対して感度の高い検出光学系とが関連付けられ、相関データとして記憶装置DBに格納される。信号処理装置Dにより、この相関データを基に特定の検出光学系Bnが選択され、エージング処理を伴うロットの1枚目の試料Wについて選択された検出光学系Bnのヘイズ信号がモニタされることで、プロセス装置のエージング条件が精度良く評価される。 For example, if the surface roughness of the sample W is prone to fluctuate within a certain range, this tends to manifest itself mainly as a change in the intensity of scattered light incident on the openings α3 and α4 located in the direction of specular reflection of the illumination light relative to the beam spot BS. Also, if the surface film thickness of the sample W is prone to fluctuate within a certain range, this tends to manifest itself mainly as a change in the intensity of scattered light incident on the openings α1 and α6 located on the opposite side of the direction of specular reflection relative to the beam spot BS. Based on this relationship, the process-dependent variation factors and the detection optical system that is highly sensitive to the variation factors are associated and stored as correlation data in the storage device DB. A specific detection optical system Bn is selected by the signal processing device D based on this correlation data, and the haze signal of the selected detection optical system Bn for the first sample W of a lot that involves aging processing is monitored, thereby accurately evaluating the aging conditions of the process device.
 なお、上記の相関データは、ヘイズ信号の変動要因と検出光学系Bnとの相関の一例に過ぎない。例えば開口α3,α4,α1,α6に対応する検出光学系Bn以外の検出光学系で取得されるヘイズ信号にプロセス装置のコンディションの変化が現れることが知見される場合、その知見に基づき相関データを設定することができる。また、検出光学系Bnで個別に検出されるヘイズ信号に限らず、複数の検出光学系Bnで検出されるヘイズ信号の差分又は合計に、プロセス装置のコンディションの変化が現れる可能性もある。この場合、当該相関に基づく相関データを規定し、複数の検出光学系Bnで検出されるヘイズ信号の差分又は合計をヘイズ信号の一形態として、同じ検出光学系Bnの組に係る基準ヘイズ信号の差分又は合計と比較し、エージング条件の評価に用いることができる。 The above correlation data is merely one example of the correlation between the fluctuation factors of the haze signal and the detection optical system Bn. For example, if it is known that a change in the condition of the process device appears in the haze signal acquired by a detection optical system other than the detection optical system Bn corresponding to the apertures α3, α4, α1, and α6, the correlation data can be set based on that knowledge. Furthermore, the change in the condition of the process device may appear not only in the haze signal detected individually by the detection optical system Bn, but also in the difference or sum of the haze signals detected by multiple detection optical systems Bn. In this case, the correlation data based on the correlation is defined, and the difference or sum of the haze signals detected by multiple detection optical systems Bn can be compared as one form of haze signal with the difference or sum of the reference haze signals related to the same set of detection optical systems Bn, and used to evaluate the aging conditions.
 信号処理装置Dは、エージング条件評価の際、記憶装置DBから上記相関データを読み込み、プロセス装置のエージング条件の評価に相関する検出光学系を自動的に選択する。但し、信号処理装置Dは、入力装置E2を介してオペレータがした指定に従って検出光学系を選択することもできる。そして、信号処理装置Dは、選択した検出光学系から出力されるヘイズ信号に基づき、プロセス装置のエージング条件を評価する。例えば、前述した例に倣えば、信号処理装置Dは、ビームスポットBSに対して照明光の正反射方向に位置する開口α3,α4,α1,α6に対応する検出光学系Bnを選択する。開口α3,α4に対応する検出光学系Bnで検出されるヘイズ信号とその基準ヘイズ信号との差分からは、試料Wの表面粗さの所定範囲の変化、ひいてはこの所定範囲の表面粗さの変化に係るプロセス装置のコンディションの変化が検知される。開口α1,α6に対応する検出光学系Bnのヘイズ信号とその基準ヘイズ信号との差分からは、試料Wの表面膜厚の所定範囲の変化、ひいてはこの表面膜厚の所定範囲の変化に係るプロセス装置のコンディションの変化が検知される。 When evaluating the aging conditions, the signal processing device D reads the correlation data from the storage device DB and automatically selects the detection optical system that correlates with the evaluation of the aging conditions of the process device. However, the signal processing device D can also select the detection optical system according to the specification made by the operator via the input device E2. Then, the signal processing device D evaluates the aging conditions of the process device based on the haze signal output from the selected detection optical system. For example, following the example described above, the signal processing device D selects the detection optical system Bn corresponding to the openings α3, α4, α1, and α6 located in the regular reflection direction of the illumination light with respect to the beam spot BS. From the difference between the haze signal detected by the detection optical system Bn corresponding to the openings α3 and α4 and the reference haze signal, a change in the surface roughness of the sample W in a predetermined range, and thus a change in the condition of the process device related to the change in the surface roughness in this predetermined range, is detected. From the difference between the haze signal of the detection optical system Bn corresponding to the openings α1 and α6 and the reference haze signal, a change in the surface film thickness of the sample W in a predetermined range, and thus a change in the condition of the process device related to the change in the surface film thickness in this predetermined range, is detected.
 更には、同一の検出光学系Bnに入射するヘイズ光であっても、偏光方向によってエージング条件の不備に伴うコンディション変動の現れ方が異なる可能性がある。その点、本実施例において、検出光学系Bnは、それぞれ偏光方向に応じて光を分離する偏光ビームスプリッタBcと、偏光ビームスプリッタBcで分離された偏光方向の異なる光をそれぞれ検出する複数のセンサCn,Cn’とを備えている(図11)。従って、本実施例の場合、各検出光学系Bnにおいて、試料上の同一座標について、偏光方向の異なる2つのヘイズ信号を取得することができる。そこで、前述したヘイズ信号の変動要因と検出光学系Bnとの相関データのパラメータとしてヘイズ光の偏光方向を加え、より精細なヘイズ信号とその変動要因との関係を規定し、記憶装置DBに格納しておくことができる。こうして相関データのパラメータが増えることで、ヘイズ信号からより精彩にプロセス装置のコンディションの変化が検知され得る。エージング条件を伴って処理されたロットの1枚目の試料Wについてプロセス装置のコンディションの変化を精度良く検知することで、エージング条件を精彩に評価することができる。 Furthermore, even if the haze light is incident on the same detection optical system Bn, the way in which the condition fluctuation due to imperfect aging conditions appears may differ depending on the polarization direction. In this respect, in this embodiment, the detection optical system Bn is equipped with a polarizing beam splitter Bc that splits the light according to the polarization direction, and multiple sensors Cn, Cn' that detect the light with different polarization directions split by the polarizing beam splitter Bc (FIG. 11). Therefore, in this embodiment, in each detection optical system Bn, two haze signals with different polarization directions can be obtained for the same coordinates on the sample. Therefore, the polarization direction of the haze light can be added as a parameter of the correlation data between the above-mentioned fluctuation factor of the haze signal and the detection optical system Bn, and a more precise relationship between the haze signal and its fluctuation factor can be specified and stored in the storage device DB. In this way, the parameters of the correlation data are increased, and the change in the condition of the process device can be detected more precisely from the haze signal. The aging conditions can be precisely evaluated by accurately detecting the change in the condition of the process device for the first sample W of the lot processed with the aging conditions.
 また、プロセス装置のコンディションと試料W上の位置との間にも相関が存在し得る。プラズマプロセス装置で処理した試料W上、基準ヘイズ信号取得に用いた試料に対して変化の大きい領域(何等か出来栄え不良が生じている可能性が高い領域)をヘイズマップで特定できる。エージング条件の不備が検出された場合に、試料上のこの領域に着目し、この領域のヘイズ信号と基準ヘイズ信号の差分がなくなるように、エージング条件のパラメータを見直すことができる。ヘイズ信号とパラメータとの相関を特定し、評価装置100において、不良領域のヘイズ信号と基準ヘイズ信号の差分に応じて、推奨されるエージング条件のパラメータ調整が自動的に演算され、モニタE3に提示されるようにすることも考えられる。 There may also be a correlation between the condition of the process device and the position on the sample W. On the sample W processed in the plasma process device, the haze map can identify areas that have changed significantly compared to the sample used to obtain the reference haze signal (areas where there is a high possibility that some kind of defective workmanship has occurred). If a defect in the aging conditions is detected, attention can be focused on this area on the sample, and the parameters of the aging conditions can be revised so that the difference between the haze signal of this area and the reference haze signal is eliminated. It is also possible to identify the correlation between the haze signal and the parameters, and have the evaluation device 100 automatically calculate the parameter adjustments of the recommended aging conditions according to the difference between the haze signal of the defective area and the reference haze signal, and display them on the monitor E3.
 -エージング条件の決定及び運用-
 ここで、図13は半導体の研究開発から製造(High Volume Manufacturing)までの工程においてプロセス装置のエージング条件を評価する典型的な場面を表すフローチャートである。図13に示したステップS100-S600のうち、ステップS100-S300が半導体の研究開発ラインの工程であり、ステップS400-S600が半導体製造ラインの工程である。
- Determination and operation of aging conditions -
Here, Fig. 13 is a flow chart showing a typical scene for evaluating the aging conditions of process equipment in the process from semiconductor research and development to manufacturing (high volume manufacturing). Among steps S100-S600 shown in Fig. 13, steps S100-S300 are the processes of the semiconductor research and development line, and steps S400-S600 are the processes of the semiconductor manufacturing line.
 ステップS100
 ステップS100では、プロセス装置の製造メーカにおいて、プロセス装置について最終的なエージング条件の候補となる候補条件が抽出される。同型のプロセス装置であっても、使用される工程や処理する試料Wの種類等によりエージング条件は異なる。この段階では、まず予定されている工程や試料Wの種類に応じて、プロセス装置で試料Wを加工処理(例えばエッチング、成膜、研磨等)するためのプロセス条件が設定される。エージング条件は、先行して設定されるプロセス条件に応じて設定される。つまり、目的のプロセス装置において、設定されたプロセス条件で、最初に又は前回の処理から所定時間以上の間隔を空けて複数枚の試料Wを処理した場合に、それら複数枚の試料Wの処理状態にばらつきが生じないように、エージング条件は設定される。ここでは、エージング条件を設定するために、複数の候補条件が試行される。候補条件としては、前述した通り、プロセス装置が使用される工程や処理する試料Wの種類等に応じた基礎条件の他、基礎条件の各パラメータを細かく変更した複数のバリエーションの条件が用意される。パラメータの例としては、マイクロ波やプラズマ放電時間、ガス流量等がある。そして、プロセス装置で各候補条件のエージング処理を伴って試料Wを所定のプロセス条件で処理し、1枚目の試料Wと基準試料(例えばN枚目の試料W)の処理状態を比較する。その結果、処理状態の差が許容値内であることを前提として、最も処理状態のばらつきの少ない候補条件が、目的のプロセス装置のエージング条件として設定され、半導体の製造メーカに提示される。良好な結果が得られるエージング条件がない場合には、更に異なるエージング条件が試行される。
Step S100
In step S100, the manufacturer of the process equipment extracts candidate conditions that are candidates for the final aging conditions for the process equipment. Even for the same type of process equipment, the aging conditions differ depending on the process used and the type of sample W to be processed. At this stage, process conditions for processing the sample W (e.g., etching, film formation, polishing, etc.) in the process equipment are set according to the planned process and the type of sample W. The aging conditions are set according to the process conditions set in advance. In other words, the aging conditions are set so that when multiple samples W are processed in the target process equipment with the set process conditions at an interval of a predetermined time or more from the first or previous processing, the processing state of the multiple samples W does not vary. Here, multiple candidate conditions are tried to set the aging conditions. As described above, the candidate conditions include basic conditions according to the process in which the process equipment is used and the type of sample W to be processed, as well as multiple variations of conditions in which each parameter of the basic conditions is finely changed. Examples of parameters include microwave and plasma discharge time, gas flow rate, etc. Then, the sample W is processed under predetermined process conditions in the process equipment with aging treatment for each candidate condition, and the processing state of the first sample W is compared with that of a reference sample (e.g., the Nth sample W). As a result, the candidate condition with the least variation in the processing state is set as the aging condition for the target process equipment, assuming that the difference in the processing state is within the allowable value, and is presented to the semiconductor manufacturer. If no aging condition can produce a satisfactory result, further different aging conditions are tried.
 ステップS200
 続くステップS200では、プロセス装置を使用する半導体の製造メーカにおいて、プロセス装置の製造メーカから提示されたエージング条件が、半導体の製造ラインに適用する前に調整される。この工程では、プロセス装置の製造メーカから提示されたエージング条件を基本として、実際にラインに流れるロット間の間隔(プロセス装置の待機時間)に応じた調整を加え、エージング条件が設定される。そして、プロセス装置の待機時間に応じて、プロセス装置において設定された条件でエージング処理及び試料Wのロットの処理をし、ステップS100と同様に各1枚目の試料Wと基準試料の処理状態を比較して差が許容値内であることを確認する。差が許容値内に収まらないロットがあれば、そのロットに係る待機時間についてのエージング条件を調整し、差が許容値内に収まるエージング条件が設定されるまで試行を繰り返す。ロットは、N=最小2とする複数枚の試料のセットを指す。条件設定・調整に用いる試料は少なくすむほうが望ましい。
Step S200
In the next step S200, the aging conditions presented by the manufacturer of the process equipment are adjusted in the semiconductor manufacturer using the process equipment before being applied to the semiconductor manufacturing line. In this step, the aging conditions are set based on the aging conditions presented by the manufacturer of the process equipment, with adjustments made according to the interval between lots actually flowing through the line (standby time of the process equipment). Then, aging processing and processing of the lot of the sample W are performed under the conditions set in the process equipment according to the standby time of the process equipment, and the processing state of each first sample W and the reference sample are compared as in step S100 to confirm that the difference is within the tolerance. If there is a lot whose difference is not within the tolerance, the aging conditions for the standby time related to that lot are adjusted, and the trial is repeated until the aging conditions whose difference is within the tolerance are set. A lot refers to a set of multiple samples, with N = 2 at a minimum. It is preferable to use fewer samples for condition setting and adjustment.
 ステップS300
 ステップS300は、ステップS200で設定したエージング条件の製造ラインに適用する前の最終確認試験である。設定した各エージング条件を製造ライン又は製造ラインを模擬した設備で試行し、ステップS100,S200と同じ要領で処理後の試料Wの処理状態を比較する。各1枚目の試料Wと基準試料との処理状態の差が許容値内であることが確認できれば、ここで試行されたエージング条件(セット)が目的のプロセス装置についての最終的なエージング条件として決定される。仮に差が許容値内に収まらない場合は、ステップS200に戻ってエージング条件のセットが再設定される。
Step S300
Step S300 is a final confirmation test before applying the aging conditions set in step S200 to the manufacturing line. Each set aging condition is tried on the manufacturing line or on equipment simulating a manufacturing line, and the processing state of the sample W after processing is compared in the same manner as in steps S100 and S200. If it is confirmed that the difference in the processing state between the first sample W and the reference sample is within the allowable value, the aging conditions (set) tried here are determined as the final aging conditions for the target process equipment. If the difference does not fall within the allowable value, the process returns to step S200 and the set of aging conditions is reset.
 ステップS400
 ステップS400は、研究開発ラインで決定されたエージング条件を半導体の製造ラインに適用し、運用を開始する工程である。これ以降、製造ラインにおいて、必要時に待機時間に応じた条件のエージング処理がプロセス装置で実行される。プロセス装置で処理された試料Wは、インラインで欠陥検査される。また必要に応じてエージング処理の適否等の検査に供される。
Step S400
Step S400 is a process in which the aging conditions determined in the research and development line are applied to the semiconductor manufacturing line and operation is started. After this, in the manufacturing line, aging processing is performed in the process equipment as necessary under conditions according to the waiting time. The sample W processed in the process equipment is inspected for defects in-line. Also, as necessary, it is subjected to inspection for the suitability of the aging processing.
 ステップS500,S600
 半導体の製造ラインに適用されたエージング条件の適否は、半導体の製造過程でも適宜(例えば定期的又は適時に)検査される(ステップS500)。試料Wの処理状態が良好であれば製造ラインは稼働を続け、試料Wの処理状態からエージング条件の不備が疑われる場合には、エージング条件が調整される(ステップS600)。エージング条件の調整の際、必要な場合には調整を行う当該プロセス装置は停止され、エージング条件の調整ができたら稼働が再開される。
Steps S500 and S600
The suitability of the aging conditions applied to the semiconductor manufacturing line is inspected appropriately (e.g., periodically or at appropriate times) during the semiconductor manufacturing process (step S500). If the processing state of the sample W is good, the manufacturing line continues to operate, and if the processing state of the sample W indicates that the aging conditions are insufficient, the aging conditions are adjusted (step S600). When adjusting the aging conditions, the process equipment that performs the adjustment is stopped if necessary, and operation is resumed once the aging conditions have been adjusted.
 -エージング条件評価の流れ-
 ここで、図14はプロセス装置のエージング条件評価の流れの例を表す模式的なフローチャートである。図14のフローは、例えば図13のステップS100-S300の半導体の研究開発段階で行われるエージング条件の評価、及びステップS500,S600の半導体の製造段階で行われるエージング条件の評価で適宜実施される。ここでは、プロセス装置の具体例としてプラズマエッチング装置を挙げて説明する。
- Flow of aging condition evaluation -
Here, Fig. 14 is a schematic flow chart showing an example of the flow of aging condition evaluation of a process device. The flow of Fig. 14 is appropriately performed, for example, in the evaluation of aging conditions performed in the semiconductor research and development stage of steps S100-S300 in Fig. 13, and in the evaluation of aging conditions performed in the semiconductor manufacturing stage of steps S500 and S600. Here, a plasma etching device will be described as a specific example of a process device.
 図14のフローでは、まずプラズマエッチング装置において、評価対象とするエージング条件のエージング処理を伴って試料Wのロットがプラズマエッチング処理される(ステップS10)。 In the flow of FIG. 14, first, in the plasma etching device, a lot of samples W is plasma etched with aging processing under the aging conditions to be evaluated (step S10).
 本実施例の場合、光学式欠陥検査装置でもある評価装置100を用い、プラズマエッチング装置で処理された試料Wのロットの欠陥検査をインラインで実施する。「インラインで」とは、“半導体製造の一工程として”、或いは“半導体研究開発・製造ラインの過程で”を意味する。その際、前述した信号処理装置D(図12)により、そのロットのうち少なくともプラズマエッチング装置で1枚目に処理された試料Wで得られるヘイズ信号を基に、プラズマエッチング装置に適用されたエージング条件の妥当性が評価される(ステップS21)。このエージング条件の評価に用いるヘイズ信号は、試料Wの欠陥検査時に得られるヘイズ信号を用いても良いし、欠陥検査の前又は後にヘイズ光が検出され易い条件で試料Wをスキャンして得たヘイズ信号を用いても良い。そして、評価装置100において、試料Wで得られたヘイズ信号と基準ヘイズ信号とが比較され、両者の差分が基準範囲に収まっているかが判定される(ステップS22)。ステップS21,S22に係る評価装置100によるエージング条件評価の詳細な例については後述する。 In this embodiment, the evaluation device 100, which is also an optical defect inspection device, is used to perform in-line defect inspection of a lot of samples W processed in a plasma etching device. "In-line" means "as one process of semiconductor manufacturing" or "in the course of semiconductor research, development, and manufacturing line." At that time, the signal processing device D (FIG. 12) described above evaluates the validity of the aging conditions applied to the plasma etching device based on the haze signal obtained from at least the first sample W of the lot processed in the plasma etching device (step S21). The haze signal used to evaluate this aging condition may be a haze signal obtained during defect inspection of the sample W, or a haze signal obtained by scanning the sample W under conditions under which haze light is easily detected before or after defect inspection. Then, in the evaluation device 100, the haze signal obtained from the sample W is compared with the reference haze signal, and it is determined whether the difference between the two is within a reference range (step S22). A detailed example of the aging condition evaluation by the evaluation device 100 in steps S21 and S22 will be described later.
 ステップS22において評価装置100により差分が基準範囲であると判定された場合、1枚目の試料Wの処理の際のチャンバが所望のコンディションであったこと、つまりエージング処理が必要十分であったことが推定される。この場合、評価装置100からモニタE3を介してその旨が通知されて図14のフローは終了する。例えば製造ラインで図14のフローが実行される場合、エージング条件の不備が検知されなければ、そのまま製造ラインの稼働状態が継続する。但し、図13のステップS100で図14のフローが実行される場合、他により良いエージング条件の候補が残っている可能性があるため、その後、未試行のエージング条件について図14のフローを実施する。 If the evaluation device 100 determines in step S22 that the difference is within the reference range, it is presumed that the chamber was in the desired condition when the first sample W was processed, that is, the aging process was necessary and sufficient. In this case, the evaluation device 100 notifies this via monitor E3, and the flow in FIG. 14 ends. For example, when the flow in FIG. 14 is executed on a production line, if no defects in the aging conditions are detected, the production line will continue to operate as is. However, when the flow in FIG. 14 is executed in step S100 of FIG. 13, there is a possibility that other candidates for better aging conditions remain, so the flow in FIG. 14 is then executed for the untried aging conditions.
 ステップS22において差分が基準範囲外である場合、1枚目の試料Wの処理時のチャンバが所望のコンディションでなかったこと、つまりエージング処理が十分でなかったことが推定され、評価装置100からモニタE3にアラームが出力される(ステップS30)。 If the difference is outside the reference range in step S22, it is assumed that the chamber was not in the desired condition when processing the first sample W, i.e., the aging process was insufficient, and an alarm is output from the evaluation device 100 to the monitor E3 (step S30).
 アラームを確認したオペレータ等は、このアラームに係るエージング条件について場面に応じた対応をとる(ステップS40)。場面に応じた対応とは、例えば図13のステップS200,S300,S600の工程であれば不備のあるエージング条件の調整であり、ステップS100の工程であれば不備のあるエージング条件を候補から除外することである。製造ラインで図14のフローが実行される場合、ステップS40では、場合によってはプラズマエッチング装置を停止させる必要がある。エージング条件の調整は、場合によっては、プロセス装置のコンディションの変動要因の分析等を要する。プロセス装置のコンディションの変動要因の分析では、例えば試料Wに発生した不良個所をFIB(Focused Ion Beam)で切り取ってTEM(Transmission Electron Microscope)で観察すること等が行われる。 An operator or the like who has confirmed the alarm takes appropriate measures for the aging conditions related to the alarm (step S40). An appropriate measure for the situation would be to adjust the defective aging conditions in the processes of steps S200, S300, and S600 in FIG. 13, or to remove the defective aging conditions from the candidates in the process of step S100. When the flow of FIG. 14 is executed on a production line, it may be necessary to stop the plasma etching equipment in step S40. Adjusting the aging conditions may require, in some cases, an analysis of factors that cause fluctuations in the condition of the process equipment. Analysis of factors that cause fluctuations in the condition of the process equipment may involve, for example, cutting out defective areas that have occurred in the sample W using a FIB (Focused Ion Beam) and observing them with a TEM (Transmission Electron Microscope).
 -従来例-
 ここで、図14には、本実施例に係る以上のエージング条件の評価工程と併せ、一般的なプロセス装置で処理した試料の出来栄えの評価工程を点線で表示してある。典型例として、ステップS10の工程の後、プラズマエッチング装置で処理されたロットの1枚目及びN枚目の試料Wは、例えばOCDによりCD値をサンプリングで1~数枚測定される(ステップS26)。また、例えば分光エリプソメータ等でサンプリングで1~数枚ウェハ表面のエッチングレート(表面膜厚)も測定される(ステップS28)。CD値、エッチングレートの測定の順序は任意に変更され得る。そして、最初に測定した1枚目とN枚目の試料WのCD値やエッチングレートの差が基準範囲に収まっているかが判定される(ステップS27,S29)。測定結果の差が基準範囲から外れる場合、1枚目の試料Wの処理時のチャンバが所望のコンディションでなかったことが疑われ、ステップS30に手順が移る。検査結果の差が基準範囲内であれば、1枚目の試料Wの処理時のチャンバが所望のコンディションであったことが推定され、図14のフローは終了する。尚、前述のとおり、いずれの測定装置もロット内全試料を定常的に測定しているわけでなく、サンプリング測定の場合が多いため、最初に測定する1枚目は、当該ロットで最初にプロセス装置で処理された試料とは限らない。
--Conventional example--
Here, in FIG. 14, in addition to the evaluation process of the aging conditions according to this embodiment, the evaluation process of the quality of the samples processed by a general process device is shown by dotted lines. As a typical example, after the process of step S10, the CD values of one to several samples of the first and Nth samples W of a lot processed by a plasma etching device are measured by sampling, for example, by OCD (step S26). In addition, the etching rate (surface film thickness) of one to several wafers is also measured by sampling, for example, by a spectroscopic ellipsometer (step S28). The order of measuring the CD values and etching rates can be arbitrarily changed. Then, it is determined whether the difference in the CD values and etching rates of the first and Nth samples W measured initially falls within a reference range (steps S27, S29). If the difference in the measurement results falls outside the reference range, it is suspected that the chamber used to process the first sample W was not in the desired condition, and the procedure moves to step S30. If the difference in the inspection results is within the reference range, it is presumed that the chamber was in the desired condition when the first sample W was processed, and the flow in Fig. 14 ends. As mentioned above, since none of the measuring devices routinely measures all samples in a lot, and sampling measurements are often performed, the first sample measured first is not necessarily the first sample in that lot that was processed in the process device.
 また、ステップS26のCD測定では、測定対象がCDであるため、パターンが形成されていない試料Wによりエージング条件を評価することができない。そのため、研究開発ラインでエージング条件を評価し決定するためには、パターン付きのウェハを測定のために用意しなければならず、コストがかかる。また、CD値の測定は、試料Wの一部領域について行われるのみで、試料Wの全面の処理状態を満遍なく確認することができず、エージング条件の不備を検知できない場合もある。 In addition, in the CD measurement in step S26, since the measurement target is CD, it is not possible to evaluate the aging conditions using a sample W on which no pattern is formed. Therefore, in order to evaluate and determine the aging conditions on an R&D line, a wafer with a pattern must be prepared for measurement, which is costly. Also, the CD value is only measured on a partial area of the sample W, and it is not possible to check the processing state of the entire surface of the sample W evenly, and there are cases where deficiencies in the aging conditions cannot be detected.
 CD値を測定する装置として、OCDの他にCD-SEM(Critical Dimension-Scanning Electron Microscope)が用いられることもある。しかし、CD-SEMを用いる場合もOCDを用いる場合と同様の課題が生じる。 In addition to OCD, CD-SEM (Critical Dimension-Scanning Electron Microscope) is sometimes used as a device to measure CD values. However, the same issues arise when using CD-SEM as when using OCD.
 また、ステップS28のエッチングレートの測定は、試料Wにパターンが形成されている必要はないが、CD値の測定と同じく、試料Wの一部領域について行われるのみで、測定箇所が局所的であり、不備の検知に漏れが生じる可能性がある。 In addition, the measurement of the etching rate in step S28 does not require a pattern to be formed on the sample W, but like the measurement of the CD value, it is performed only on a portion of the sample W, and the measurement area is localized, so there is a possibility that defects will be missed.
 以上のCD値やエッチングレートは、試料Wの形状(処理状態)との相関が高く、比較的測定し易いことから、半導体の製造工程等でプロセス装置のエージング条件を評価で主に測定される。但し、CD値やエッチングレートの検査以外にも、エージング条件の評価に利用される検査は従来から存在する。例えば、TEMによる欠陥観察である。 The above CD values and etching rates are highly correlated with the shape (processing state) of the sample W and are relatively easy to measure, so they are primarily measured to evaluate the aging conditions of process equipment in semiconductor manufacturing processes. However, in addition to CD value and etching rate inspections, there have long been other inspections that are used to evaluate aging conditions. For example, defect observation using a TEM.
 TEMは、試料Wに生じた欠陥を子細に観察できるため、エージング条件の分析に有効である。子細に観察できる反面、OCDやCD-SEMに比べ、測定にかかる時間が非常にかかる。また、TEMは一般的に破壊検査と呼ばれ、TEMで観察するための試験片を例えばFIB等でウェハから切り出す必要があり、一部が切り取られたウェハは製品価値を失い、再度ラインに戻すことができない。また、製造ラインからFIB装置等に試料Wを持ち出したり、切り出した試料片をFIB装置からTEMに搬送したりしなければならず、エージング条件の評価のためだけにTEMを用いるのであれば必要以上に手間も時間もかかる。更には、TEMで観察する試験片は試料Wの微小な一部分であるため、エージング条件の評価精度は試験片の摘出箇所に大きく影響される。 TEM is effective for analyzing aging conditions because it allows detailed observation of defects that occur in the sample W. Although it allows detailed observation, it takes a much longer time to perform measurements than OCD or CD-SEM. In addition, TEM is generally called destructive testing, and test pieces for TEM observation must be cut out of the wafer using, for example, an FIB, and wafers with parts cut out lose their product value and cannot be returned to the line. In addition, it is necessary to take the sample W from the production line to an FIB device, and the cut sample piece must be transported from the FIB device to the TEM, so using a TEM only to evaluate aging conditions takes more time and effort than necessary. Furthermore, because the test piece observed with a TEM is only a tiny portion of the sample W, the evaluation accuracy of the aging conditions is greatly affected by the location of the test piece.
 その他、プロセス装置には、OES(Optical Emission Spectrometer)や温度センサにより処理中のチャンバ内の状態をデータとして採ることができるものがある。OESによれば、チャンバ内のプラズマ発光状態をモニタすることができる。また、温度センサによれば、処理中の試料Wやチャンバ内の温度を測定できる。しかし、OESはプラズマ発光状態を観察することはできるが、チャンバの空間全体の状態を細かい領域に区分して領域毎に状態をモニタすることはできない。また、温度センサによる試料Wの温度測定も局所的である。従って、プラズマエッチング装置で取得されるこれらのデータでは、試料Wの処理状態とエージング条件との相関を検証するためのデータとしては大雑把であり十分と言えないのが実情である。 Other process equipment includes an OES (Optical Emission Spectrometer) or a temperature sensor that can collect data on the state inside the chamber during processing. The OES can monitor the plasma light emission state inside the chamber. A temperature sensor can measure the temperature of the sample W or inside the chamber during processing. However, while the OES can observe the plasma light emission state, it cannot divide the state of the entire chamber space into small regions and monitor the state of each region. Furthermore, the temperature measurement of the sample W by the temperature sensor is also local. Therefore, the data collected by the plasma etching equipment is too rough to be sufficient for verifying the correlation between the processing state of the sample W and the aging conditions.
 -エージング条件の不備による試料への影響-
 図15はプロセス装置のチャンバの温度の経時変化を表す模式図であり、図16はプロセス装置のチャンバの温度の経時変化に伴ってウェハに現れる影響を表す模式図である。図15の横軸は時間、縦軸はチャンバ内の温度を表している。ここでも、プロセス装置の具体例としてプラズマエッチング装置を挙げて説明する。なお、便宜上、図15及び図16の例で処理する試料Wのロットを「ロットF」と記載する。
- Impact of improper aging conditions on samples -
Fig. 15 is a schematic diagram showing the change over time in temperature of a chamber of a process device, and Fig. 16 is a schematic diagram showing the effect on a wafer caused by the change over time in temperature of a chamber of a process device. The horizontal axis of Fig. 15 represents time, and the vertical axis represents the temperature in the chamber. Again, a plasma etching device will be used as a specific example of a process device. For convenience, the lot of sample W to be processed in the examples of Figs. 15 and 16 will be referred to as "Lot F".
 プラズマエッチング装置の待機(アイドリング)状態が継続するとチャンバが冷え、チャンバの温度は、設定されたプロセス条件下でプラズマエッチング処理をすれば良好に試料Wを処理できる安定温度よりも低くなる。一定時間を超える待機状態が継続した後に試料WのロットFを処理する場合、ロットFの1枚目の処理をする前にプラズマエッチング装置においてならし放電等のエージング処理が行われる。しかし、図15に示したように、プラズマエッチング処理後、チャンバの温度が安定温度まで上昇しないうちに1枚目の試料Wの処理が始まると、1枚目の試料Wの処理時にチャンバが所望のコンディションにならない場合がある。 If the plasma etching apparatus continues to be in a standby (idling) state, the chamber cools down and the chamber temperature falls below the stable temperature at which the sample W can be successfully processed if plasma etching is performed under the set process conditions. When processing a lot F of samples W after a standby state that has continued for a certain period of time, an aging process such as a run-in discharge is performed in the plasma etching apparatus before processing the first sample W in lot F. However, as shown in Figure 15, if processing of the first sample W begins before the chamber temperature has risen to the stable temperature after plasma etching, the chamber may not be in the desired condition when processing the first sample W.
 前述した通り、プラズマエッチング装置におけるコンディションの変化は、試料Wの処理状態に表れる。図16には、図15のような温度環境下でプラズマエッチング処理された、1枚目、2枚目、…N枚目の試料Wについて、評価装置100より得られるヘイズマップ(試料面上のヘイズ分布)の例が表してある。図15及び図16の例において、2枚目以降の試料Wの処理の際には、チャンバの温度が安定温度に到達し、チャンバ内のガスの充満度等も含めてチャンバのコンディションが整うものとする。この場合、図16に例示したように、安定温度に満たない状態で処理された1枚目の試料Wには、その後安定温度の達した状態で処理された2枚目以降の試料Wと比較して、例えばエッジ(外縁部)X1や局所X2といった任意の箇所にヘイズ信号の強度差が現れる。 As mentioned above, the change in the conditions in the plasma etching device is reflected in the processing state of the sample W. FIG. 16 shows an example of a haze map (haze distribution on the sample surface) obtained by the evaluation device 100 for the first, second, ..., Nth sample W that has been subjected to plasma etching processing in the temperature environment as shown in FIG. 15. In the examples of FIGS. 15 and 16, when processing the second and subsequent samples W, the chamber temperature reaches a stable temperature and the chamber conditions, including the degree of gas saturation in the chamber, are set. In this case, as shown in FIG. 16, the first sample W that has been processed at a temperature below the stable temperature shows a difference in the intensity of the haze signal at any point, such as the edge (outer edge) X1 or local area X2, compared to the second and subsequent samples W that have been processed after the stable temperature has been reached.
 本実施例では、評価装置100によりロットFの1枚目の試料Wをスキャンして取得されるヘイズ信号を基に、プラズマエッチング装置でロットFのエージング処理に適用されたエージング条件が、前述したように信号処理装置Dにより評価される。 In this embodiment, the aging conditions applied to the aging process of lot F in the plasma etching device are evaluated by the signal processing device D as described above, based on the haze signal obtained by scanning the first sample W of lot F using the evaluation device 100.
 なお、従来例として先に説明したOCD等によるCD測定、分光エリプソメータ等によるエッチングレートの測定、OESによるプラズマ状態のモニタ、TEMによる試料の局所的な詳細観察等は、いずれもヘイズ光による検査と両立可能である。これら測定との連携をとってヘイズ光によるエージング条件の評価をすることができることは言うまでもない。 In addition, the CD measurement using an OCD or the like, the etching rate measurement using a spectroscopic ellipsometer or the like, the monitoring of the plasma state using an OES, and the localized detailed observation of a sample using a TEM, all of which are compatible with inspection using haze light, as previously explained as conventional examples. It goes without saying that aging conditions can be evaluated using haze light in conjunction with these measurements.
 -エージング条件評価の詳細手順-
 図17は本実施例に係る評価装置100によるエージング条件の評価処理の手順を表すフローチャートである。同図の処理は、図14のフローチャートのステップS21,S22で実行される。ここでは、図15の説明に用いたロットF(試料Wの枚数N)を用いてエージング条件を評価する場合を例示する。また、以下の説明では、図17のフロー開始時点でロットFのスキャンは完了しており、少なくとも1枚目とN枚目の試料Wについてヘイズ信号が記憶装置DB(図1)に格納されている場合を例に挙げる。そして、N枚目の試料Wで得たヘイズ信号を基準ヘイズ信号とする場合を例に挙げて説明する。但し、1枚目の試料Wのスキャン時点で基準ヘイズ信号が既に存在する場合には、1枚目の試料Wのスキャンと並行して図17のフローを実行する構成とすることもできる。この場合、後述するステップS202の手順はループの最初の手順となる。
-Detailed procedure for evaluating aging conditions-
FIG. 17 is a flowchart showing the procedure of the evaluation process of the aging condition by the evaluation device 100 according to the present embodiment. The process in the figure is executed in steps S21 and S22 in the flowchart in FIG. 14. Here, the case where the aging condition is evaluated using the lot F (the number of samples W is N) used in the description of FIG. 15 is illustrated. In the following description, the scanning of the lot F is completed at the start of the flow in FIG. 17, and the haze signals of at least the first and Nth samples W are stored in the storage device DB (FIG. 1) are illustrated. Then, the case where the haze signal obtained from the Nth sample W is used as the reference haze signal is illustrated. However, if the reference haze signal already exists at the time of scanning the first sample W, the flow in FIG. 17 can be configured to be executed in parallel with the scanning of the first sample W. In this case, the procedure of step S202 described later is the first procedure of the loop.
 図17のフローを開始すると、評価装置100の信号処理装置Dは、基準ヘイズ信号、つまりN枚目の試料Wで得られたヘイズ信号を記憶装置DBから読み込む(ステップS201)。また、信号処理装置Dは、1枚目の試料Wで得られたヘイズ信号を記憶装置DBから読み込む(ステップS202)。ステップS201,S202の順番は逆でも良い。 When the flow of FIG. 17 starts, the signal processing device D of the evaluation device 100 reads the reference haze signal, that is, the haze signal obtained from the Nth sample W, from the storage device DB (step S201). The signal processing device D also reads the haze signal obtained from the first sample W from the storage device DB (step S202). The order of steps S201 and S202 may be reversed.
 次に、信号処理装置Dは、試料Wの任意の領域について、1枚目の試料Wで得たヘイズ信号と基準ヘイズとを比較し(ステップS203)、両者の差分が予め設定された設定値以内であるかを判定する(ステップS204)。任意の領域は、試料Wの全面であっても良いし、試料W内の特定の領域だけに限定しても良い。あるいは、試料Wを複数の領域に分け領域ごとに順次行っても良い。信号処理装置Dは、ヘイズ信号と基準ヘイズとの差分が設定値以内であれば、当該領域をヘイズ信号と基準ヘイズとの間に有意差のない(差分が設定値以内の)均等領域として記録する(ステップS205)。反対に、信号処理装置Dは、ヘイズ信号と基準ヘイズとの差分が設定値を超えていれば、当該領域をヘイズ信号と基準ヘイズとの間に有意差のある(差分が設定値を超える)差分領域として記録する(ステップS206)。この例では基準試料をN枚目の試料Wとしているので、必ずしも全面が正常な処理状態であるとは限らないが、N枚目の試料Wが全面的に正常に形成されていると仮定すれば、差分領域は何等かの異常が生じている可能性が高い領域である。 Next, the signal processing device D compares the haze signal obtained from the first sample W with the reference haze for an arbitrary region of the sample W (step S203) and determines whether the difference between the two is within a preset value (step S204). The arbitrary region may be the entire surface of the sample W, or may be limited to a specific region within the sample W. Alternatively, the sample W may be divided into a plurality of regions and the comparison may be performed for each region in sequence. If the difference between the haze signal and the reference haze is within the preset value, the signal processing device D records the region as an even region with no significant difference between the haze signal and the reference haze (the difference is within the preset value) (step S205). Conversely, if the difference between the haze signal and the reference haze exceeds the preset value, the signal processing device D records the region as a difference region with a significant difference between the haze signal and the reference haze (the difference exceeds the preset value) (step S206). In this example, the reference sample is the Nth sample W, so the entire surface is not necessarily in a normal processing state, but if we assume that the Nth sample W is formed normally over its entire surface, the difference region is an area where there is a high possibility that some kind of abnormality has occurred.
 信号処理装置Dは、試料Wを複数の領域に分けて行う場合、ステップS203-S206の処理を領域毎に繰り返し、試料Wの全領域について処理を実行したら、評価結果が基準範囲内であるか、具体的には差分領域数が予め設定された許容値以下であるかを判定する(ステップS207)。 When the sample W is divided into multiple regions, the signal processing device D repeats the processing of steps S203-S206 for each region, and once processing has been performed for all regions of the sample W, it determines whether the evaluation results are within the standard range, specifically, whether the number of difference regions is equal to or less than a preset tolerance (step S207).
 信号処理装置Dは、試料W全面で基準ヘイズとの差分が設定値以下、または差分領域数が許容値以下であればロットFの前処理として行われたエージング処理のエージング条件に問題はないと推定する。この場合、信号処理装置Dは、エージング条件プロセス装置に問題がないことを表すデータを生成し、例えば記憶装置DBに記録すると共に、制御装置E1を介しモニタE3に表示して手順を終了する(ステップS208)。反対に、基準ヘイズとの差分が設定値を超える、又は差分領域数が許容値を超える場合、エージング条件の不備が疑われる。この場合、信号処理装置Dは、ロットFの前処理として行われたエージング処理の不備が疑われることを表すアラームデータを生成し、例えば記憶装置DBに記録すると共にモニタE3に出力して手順を終了する(ステップS209)。 If the difference from the reference haze over the entire surface of the sample W is below a set value or the number of difference areas is below an allowable value, the signal processing device D presumes that there is no problem with the aging conditions of the aging process performed as pre-processing for lot F. In this case, the signal processing device D generates data indicating that there is no problem with the aging condition process device, records it, for example, in the storage device DB, and displays it on the monitor E3 via the control device E1, and ends the procedure (step S208). On the other hand, if the difference from the reference haze exceeds a set value or the number of difference areas exceeds an allowable value, a defect in the aging conditions is suspected. In this case, the signal processing device D generates alarm data indicating that there is a suspected defect in the aging process performed as pre-processing for lot F, records it, for example, in the storage device DB, and outputs it to the monitor E3, and ends the procedure (step S209).
 例えば1枚目の試料Wに係るヘイズマップと基準ヘイズ信号のヘイズマップの差分画像を生成し、それらを比較するアルゴリズムで合っても良い。また、試料Wと基準ヘイズ信号のヘイズマップの差分画像上で差分領域数をカウントするアルゴリズムを採用することもできる。 For example, an algorithm may be used that generates a difference image between the haze map of the first sample W and the haze map of the reference haze signal and compares them. It is also possible to employ an algorithm that counts the number of difference regions in the difference image between the haze maps of the sample W and the reference haze signal.
 また、ヘイズマップの分布を判定基準に加えることもできる。例えば、試料Wの表面を円形の中央部とそれを取り囲む環状の外周部に分け、中央部と外周部のうちの特定の部分、例えば外周部のヘイズ信号の変化に着目し、外周部で一定以上の変化があった場合にしてエージング条件に何等かの不備があると推定するアルゴリズムも適用できる。その他、中央部及び外周部の双方で一定以上のヘイズ信号の変化があることを判定条件にしたり、中央部のみ又は外周部のみに一定以上のヘイズ信号の変化があることを判定条件にしたりすることも考えられる。 The distribution of the haze map can also be added to the judgment criteria. For example, an algorithm can be applied that divides the surface of the sample W into a circular center portion and an annular outer periphery surrounding it, focuses on changes in the haze signal in a specific portion of the center and outer periphery, for example the outer periphery, and infers that there is some kind of deficiency in the aging conditions if there is a certain level of change in the outer periphery. Other possible judgment conditions could be that there is a certain level of change in the haze signal in both the center and outer periphery, or that there is a certain level of change in the haze signal only in the center or only in the outer periphery.
 また、ステップS208,S209のモニタE3への出力は、モニタを介さない出力であっても良い。また、出力形式は、音やテキストによるメッセージの他、試料Wについてのヘイズマップを併せて出力することもできる。例えば、モニタE3に出力する場合に、試料Wに現れた特性変化(例えば表面の表面粗さ変化、表面膜厚変化)のデータを付加情報としてアラームと共に出力するようにすることもできる。 In addition, the output to monitor E3 in steps S208 and S209 may be an output that does not go through a monitor. In addition, the output format may be a sound or text message, or a haze map for sample W may also be output. For example, when outputting to monitor E3, data on changes in characteristics that appear in sample W (e.g., changes in surface roughness and surface film thickness) may be output as additional information together with an alarm.
 -効果-
 (1)本実施例においては、プロセス装置でエージング処理を伴って処理された1ロットの1枚目に処理された試料Wを光学的にスキャンし、その試料Wから得たヘイズ信号をそれぞれ基準ヘイズ信号と比較してエージング条件を評価する。試料Wの欠陥検査装置でもある評価装置100で、欠陥以外のエージング条件を評価することができる。エージング条件を合わせこむための詳細観察に用いられるTEMよりも、はるかに高速に結果を得られるため、エージング条件評価に要する時間を大幅に短縮できる。評価装置100において欠陥検査のスキャン条件でエージング条件の評価に十分なヘイズ信号が得られる場合には、評価装置100において欠陥検査とは別にエージング条件評価目的で別途試料Wをスキャンする必要もなく、一層の時間短縮効果が期待できる。
-effect-
(1) In this embodiment, the first sample W processed in one lot with aging treatment in the process equipment is optically scanned, and the haze signal obtained from the sample W is compared with the reference haze signal to evaluate the aging condition. The evaluation device 100, which is also a defect inspection device for the sample W, can evaluate the aging condition other than the defect. Since the results can be obtained much faster than the TEM used for detailed observation to adjust the aging condition, the time required for the aging condition evaluation can be significantly reduced. If a haze signal sufficient for evaluating the aging condition is obtained under the scan condition for defect inspection in the evaluation device 100, there is no need to scan the sample W separately for the purpose of evaluating the aging condition in addition to the defect inspection in the evaluation device 100, and a further time-saving effect can be expected.
 また、プロセス装置のコンディションの変動に応じて試料Wに現れる変化を、試料Wの全面について満遍なく検査することができる。特にプラズマエッチング装置等のプラズマ処理装置のコンディション変動の影響は試料Wの面内に局所的に現れるため、試料Wの全面を満遍なく検査できることにより、検査漏れを抑制する観点でエージング条件の評価について高い信頼性を確保することができる。また、試料Wの全面のヘイズ信号の分布、つまりヘイズマップを用いることにより、プロセス装置による処理状態、ひいてはプロセス装置のチャンバ内のコンディションを可視化することができる。例えばプラズマ処理装置の場合、ヘイズマップに基づきガスの濃淡やラジカル密度といったプラズマ気相状態を把握することができれば、エージング条件に限らずプロセス条件の設定の円滑化にも繋がる。OCDや分光エリプソメータのように、試料のサンプリング点のみを測定する装置と比べてもその点で優位である。 Also, the entire surface of the sample W can be inspected thoroughly for changes that occur in the sample W in response to fluctuations in the conditions of the process equipment. In particular, since the effects of fluctuations in the conditions of a plasma processing device such as a plasma etching device appear locally within the surface of the sample W, by inspecting the entire surface of the sample W thoroughly, it is possible to ensure high reliability in the evaluation of the aging conditions from the viewpoint of suppressing inspection omissions. Furthermore, by using the distribution of the haze signal over the entire surface of the sample W, that is, the haze map, it is possible to visualize the processing state by the process device and, in turn, the condition inside the chamber of the process device. For example, in the case of a plasma processing device, if the plasma gas phase state, such as gas concentration and radical density, can be grasped based on the haze map, it will lead to smooth setting of not only the aging conditions but also the process conditions. In this respect, it is advantageous compared to devices that measure only the sampling points of the sample, such as OCDs and spectroscopic ellipsometers.
 また、半導体の製造ラインにヘイズ光によるエージング条件の評価を適用する場合、評価装置100により、インラインで日々行われる試料Wの欠陥検査に伴ってプロセス装置のエージング条件の不備を適時に検知することができる。このヘイズ光に基づくエージング条件の評価結果は、欠陥検査に伴って得ることができるので、オペレータに作業負担や検査コストの増加を強いることもない。日々行われる欠陥検査でプロセス装置のエージング条件の不備がいち早く検知されるので、試料Wの不良の発生も抑制され、TEM等による欠陥の原因解析に供される試料Wの発生も抑制される。また、試料Wの不良発生の未然防止やプロセス装置の稼動率向上の効果も想定され、歩留まりの向上も期待できる。 Furthermore, when evaluation of aging conditions using haze light is applied to a semiconductor manufacturing line, the evaluation device 100 can detect deficiencies in the aging conditions of the process equipment in a timely manner in conjunction with the defect inspection of samples W that is performed daily in-line. Since the evaluation results of the aging conditions based on this haze light can be obtained in conjunction with the defect inspection, there is no increase in the workload or inspection costs imposed on the operator. Since deficiencies in the aging conditions of the process equipment are detected early in the defect inspection that is performed daily, the occurrence of defects in samples W is suppressed, and the occurrence of samples W that are subjected to analysis of the cause of defects using a TEM or the like is also suppressed. Furthermore, it is expected that the effects of preventing the occurrence of defects in samples W and improving the operating rate of the process equipment will also be expected, and an improvement in yield can also be expected.
 更には、OCDやCD-SEMを用いてCD値を計測する場合と異なり、パターンが形成されていない試料Wでもエージング条件の評価をすることができる。半導体の研究開発段階であれば、評価用ウェハとしてパターンが形成されていない試料W(例えばベアウェハ)を用意すれば足りるため、1枚当たりのコストがはるかに高い、パターンが形成された試料を評価のためだけに用意せずに済む。また、パターンを形成するための複数工程を経なくて良いため、エージング条件の決定を短期に行える。更には、TEMを用いる場合のような破壊検査を必要としないため、FIB等による加工時間を削減できる。高速な光学式欠陥検査装置を用いて行う評価であるため、そもそもの測定時間も短い。。ヘイズ信号に基づきエージング条件を評価することにより、OCDやCD-SEMによるCD測定やTEMによる検査の頻度を低下させることもできる。 Furthermore, unlike the case where the CD value is measured using an OCD or CD-SEM, the aging conditions can be evaluated even on a sample W on which no pattern is formed. In the semiconductor research and development stage, it is sufficient to prepare a sample W on which no pattern is formed (e.g., a bare wafer) as an evaluation wafer, so there is no need to prepare a patterned sample just for evaluation, which is much more expensive per piece. In addition, since there is no need to go through multiple processes to form a pattern, the aging conditions can be determined in a short period of time. Furthermore, since destructive inspection is not required as in the case of using a TEM, the processing time using FIB, etc. can be reduced. Since the evaluation is performed using a high-speed optical defect inspection device, the measurement time is also short to begin with. By evaluating the aging conditions based on the haze signal, it is also possible to reduce the frequency of CD measurement using an OCD or CD-SEM and inspection using a TEM.
 (2)評価装置100においては、複数の検出光学系BnがビームスポットBSに対してそれぞれ方向を変えて配置してある。これにより、ヘイズ光の強度変化の捕捉に有効な一又は複数の検出光学系Bnを選択し、複数の検出光学系Bnのうち選択したもののみを用いてエージング条件を評価することができる。仮にヘイズ光に対する感度とは関係なく複数の検出光学系Bnの信号をマージして出力する構成とすると、特定の検出光学系Bnで高感度に検出される変化が希釈されて却って検査感度が低下する。それに対し、本実施例では、方向の異なる複数の検出光学系Bnを持つ構成を活用して高感度にエージング条件評価を行うことができる。 (2) In the evaluation device 100, multiple detection optical systems Bn are arranged with each system facing in a different direction relative to the beam spot BS. This makes it possible to select one or more detection optical systems Bn that are effective in capturing intensity changes in haze light, and to evaluate the aging conditions using only the selected ones of the multiple detection optical systems Bn. If the signals of multiple detection optical systems Bn were merged and output regardless of their sensitivity to haze light, the changes detected with high sensitivity by a specific detection optical system Bn would be diluted, and the inspection sensitivity would decrease. In contrast, in this embodiment, a configuration with multiple detection optical systems Bn facing different directions is used to perform aging condition evaluation with high sensitivity.
 本実施例では特に、検出光学系Bnについてそれぞれヘイズ信号とその変動要因との相関を記憶装置DBに記憶し、この相関に基づき特定の方位角φ1の検出光学系Bnを選択的にエージング条件評価に用いることができる。これにより、試料表面の表面膜厚や表面粗さといったヘイズ光強度の変動要因に応じてエージング条件を評価することができる。本実施例では、ビームスポットBSに対して照明光の正反射方向に位置する開口α3,α4に入射するヘイズ信号とその基準ヘイズ信号との差分から、試料Wの表面粗さの所定範囲の変化に係るプロセス装置のコンディション変動を検知する例を説明した。また、ビームスポットBSに対して照明光の正反射方向と反対方向に位置する開口α1,α6に入射するヘイズ信号とその基準ヘイズ信号との差分から、試料Wの表面膜厚の所定範囲の変化に係るプロセス装置のコンディション変動を検知する例も説明した。 In this embodiment, in particular, the correlation between the haze signal and its fluctuation factor for each detection optical system Bn is stored in the storage device DB, and the detection optical system Bn with a specific azimuth angle φ1 can be selectively used for aging condition evaluation based on this correlation. This makes it possible to evaluate the aging condition according to the fluctuation factor of the haze light intensity, such as the surface film thickness and surface roughness of the sample surface. In this embodiment, an example has been described in which a change in the condition of a process device related to a change in a specified range of the surface roughness of the sample W is detected from the difference between the haze signal incident on the openings α3 and α4 located in the direction of specular reflection of the illumination light with respect to the beam spot BS and the reference haze signal. Also, an example has been described in which a change in the condition of a process device related to a change in a specified range of the surface film thickness of the sample W is detected from the difference between the haze signal incident on the openings α1 and α6 located in the opposite direction to the specular reflection of the illumination light with respect to the beam spot BS and the reference haze signal.
 更に、本実施例の場合、検出光学系Bnは、偏光ビームスプリッタBcでヘイズ光を偏光方向に応じて分離し、試料W上の同一座標から同一方向に出射するヘイズ光について偏光方向の異なる2つ光を検出することができる。この構成により、検出光学系Bn毎、つまりヘイズ光の出射方向毎に、ヘイズ信号の強度、偏光方向、及びヘイズ信号の変動要因について規定した相関データを基に、ヘイズ光の偏光方向もパラメータに含めたより精彩なエージング条件評価を実行することができる。 Furthermore, in this embodiment, the detection optical system Bn separates the haze light according to its polarization direction using the polarizing beam splitter Bc, and can detect two lights with different polarization directions for the haze light emitted in the same direction from the same coordinates on the sample W. With this configuration, it is possible to perform a more precise aging condition evaluation that includes the polarization direction of the haze light as a parameter, based on correlation data that specifies the intensity, polarization direction, and fluctuation factors of the haze signal for each detection optical system Bn, i.e., for each emission direction of the haze light.
 (第2実施例)
 第1実施例では、試料Wの各領域のヘイズ信号を基準ヘイズ信号と比較してエージング条件を評価する例を説明した。半導体製造ラインにおいては、このようにして日々実行される評価に関しデータを蓄積して機械学習すれば、学習済モデルに基づきエージング条件を評価することもできる。
Second Example
In the first embodiment, an example was described in which the haze signal of each region of the sample W was compared with the reference haze signal to evaluate the aging condition. In a semiconductor manufacturing line, if data related to the evaluation performed daily in this manner is accumulated and machine learning is performed, the aging condition can also be evaluated based on the learned model.
 学習済みモデルは、学習用データの機械学習により学習済みパラメータが組み込まれた推論プログラムであり、入力されるヘイズ信号に関するデータに対しエージング条件の評価結果を出力する。この学習済みモデルは、信号処理装置D又は制御装置E1で作成され、例えば記憶装置DBに格納される。信号処理装置Dは、この学習済みモデルを用い、エージング処理を伴って処理された試料Wの欠陥検査の際に取得されるヘイズ信号を基にエージング条件を評価する。 The trained model is an inference program in which trained parameters are incorporated through machine learning of training data, and outputs evaluation results of aging conditions for input data related to a haze signal. This trained model is created by the signal processing device D or the control device E1, and is stored, for example, in the storage device DB. The signal processing device D uses this trained model to evaluate the aging conditions based on the haze signal acquired during defect inspection of a sample W that has been processed with an aging process.
 学習用データの一例は、試料Wのヘイズマップ、ヘイズ光の偏光方向、プロセス装置の待機時間、エージング条件の評価結果、エージング条件の調整履歴、評価結果の是非等、日々の半導体製造プロセスで蓄積される実績データである。プロセス装置の待機時間は、例えばプロセス装置からの受信、或いはオペレータ等の入力等により記憶装置DBにデータが蓄積される。エージング条件の調整履歴や評価結果の是非等は、一種のフィードバックデータであり、例えばエージング条件を調整した者が、予め用意された入力画面に従って入力装置E2により入力することができる。評価結果の是非とは、例えばエージング条件を調整した者の判断であり、評価装置100から通知されたアラームが真にエージング条件の不備を通知するものであったか否かといった事項である。 An example of learning data is actual data accumulated in the daily semiconductor manufacturing process, such as the haze map of sample W, the polarization direction of haze light, the standby time of the process equipment, the evaluation results of the aging conditions, the adjustment history of the aging conditions, and the positive or negative evaluation results. The standby time of the process equipment is, for example, received from the process equipment or data accumulated in the storage device DB by input by an operator, etc. The adjustment history of the aging conditions and the positive or negative evaluation results are a type of feedback data, and can be input by, for example, a person who adjusted the aging conditions using the input device E2 according to a previously prepared input screen. The positive or negative evaluation results are, for example, the judgment of the person who adjusted the aging conditions, and are matters such as whether or not the alarm notified from the evaluation device 100 was truly a notification of a deficiency in the aging conditions.
 図18は機械学習の概念図である。ここでは、信号処理装置Dにおいて機械学習が実行され、学習済みモデルが生成される例を説明する。信号処理装置Dは、前述した試料Wのヘイズマップ、プロセス装置の待機時間、エージング条件の評価結果や調整履歴等の実績データを検索して記憶装置DBから読み込み、学習用データを生成する。信号処理装置Dは、この学習用データをニューラルネットワークD9に読み込ませ、入力層、中間層、出力層のニューロン同士の繋がりの重み付けを最適化させる。これにより、散乱方向、光強度、偏光方向、座標といった、試料Wについて得られるヘイズ信号のデータから、エージング条件を評価する学習済みモデルが生成される。なお、学習済みモデルは、信号処理装置Dに限らず、他のコンピュータで生成されるようにしても良い。 FIG. 18 is a conceptual diagram of machine learning. Here, an example will be described in which machine learning is performed in the signal processing device D and a trained model is generated. The signal processing device D searches for and reads from the storage device DB performance data such as the haze map of the sample W described above, waiting time of the process device, evaluation results of aging conditions, and adjustment history, to generate training data. The signal processing device D loads this training data into the neural network D9, and optimizes the weighting of the connections between neurons in the input layer, intermediate layer, and output layer. As a result, a trained model for evaluating the aging conditions is generated from the haze signal data obtained for the sample W, such as the scattering direction, light intensity, polarization direction, and coordinates. Note that the trained model is not limited to being generated by the signal processing device D, and may be generated by another computer.
 また、信号処理装置D又は制御装置E1により、ヘイズマップとエージング条件の調整履歴とを入力として機械学習し、エージング条件のパラメータ毎にヘイズマップとの相関を特定し、エージング条件の調整案を提示できるようにすることも考えられる。 It is also possible to use the signal processing device D or the control device E1 to perform machine learning using the haze map and the adjustment history of the aging conditions as input, identify correlations with the haze map for each parameter of the aging conditions, and present adjustment suggestions for the aging conditions.
 その他の点について、本実施例は第1実施例と同様である。本実施例においては、ヘイズ信号及び基準ヘイズ信号の差の比較に基づく評価データの蓄積に伴い、エージング条件の調整履歴や評価結果の是非等のフィードバックデータも加味した学習済みモデルが生成され、エージング条件の評価精度の向上が期待できる。また、上記の通りエージング条件の調整を要する場面で、評価装置100による調整案によりオペレータの条件調整の支援にも期待できる。 In other respects, this embodiment is similar to the first embodiment. In this embodiment, as evaluation data based on a comparison of the difference between the haze signal and the reference haze signal is accumulated, a trained model is generated that also takes into account feedback data such as the adjustment history of the aging conditions and the pros and cons of the evaluation results, and it is expected that the evaluation accuracy of the aging conditions will be improved. In addition, in situations where the aging conditions need to be adjusted as described above, it is expected that the evaluation device 100 will support the operator in adjusting the conditions by suggesting adjustments.
 (第3実施例)
 図19は本発明の一変形例に係るエージング条件評価装置の要部を抜き出した模式図である。図19において第1実施例及び第2実施例で説明した要素と同一の又は対応する要素には、既出図面と同符号を付して説明を省略する。
(Third Example)
Fig. 19 is a schematic diagram of the essential parts of an aging condition evaluation device according to one modification of the present invention. In Fig. 19, elements that are the same as or correspond to those described in the first and second embodiments are given the same reference numerals as in the previously mentioned drawings, and description thereof will be omitted.
 本実施例は、前述した基準ヘイズ信号(第1実施例)又は学習済みモデル(第2実施例)の基礎データに、複数の評価装置で得られるデータを含める例である。本実施例において、評価装置100は、適宜ネットワーク(不図示)を介してデータサーバDSに接続されている。このデータサーバDSには、適宜ネットワークを介して、評価装置100とは異なる他の評価装置100’100”が接続されている。評価装置100,100’,100”は、同一種又は同等種(同一シリーズ、同一メーカ等)であることが望ましいが、異なる種類の装置であっても良い。図19では2つの他の評価装置100’,100”を図示しているが、データサーバDSに接続される他の評価装置は、1つでも3つ以上でも良い。 This embodiment is an example in which data obtained by multiple evaluation devices is included in the basic data of the reference haze signal (first embodiment) or the trained model (second embodiment) described above. In this embodiment, the evaluation device 100 is connected to a data server DS via a network (not shown) as appropriate. Other evaluation devices 100' and 100", different from the evaluation device 100, are connected to this data server DS via a network as appropriate. The evaluation devices 100, 100', and 100" are preferably of the same type or similar types (same series, same manufacturer, etc.), but may be devices of different types. Although two other evaluation devices 100' and 100" are illustrated in FIG. 19, the number of other evaluation devices connected to the data server DS may be one or three or more.
 データサーバDSには、評価装置100,100’,100”から評価データ等が入力され、これらデータが蓄積される。この蓄積データには、例えば評価装置毎の、ヘイズ信号や評価結果等を含むエージング条件の評価データの他、試料Wの設計データ、エージング条件の調整履歴、評価結果の是非、試料Wの検査データ等を含めることができる。また、試料Wの欠陥検査に関し、検査条件(検査レシピ)、欠陥レビューデータ、欠陥材料分析データ等を、併せてデータサーバDSに蓄積させることもできる。欠陥材料分析データとは、例えば、エネルギー分散型X線分析にて得られる情報がある。これは、独立型の装置である場合もあるが、欠陥レビュー装置に搭載されている場合もあり、欠陥レビュー情報とともに取得する際に併せて取得することもできる。データサーバDSでは、こうした蓄積データを基に、エージング条件の評価に関し基準ヘイズ信号や学習済みモデルが演算される。基準ヘイズ信号や学習済みモデルの演算は、データサーバDSにおいて、一定期間毎に実行されるようにすることもできるし、新規データが一定以上蓄積されたら実行されるようにすることもできる。各評価装置100,100’,100”は、エージング条件の評価の機会に、データサーバDSから最新の基準ヘイズ信号又は学習済みモデルを受信してエージング条件の評価を実行する。 Evaluation data and the like are input to the data server DS from the evaluation devices 100, 100', 100", and this data is stored. This stored data can include, for example, evaluation data on aging conditions including haze signals and evaluation results for each evaluation device, as well as design data for the sample W, adjustment history of aging conditions, the pros and cons of the evaluation results, and inspection data for the sample W. In addition, with regard to defect inspection of the sample W, inspection conditions (inspection recipe), defect review data, defective material analysis data, and the like can also be stored in the data server DS. Defective material analysis data is, for example, information obtained by energy dispersive X-ray analysis. This may be a stand-alone device. However, these may be installed in the defect review device and can be acquired together with the defect review information. In the data server DS, a reference haze signal and a trained model for evaluating the aging conditions are calculated based on this accumulated data. The calculation of the reference haze signal and the trained model can be performed in the data server DS at regular intervals, or can be performed when a certain amount of new data is accumulated. Each evaluation device 100, 100', 100" receives the latest reference haze signal or trained model from the data server DS at the opportunity to evaluate the aging conditions and performs an evaluation of the aging conditions.
 本実施例によれば、評価装置100の自己のデータに加え、他の評価装置100,100’による多数のデータを基礎データとして基準ヘイズ信号又は学習済みモデルが演算される。そのため、より多くの基礎データが短期に蓄積され、エージング条件の評価精度が経時的に向上し得る。 According to this embodiment, in addition to the evaluation device 100's own data, a reference haze signal or a learned model is calculated using a large amount of data from the other evaluation devices 100, 100' as basic data. Therefore, a large amount of basic data is accumulated in a short period of time, and the evaluation accuracy of the aging conditions can be improved over time.
 (第4実施例)
 図20は本発明の第4実施例に係るエージング条件評価装置の機能の要部を説明するための模式図である。図20において第1実施例-第3実施例で説明した要素と同一の又は対応する要素には、既出図面と同符号を付して説明を省略する。
(Fourth Example)
Fig. 20 is a schematic diagram for explaining the main functions of an aging condition evaluation device according to a fourth embodiment of the present invention. In Fig. 20, elements that are the same as or correspond to those explained in the first to third embodiments are given the same reference numerals as in the previously mentioned drawings, and explanations thereof will be omitted.
 本実施例は、ヘイズ信号の取得方法のバリエーションである。ステージSTの並進ステージの移動軸上には、試料受渡し位置Pa、検査開始位置Pbが設定されており、並進ステージを駆動することで、これらの位置を通る直線に沿ってステージSTが移動する。検査開始位置Pbは、試料Wに照明光を照射して試料Wの検査を開始する位置であり、照明光学系AのビームスポットBSに試料Wの中心が一致する位置である。試料受渡し位置Paは、ステージSTに対してアームAmにより試料Wを着脱(ロード及びアンロード)する位置であり、試料Wを受け取ったステージSTが試料受渡し位置Paから検査開始位置Pbに移動する。 This embodiment is a variation of the method of acquiring a haze signal. A sample transfer position Pa and an inspection start position Pb are set on the movement axis of the translation stage of the stage ST, and by driving the translation stage, the stage ST moves along a straight line passing through these positions. The inspection start position Pb is the position where the sample W is irradiated with illumination light to start inspection of the sample W, and is the position where the center of the sample W coincides with the beam spot BS of the illumination optical system A. The sample transfer position Pa is the position where the sample W is attached to and detached (loaded and unloaded) from the stage ST by the arm Am, and the stage ST, having received the sample W, moves from the sample transfer position Pa to the inspection start position Pb.
 近年の更なる高感度検査の要求により、検出光学系Bnは試料Wに接近して配置される。ステージSTが検出光学系Bnの直下にあるときのステージSTと検出光学系Bnとの間隙Gは、数mm程度かそれ以下である。検査開始位置PbにおいてアームAmで試料Wを間隙Gに挿し込んでステージSTに置くことは困難であることから、検査開始位置Pbから離れた試料受渡し位置Paで試料Wを受け渡す構成が採用される。 In response to recent demands for even higher sensitivity inspections, the detection optical system Bn is positioned close to the sample W. When the stage ST is directly below the detection optical system Bn, the gap G between the stage ST and the detection optical system Bn is about a few mm or less. Because it is difficult to insert the sample W into the gap G with the arm Am at the inspection start position Pb and place it on the stage ST, a configuration is adopted in which the sample W is transferred at a sample transfer position Pa away from the inspection start position Pb.
 欠陥検査ではステージSTが検査開始位置Pbから移動する間に試料Wに一般にP偏光の照明光をスキャンするが、本実施例ではステージSTが試料受渡し位置Paから検査開始位置Pbに移動する間に予備スキャンを実施する。予備スキャンでは、照明光がS偏光に設定され、試料Wは外周側から中心に向かう螺旋軌道でスキャンされる。そして、この予備スキャンで得たヘイズ信号に基づきエージング条件の評価処理を実行する。 In defect inspection, the sample W is generally scanned with P-polarized illumination light while the stage ST moves from the inspection start position Pb, but in this embodiment, a preliminary scan is performed while the stage ST moves from the sample transfer position Pa to the inspection start position Pb. In the preliminary scan, the illumination light is set to S-polarized light, and the sample W is scanned in a spiral trajectory from the outer periphery toward the center. Then, an evaluation process of the aging conditions is performed based on the haze signal obtained in this preliminary scan.
 その他の点について、本実施例は、第1実施例、第2実施例又は第3実施例と同様である。 In other respects, this embodiment is similar to the first, second, or third embodiment.
 ここで、試料Wの欠陥検査は、一般に欠陥検査ではノイズとなるヘイズ光の発生が抑制されるように検査条件が設定される(例えば照明光がP偏光に設定される)。そのため、その他の条件によっては、試料Wの欠陥検査ではヘイズ光を十分に検出することができず、ヘイズ信号に基づくエージング条件の評価が難しい場合も想定され得る。 Here, in the defect inspection of sample W, the inspection conditions are set so as to suppress the generation of haze light, which generally becomes noise in defect inspection (for example, the illumination light is set to P-polarized light). Therefore, depending on other conditions, it may be possible that the defect inspection of sample W cannot adequately detect haze light, making it difficult to evaluate the aging conditions based on the haze signal.
 それに対し、本実施例では、試料受渡し位置Paから検査開始位置Pbに試料Wが移動する機会を利用して、欠陥検査とは異なる条件で予備検査を実行してヘイズ信号を収集することができる。このように試料Wの搬送動作をヘイズ信号の収集に利用することにより、欠陥検査時の一連の機械動作を変更することなく、欠陥検査とエージング条件評価とを両立させることができる。 In contrast, in this embodiment, the sample W can be moved from the sample transfer position Pa to the inspection start position Pb, allowing a preliminary inspection to be performed under conditions different from those for the defect inspection to collect a haze signal. By using the transport operation of the sample W to collect a haze signal in this way, it is possible to achieve both defect inspection and aging condition evaluation without changing the series of machine operations during defect inspection.
 なお、本実施例では欠陥検査前に試料受渡し位置Paから検査開始位置Pbに試料Wが移動する際にヘイズ信号を取得する例を説明したが、欠陥検査後に試料受渡し位置Paに試料Wが移動する際にヘイズ信号を取得する構成も考えられる。 In this embodiment, an example has been described in which a haze signal is acquired when the sample W moves from the sample transfer position Pa to the inspection start position Pb before defect inspection, but a configuration is also conceivable in which a haze signal is acquired when the sample W moves to the sample transfer position Pa after defect inspection.
 (変形例)
 例えば、図2に示したように試料Wを回転させてスキャンする場合、同一の検出光学系Bnであってもヘイズ光の強度が試料Wの回転角により変化する場合も想定される。この場合、同一の試料Wに係るエージング条件評価において検出光学系Bnの選択が試料Wの回転角に応じて周期的に切り換わる構成とすることもできる。例えばパターン付きウェハを試料Wとして回転スキャンする場合、縦横に周期的に形成された微細な線状のパターンで発生する回折の影響でヘイズ光の散乱方向が規則的に変化する場合がある。このような場合に、試料Wの回転角と検出光学系Bnの選択との関係データを予め規定して例えば記憶装置DBに記憶しておき、エージング条件評価において検出光学系Bnの選択が試料Wの回転角に応じて切り換わる構成が有効となり得る。
(Modification)
For example, when scanning the sample W by rotating it as shown in FIG. 2, it is assumed that the intensity of the haze light changes depending on the rotation angle of the sample W even if the detection optical system Bn is the same. In this case, the selection of the detection optical system Bn in the aging condition evaluation for the same sample W can be configured to be switched periodically according to the rotation angle of the sample W. For example, when a patterned wafer is rotated and scanned as the sample W, the scattering direction of the haze light may change regularly due to the influence of diffraction occurring in a fine linear pattern formed periodically vertically and horizontally. In such a case, it may be effective to predefine the relationship data between the rotation angle of the sample W and the selection of the detection optical system Bn and store it in, for example, a storage device DB, and to switch the selection of the detection optical system Bn in the aging condition evaluation according to the rotation angle of the sample W.
 また、ヘイズ信号のみでなく、同一の試料Wについて、ヘイズ信号と欠陥信号のデータセットについて、エージング条件等との相関を解析或いは機械学習し、ヘイズ信号及び欠陥信号に基づいてエージング条件を評価することも考えられる。エージング条件の不備に起因して1枚目の試料Wに欠陥が生じる可能性もこと、或いはその欠陥がヘイズ光に影響することも考えられ、ヘイズ信号と併せて欠陥信号をモニタすることでエージング条件評価の精度が向上する可能性がある。 In addition to the haze signal, it is also possible to analyze or machine-learn the correlation between the aging conditions, etc. and the haze signal and defect signal data set for the same sample W, and evaluate the aging conditions based on the haze signal and defect signal. It is possible that a defect will occur in the first sample W due to improper aging conditions, or that the defect will affect the haze light, and the accuracy of the aging condition evaluation may be improved by monitoring the defect signal along with the haze signal.
 また、前述したように、プラズマエッチング装置には、プラズマ放電状態のモニタ用にOESが搭載される場合がある。このOESによるプラズマエッチング中のモニタデータをヘイズ信号と併せて信号処理装置D又はサーバ等で解析或いは機械学習することも考えられる。プラズマ放電状態のモニタデータヘイズ信号との相関を特定することができれば、更なるエージング条件評価の精度向上が期待できる。 As mentioned above, the plasma etching apparatus may be equipped with an OES for monitoring the plasma discharge state. It is also possible to analyze or learn machine learning the monitor data during plasma etching by this OES together with the haze signal in a signal processing device D or server. If it is possible to identify the correlation between the monitor data of the plasma discharge state and the haze signal, it is expected that the accuracy of the aging condition evaluation can be further improved.
 また、欠陥検査は半導体製造プロセスの過程で1つ又は幾つかの工程を経る度に実行され、診断対象のプロセス装置によるプロセスの前後の欠陥検査時のヘイズ信号を取得することができる。同一の試料Wについてプロセスの前後の検査で得られるヘイズ信号の差分を演算し、その差分によりプロセス装置の処理の程度を評価することも考えられる。つまり、基準試料についてプロセスの前後の検査で得られるヘイズ信号の差分をプロセス装置の処理の程度に係る基準ヘイズ信号として演算しておき、試料Wに係る同様の差分を基準ヘイズ信号と比較することも、エージング条件評価の一形態として考えられる。  Furthermore, defect inspection is performed after one or several steps in the semiconductor manufacturing process, and haze signals can be obtained during defect inspection before and after the process by the process equipment being diagnosed. It is also possible to calculate the difference in haze signals obtained by inspection before and after the process for the same sample W, and use this difference to evaluate the degree of processing by the process equipment. In other words, calculating the difference in haze signals obtained by inspection before and after the process for a reference sample as a reference haze signal related to the degree of processing by the process equipment, and comparing a similar difference related to sample W with the reference haze signal can be considered as one form of aging condition evaluation.
 また、第4実施例において、欠陥検査とは別にヘイズ光が発生し易い条件で試料Wをスキャンしてヘイズ信号を取得する例を説明した。この場合、欠陥検査時にもヘイズ光を取得し、ヘイズ光の発生し易い条件と発生し難い条件でサンプリングしたヘイズ信号を比較したり差分を解析したりすることで、ヘイズ信号とエージング条件の新たな相関が把握され得る。 Also, in the fourth embodiment, an example was described in which the sample W is scanned under conditions in which haze light is likely to occur and a haze signal is acquired separately from the defect inspection. In this case, haze light is also acquired during the defect inspection, and a new correlation between the haze signal and aging conditions can be identified by comparing and analyzing the difference between the haze signals sampled under conditions in which haze light is likely to occur and conditions in which it is unlikely to occur.
 また、各実施例では、前述した通り開口α3,α4,α1,α6に入射するヘイズ信号をエージング条件評価に用いる例を説明した。しかし、その他の開口に入射するヘイズ信号もエージング条件評価に利用され得る。例えばビームスポットBSの左右に位置する開口α2,α5,β2,β3,β5,β6に入射するヘイズ信号と、開口α3,α4,α1,α6に入射するヘイズ信号の加算信号又は差分信号について、エージング条件との相関が見出され得る。 In addition, in each embodiment, as described above, an example has been described in which the haze signals incident on the openings α3, α4, α1, and α6 are used to evaluate the aging condition. However, haze signals incident on other openings can also be used to evaluate the aging condition. For example, a correlation with the aging condition can be found for the sum or difference signal of the haze signals incident on the openings α2, α5, β2, β3, β5, and β6 located to the left and right of the beam spot BS and the haze signals incident on the openings α3, α4, α1, and α6.
100…エージング条件評価装置、A…照明光学系、Bc…偏光ビームスプリッタ、Bn(n=1,2…)…検出光学系、BS…ビームスポット、Cn(n=1,2…)…センサ、D…信号処理装置、DB…記憶装置、ST1…試料台、ST2…スキャン装置、W…試料、F…ロット 100...aging condition evaluation device, A...illumination optical system, Bc...polarized beam splitter, Bn (n = 1, 2...)...detection optical system, BS...beam spot, Cn (n = 1, 2...)...sensor, D...signal processing device, DB...storage device, ST1...sample stage, ST2...scanning device, W...sample, F...lot

Claims (10)

  1.  プロセス装置のエージング処理の設定条件であるエージング条件を評価するエージング条件評価装置であって、
     前記プロセス装置で処理された試料を支持する試料台と、
     前記試料台に載せた試料に照明光を照射する照明光学系と、
     前記試料からの光を集光して電気信号に変換し検出信号を出力する複数の検出光学系と、
     前記複数の検出光学系の検出信号を処理する信号処理装置とを備え、
     前記信号処理装置は、
     前記プロセス装置でエージング処理を伴って処理された1ロットの試料のうち初期に処理された初期試料をスキャンして前記初期試料のヘイズ信号を抽出し、
     前記初期試料の前記ヘイズ信号を基準ヘイズ信号とを比較した際の差によってエージング条件の適否を判定することを特徴とする
    エージング条件評価装置。
    An aging condition evaluation device that evaluates aging conditions, which are setting conditions for an aging treatment of a process device, comprising:
    a sample stage for supporting a sample processed in the process device;
    an illumination optical system that irradiates illumination light onto the sample placed on the sample stage;
    a plurality of detection optical systems that collect light from the sample, convert it into an electrical signal, and output a detection signal;
    a signal processing device that processes detection signals of the plurality of detection optical systems,
    The signal processing device includes:
    Scanning an initial sample that is processed early among a batch of samples processed with an aging treatment in the process device to extract a haze signal of the initial sample;
    An aging condition evaluation device, characterized in that the suitability of the aging conditions is judged based on a difference when the haze signal of the initial sample is compared with a reference haze signal.
  2.  請求項1のエージング条件評価装置において、
     前記信号処理装置は、記憶装置に格納された前記初期試料のヘイズ信号と、前記プロセス装置で前記初期試料を処理してから所定時間経過した後に処理された試料から抽出されたヘイズ信号による基準ヘイズ信号とを比較することを特徴とするエージング条件評価装置。
    2. The aging condition evaluation device according to claim 1,
    The aging condition evaluation device is characterized in that the signal processing device compares the haze signal of the initial sample stored in the memory device with a reference haze signal based on a haze signal extracted from a sample processed a predetermined time after the initial sample was processed in the process device.
  3.  請求項2のエージング条件評価装置において、
     前記信号処理装置は、前記検出光学系の検出信号のうち、周波数が所定値より大きいものを欠陥信号、前記所定値より小さいものをヘイズ信号として処理し、
     前記1ロット内の試料について欠陥検査結果と前記エージング条件の適否の両方を出力することを特徴とするエージング条件評価装置。
    3. The aging condition evaluation device according to claim 2,
    the signal processing device processes, among the detection signals of the detection optical system, a signal having a frequency greater than a predetermined value as a defect signal, and a signal having a frequency smaller than the predetermined value as a haze signal;
    An aging condition evaluation device which outputs both the defect inspection results and the suitability of the aging conditions for the samples in one lot.
  4.  請求項1のエージング条件評価装置において、
     前記基準ヘイズ信号は、前記1ロットの試料のうち最後に処理された試料又は後半に処理された試料をスキャンして実測される実測値、又は実績値若しくは理論値であるエージング条件評価装置。
    2. The aging condition evaluation device according to claim 1,
    The reference haze signal is an actual measurement value obtained by scanning the last processed sample or the latter processed sample among the samples in one lot, or an actual value or a theoretical value.
  5.  請求項1のエージング条件評価装置において、
     前記信号処理装置は、前記初期試料の微視的な表面形状として現れる前記プロセス装置のコンディションの変化を、前記ヘイズ信号及び前記基準ヘイズ信号の差に基づき検知するエージング条件評価装置。
    2. The aging condition evaluation device according to claim 1,
    The signal processing device is an aging condition evaluation device that detects a change in the condition of the process device, which appears as a microscopic surface shape of the initial sample, based on a difference between the haze signal and the reference haze signal.
  6.  請求項1のエージング条件評価装置において、
     前記複数の検出光学系は、前記照明光のビームスポットに対する方位角がそれぞれ異なるように配置されているエージング条件評価装置。
    2. The aging condition evaluation device according to claim 1,
    The aging condition evaluation apparatus, wherein the plurality of detection optical systems are arranged so that their azimuth angles with respect to the beam spot of the illumination light are different.
  7.  請求項6のエージング条件評価装置において、
     前記信号処理装置は、記憶装置に予め格納した複数の検出光学系とヘイズ信号の変動要因に関する相関データに基づき、前記複数の検出光学系のうち、前記変動要因と相関がより強く出る検出光学系のヘイズ信号に基づき、エージング条件の適否を評価することを特徴とするエージング条件評価装置。
    7. The aging condition evaluation device according to claim 6,
    The signal processing device evaluates the suitability of aging conditions based on the haze signal of a detection optical system among the plurality of detection optical systems that has a stronger correlation with the variation factor, based on correlation data regarding a plurality of detection optical systems and variation factors of a haze signal that is pre-stored in a storage device.
  8.  請求項1のエージング条件評価装置において、
     前記信号処理装置は、
     前記試料について前記ヘイズ信号の強度分布であるヘイズマップを作成し、
     前記ヘイズマップを前記基準ヘイズ信号の強度分布であるヘイズマップと比較し、前記ヘイズ信号及び前記基準ヘイズ信号の差が設定値を超える否かで前記エージング条件を評価するエージング条件評価装置。
    2. The aging condition evaluation device according to claim 1,
    The signal processing device includes:
    creating a haze map, which is an intensity distribution of the haze signal, for the sample;
    An aging condition evaluation device that compares the haze map with a haze map that is an intensity distribution of the reference haze signal, and evaluates the aging condition based on whether or not a difference between the haze signal and the reference haze signal exceeds a set value.
  9.  請求項1のエージング条件評価装置において、
     前記信号処理装置は、前記エージング条件の評価に関するデータを蓄積して機械学習し、機械学習で得た学習済みモデルに基づき前記エージング条件を評価するエージング条件評価装置。
    2. The aging condition evaluation device according to claim 1,
    The signal processing device is an aging condition evaluation device that accumulates data regarding the evaluation of the aging conditions, performs machine learning, and evaluates the aging conditions based on a trained model obtained by machine learning.
  10.  半導体プロセス装置が備えるチャンバを、所定のコンディションまで調整するエージング条件の設定方法において、
     前記チャンバに第1のエージング条件を施した上で当該チャンバ内に試料を設置し、
     前記チャンバ内で複数の試料に順次処理し、
     前記第1のエージング条件とは異なるパラメータの第2のエージング条件でも同様に複数の試料を順次処理し、当該試料をエージング条件評価装置で測定し、複数のヘイズ信号を取得し、
     前記試料から得られたヘイズ信号と基準ヘイズ信号の差が第1のエージング条件よりも第2のエージング条件で小さい場合に第2のエージング条件を選択するエージング条件設定方法。
    A method for setting aging conditions for adjusting a chamber of a semiconductor processing device to a predetermined condition, comprising the steps of:
    subjecting the chamber to a first aging condition and placing a sample in the chamber;
    sequentially processing a plurality of samples in said chamber;
    Similarly, a plurality of samples are sequentially processed under second aging conditions having parameters different from the first aging conditions, and the samples are measured by an aging condition evaluation device to obtain a plurality of haze signals;
    The aging condition setting method selects the second aging condition when a difference between a haze signal obtained from the sample and a reference haze signal is smaller under the second aging condition than under the first aging condition.
PCT/JP2022/041950 2022-11-10 2022-11-10 Aging condition evaluation device and setting method WO2024100849A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041950 WO2024100849A1 (en) 2022-11-10 2022-11-10 Aging condition evaluation device and setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041950 WO2024100849A1 (en) 2022-11-10 2022-11-10 Aging condition evaluation device and setting method

Publications (1)

Publication Number Publication Date
WO2024100849A1 true WO2024100849A1 (en) 2024-05-16

Family

ID=91032090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041950 WO2024100849A1 (en) 2022-11-10 2022-11-10 Aging condition evaluation device and setting method

Country Status (1)

Country Link
WO (1) WO2024100849A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080222A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Wafer processing apparatus
JP2007012827A (en) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd Method of heating substrate
JP2011100865A (en) * 2009-11-06 2011-05-19 Hitachi High-Technologies Corp Plasma processing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080222A (en) * 2004-09-08 2006-03-23 Hitachi Ltd Wafer processing apparatus
JP2007012827A (en) * 2005-06-30 2007-01-18 Matsushita Electric Ind Co Ltd Method of heating substrate
JP2011100865A (en) * 2009-11-06 2011-05-19 Hitachi High-Technologies Corp Plasma processing method

Similar Documents

Publication Publication Date Title
JP6182737B2 (en) Method and system for wafer characterization
JP6719462B2 (en) Virtual inspection system for process window characterization
US7912658B2 (en) Systems and methods for determining two or more characteristics of a wafer
US10698325B2 (en) Performance monitoring of design-based alignment
US7884948B2 (en) Surface inspection tool and surface inspection method
US20140204194A1 (en) Defect observation method and device therefor
US8755045B2 (en) Detecting method for forming semiconductor device
TWI625806B (en) Metrology optimized inspection
US20100014083A1 (en) Method and Apparatus for Inspecting Defects
US10964016B2 (en) Combining simulation and optical microscopy to determine inspection mode
JP2005214980A (en) Macro inspection method for wafer and automatic wafer macro inspection device
WO2024100849A1 (en) Aging condition evaluation device and setting method
JP2004301847A (en) Defects inspection apparatus and method
JP2006227026A (en) Pattern test method and device
WO2024100847A1 (en) Process diagnosis device, and method for determining plasma replacement timing
JP5036889B2 (en) Review SEM
JP4745380B2 (en) Review SEM
JP4895932B2 (en) Wafer surface inspection method and wafer surface inspection apparatus
JPH10242227A (en) Method and apparatus for automated macro test of wafer
WO2023119587A1 (en) Defect inspection device and defect inspection method
JP5608632B2 (en) Method for obtaining substrate roughness and apparatus for obtaining substrate roughness