JPS6021561A - Semiconductor protection device - Google Patents

Semiconductor protection device

Info

Publication number
JPS6021561A
JPS6021561A JP58129011A JP12901183A JPS6021561A JP S6021561 A JPS6021561 A JP S6021561A JP 58129011 A JP58129011 A JP 58129011A JP 12901183 A JP12901183 A JP 12901183A JP S6021561 A JPS6021561 A JP S6021561A
Authority
JP
Japan
Prior art keywords
well
substrate
conductivity type
transistor
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58129011A
Other languages
Japanese (ja)
Other versions
JPH0244156B2 (en
Inventor
Minoru Araki
荒木 稔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58129011A priority Critical patent/JPS6021561A/en
Publication of JPS6021561A publication Critical patent/JPS6021561A/en
Publication of JPH0244156B2 publication Critical patent/JPH0244156B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Abstract

PURPOSE:To enable to adjust the withstand voltage to an arbitrary value less than the junction withstand voltage by prevention of a high withstand voltage transistor incorporated in a complementary type semiconductor device by a method wherein an impurity diffused region of one conductivity type is provided in a well of reverse conductivity type to that of a substrate, and then a diode is constructed between the well and the substrate. CONSTITUTION:The well 12 of reverse conductivity type to that of the semiconductor substrate 11 of one conductivity type, and the diffused layers 13 and 14 are provided in the substrate. The diffused layer 14 is of reverse conductivity type to that of the well, goes inside the boundary of the well, and exists in electrically floating state at a high concentration. The diffused layer 13 connects to the well at the same potential but has difference in impurity concentration, and the diffused layer 15 connects to the substrate at the same potential but has difference in impurity concentration; thus constructing the P-N junction diode between the well and the substrate. The withstand voltage can be determined by arbitrary selection of the distance l1 from the well end to the diffused layer 15 and the distance l2 to the diffused layer 14 based on the determination of characteristics.

Description

【発明の詳細な説明】 本発明は、MOB型半導体装#に於ける出力保護装置に
関するものであり、特に相補型MO8半導体装置に於け
る高耐圧トランジスタに対する出力保護装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an output protection device for a MOB type semiconductor device, and particularly to an output protection device for a high voltage transistor in a complementary MO8 semiconductor device.

相補型MO8半導体装置は、低消費電力動作、低電圧動
作が可能で近年特に広い範囲で応用されている。そこで
この相補型MO8の特徴を保持しながらも、高電圧動作
の表示管などt駆動しなければならないような仕様もあ
り、高耐圧MO8)ランジスタを内蔵した装置がある。
Complementary MO8 semiconductor devices are capable of low power consumption and low voltage operation, and have been used in a particularly wide range of applications in recent years. Therefore, while retaining the characteristics of this complementary MO8, there are specifications that require high-voltage operation, such as display tubes, and there are devices that incorporate high-voltage MO8) transistors.

この高耐圧トランジスタは、70〜80v以下の中程度
の高耐圧性を要求されている。
This high voltage transistor is required to have a moderately high voltage resistance of 70 to 80 V or less.

出力部トランジスタを高耐圧にして、動作させるが、集
積回路デバイスとして外部からの高電圧に依って破壊さ
れないような保護装置も必要である。
The output transistor is operated with a high withstand voltage, but as an integrated circuit device, a protection device is also required to prevent it from being destroyed by external high voltage.

MO8半導体装置のゲート絶縁膜厚も、駆動能力を増加
させるため、高速動作を可能にするため、薄くなってい
るので、トランジスタの破壊防上のために、非常な努力
がなされている。
The gate insulating film thickness of MO8 semiconductor devices is also becoming thinner in order to increase drive capability and enable high-speed operation, and great efforts are being made to prevent transistor breakdown.

そこで本発明は、相補型MO8半導体装置に於て、高耐
圧トランジスタを内蔵する装置の出力保護装置を提供す
るKある。
SUMMARY OF THE INVENTION Accordingly, the present invention provides an output protection device for a complementary MO8 semiconductor device having a built-in high voltage transistor.

従来、相補型のMO8半導体装置に於ける高耐圧トラン
ジスタは、第1図に示す構造のトジンジスタであった。
Conventionally, a high voltage transistor in a complementary MO8 semiconductor device has been a transistor having the structure shown in FIG.

相補型Δ408は、同一半導体基板上に2種のトランジ
スタ、すなわちpチャネル型トランジスタとNチャネル
型トランジスタを共存させるものであり、その共存させ
る方法として、基板と反対の導電型の不純物でウェルを
形成して両トランジスタ分離するものである。従って、
N型基板の場合は、p型ウェルを形成し、このウェルの
上KNチャネルトランジスタを、N型基板にpチャネル
トランジスタを形成するのである。逆に、p型基板の場
合は、N型ウェルを形成し、このウェルの上にpチャネ
ルトランジスタを、p型基板にNチャネルトランジスタ
を形成するものである。
Complementary Δ408 allows two types of transistors, namely a p-channel transistor and an n-channel transistor, to coexist on the same semiconductor substrate, and the method for coexisting them is to form a well with impurities of the opposite conductivity type to the substrate. This separates both transistors. Therefore,
In the case of an N-type substrate, a p-type well is formed, a KN-channel transistor is formed above this well, and a p-channel transistor is formed on the N-type substrate. Conversely, in the case of a p-type substrate, an N-type well is formed, a p-channel transistor is formed on this well, and an N-channel transistor is formed on the p-type substrate.

まずこのような相補型M08に於ての、高耐圧トランジ
スタについて、第1図に従って、説明する。この説明で
は、基板の導電型をN型の場合で説明したい。
First, the high breakdown voltage transistor in such a complementary type M08 will be explained with reference to FIG. In this explanation, the conductivity type of the substrate is N type.

第1図に於て、ある導電型の半導体基板(ここではNf
f1半導体基根とする)1に、基板と反対導電型のウェ
ル2(ここではp型ウェルになる)を形成されている。
In Figure 1, a semiconductor substrate of a certain conductivity type (here Nf
A well 2 (here, a p-type well) of a conductivity type opposite to that of the substrate is formed in the semiconductor substrate f1.

このウェル(p6ウエル)上には、相補型fVIO8を
形成する場合i’L、この上にNチャネルトランジスタ
が形成されることになる。
On this well (p6 well), when complementary fVIO8 is formed, i'L is formed, and an N-channel transistor is formed thereon.

ここでは、高耐圧トランジスタ部について説明している
ので、相補型と同時に形成した構造は第2図に示しであ
るが、その説明は後述する。
Since the high breakdown voltage transistor section is explained here, the structure formed at the same time as the complementary type is shown in FIG. 2, and its explanation will be described later.

このpウェルをドレイン層として用いた事を特徴とする
のが、高耐圧トランジスタである。この基板と逆導電型
ウェルは、比較的低濃度不純物で構成されているため、
抵抗は比較的大きくなっている。そして、このpウェル
に含まれるようにして、ウェルと同型不純物の拡散層ド
レイン層3゜ソース層4が形成されである。この拡散層
は、基板トは逆導電型であシ、トランジスタのソース・
ドレインを構成するものである。このソース・ドレイン
の形成には、ゲート電極形成前に形成する方法と、第1
図に示すように、ゲート電極部を形成してから、この電
極部に依って自己整合的に形成する方法とがある。この
装置は、MOS型であるからゲート電極と基板とは絶縁
膜で分離されている。この絶縁II!IiをゲートI!
2縁膜5という。そして、このゲート絶縁膜5の上に、
ゲート電極6がある。このゲート電極は、前述したソー
ス・ドレインの形成法で異な9、前者では、金属電極(
たとえばアルミニウムなど)が用いられ、後者では多結
晶シリコンを導電化したものや高融点金属(たとえはモ
リブデンなど)、またはシリサイド(たとえばモリブデ
ンシリサイド、チタンシリサイド等)を用いている。そ
こでトランジスタは、単独に存在してはいないから、能
動素子を分離するために、まわシにはゲート絶縁膜5よ
シ厚い絶縁膜7を成長しである。この第1図では、この
絶縁膜7を遇択酸化法で形成し、基板の内側に埋没した
膜形成になっている。
A high voltage transistor is characterized by using this p-well as a drain layer. Since this substrate and the opposite conductivity type well are composed of relatively low concentration impurities,
The resistance is relatively large. Then, a diffusion layer 3 and a source layer 4 of impurities of the same type as the well are formed so as to be included in this p-well. This diffusion layer is of the opposite conductivity type to the substrate, and the source and source of the transistor.
This constitutes the drain. There are two ways to form the source and drain: one is to form the source and drain before forming the gate electrode, and the other is to form the source/drain before forming the gate electrode.
As shown in the figure, there is a method of forming a gate electrode portion and then forming the gate electrode portion in a self-aligned manner depending on the electrode portion. Since this device is of the MOS type, the gate electrode and the substrate are separated by an insulating film. This insulation II! Gate Ii!
2 called membrane 5. Then, on this gate insulating film 5,
There is a gate electrode 6. This gate electrode is formed using a metal electrode (
For example, aluminum, etc.) are used, and the latter uses conductive polycrystalline silicon, a high melting point metal (for example, molybdenum, etc.), or a silicide (for example, molybdenum silicide, titanium silicide, etc.). Therefore, since the transistor does not exist independently, an insulating film 7, which is thicker than the gate insulating film 5, is grown on the substrate in order to separate the active elements. In FIG. 1, the insulating film 7 is formed by selective oxidation, and is buried inside the substrate.

MO8型半導体装智に於ては、ソース・ドレイン層の不
純物は、動作速度も考えて、通常濃度を高められている
ので、ソース・ドレインは低抵抗になっている。そのた
めソース・ドレインの接合耐圧は25v程度になってお
り、この電圧以上の電源では使用できない。そこで、相
補型MO8半導5一 体装置では、比較的薄い濃度のウェルを用いているため
、この利用が考えられた。その構造が第1図に示すもの
である。
In MO8 type semiconductor devices, the impurity concentration in the source/drain layer is usually increased in consideration of operating speed, so the source/drain has low resistance. Therefore, the source-drain junction breakdown voltage is about 25V, and it cannot be used with a power supply higher than this voltage. Therefore, since the complementary MO8 semiconductor 5-integrated device uses a well with a relatively thin concentration, this use was considered. Its structure is shown in FIG.

比較的濃度の低いウェルの基板に対する接合耐圧は、濃
度に依って変化するが100v以上の扁耐になっている
。この耐圧を利用しているのである。
The junction breakdown voltage of a well with a relatively low concentration with respect to the substrate varies depending on the concentration, but it is 100 V or more. This pressure resistance is utilized.

この構造で特徴的なのは、ウェルがゲート電極の下部に
−1で渡って存在し、かつドレイン電極となる高濃度部
ドレイン層3とは隔離されて、ある程度の距離をへたて
て、高濃度層がゲート電極にかからないようにしである
The characteristic feature of this structure is that the well exists below the gate electrode across -1, and is isolated from the highly doped drain layer 3, which becomes the drain electrode, and is separated from the highly doped drain layer 3 by a certain distance. The layer should not cover the gate electrode.

高耐圧にならなければならない条件として、ゲート電極
とソース電極が基板と同電位の時に、ドレインが高耐圧
である事である。この時、ドレイン電圧が上昇して行く
と(pウェルの時はPチャネルトランジスタになるので
、マイナス電位になシ、上昇とは絶対値の増加に対して
言う)、ウェル(pウェル)の境界面から基板側とpウ
ェルの内側の両方向に空乏層が延びて行き、(ドレイン
基板の電位差)/(空乏層の距離)の電界強度は、6− pウェルが高#J[の場合は、同じ電位差の時では大き
くなっているため、耐圧が低くなり、pウェルのIA度
が低くなれば電界は小さくなるので、耐圧が高くなる。
The condition for having a high breakdown voltage is that the drain has a high breakdown voltage when the gate electrode and source electrode are at the same potential as the substrate. At this time, as the drain voltage increases (in the case of a p-well, it becomes a p-channel transistor, so it should not be a negative potential, and rising refers to an increase in absolute value), the boundary of the well (p-well) The depletion layer extends from the surface to both the substrate side and the inside of the p-well, and the electric field strength of (drain-substrate potential difference)/(distance of the depletion layer) is 6- If the p-well is high #J[, When the potential difference is the same, the voltage is large, so the breakdown voltage is lower.If the IA degree of the p-well is lowered, the electric field is smaller, so the breakdown voltage is higher.

高a+iドレインがゲート電極より離れているのは、ド
レイン部の抵抗を下げるためと、pウェルと電極の1妾
続のためであり、高耐圧部なっているのはpウェルのよ
うな比較的#度の薄いものでドレインを形成しているか
らである。
The reason why the high a+i drain is separated from the gate electrode is to lower the resistance of the drain part and to connect the p-well and the electrode. This is because the drain is formed of a thin material.

以上説明したように、濃度の低いウェルを用いた高耐圧
トランジスタレ1.100v以上の耐圧を得る事が出来
る。しか17、この出力トランジスタは他の内部のトラ
ンジスタ5v程度の電源で動作しているのに対して、高
電圧が印加され、ゲート絶縁膜へのストレスは大きい。
As explained above, it is possible to obtain a breakdown voltage of 1.100 V or more using a high breakdown voltage transistor using a well with a low concentration. However, 17, this output transistor operates with a power supply of about 5V as other internal transistors, whereas a high voltage is applied, and the stress on the gate insulating film is large.

そこで、動作電圧の少し上の電位で制限を加える事が望
まれる。接合耐圧は高くても、ゲート絶縁膜の破壊は低
くなっている。高耐圧は動作に対して逢)れはよく、破
壊防1にのために91あり高い電圧が印加されないよう
にする事である。
Therefore, it is desirable to impose a limit at a potential slightly higher than the operating voltage. Even though the junction breakdown voltage is high, the breakdown of the gate insulating film is low. High breakdown voltage is good for operation, and 91 is required to prevent high voltage from being applied in order to prevent damage.

このような篩耐圧トランジスタと相補fiMO8が同一
基板」二に構成された図を第2図に示す。
FIG. 2 shows a diagram in which such a sieve breakdown voltage transistor and a complementary FIMO 8 are constructed on the same substrate.

Tr+は、・−導電型の基板20と反対導電層のウェル
21の中に−i4”ili mのソース・ドレイン22
゜23を形成し、ゲート絶縁膜24.ゲートを極25を
形成したトランジスタであり、このウェル21が前述し
た高制圧トランジスタのドレインr、ff It 成す
るウェル26と同時に形成される。Tr、は、基板上に
形成される通常のトランジスタであり、そのソース−ド
レイン31.32は、基板と逆導電≦Vでありゲート絶
縁膜33.ゲート電極34を有しておシ、高耐圧トラン
ジスタ同型チャネルトランジスタである。Tr、は、前
述の高耐圧トランジスタであp、逆導電型のウェル26
でドレ・イ/を形成し、ゲート絶縁膜29上のゲート電
極30と高濃度の逆導電型のドレイン28とは分離され
である。尚、27は逆導電型のソースである。乙のよう
に同一基板上に高耐圧トランジスタを構成する事が出来
るのである。
Tr+ is a source/drain 22 of -i4''ili m in a substrate 20 of -conductivity type and a well 21 of an opposite conductivity layer.
23, and a gate insulating film 24. This transistor has a gate formed with a pole 25, and this well 21 is formed at the same time as the well 26 forming the drain r, ff It of the high voltage suppression transistor mentioned above. Tr is a normal transistor formed on a substrate, and its source-drain 31.32 has a conductivity ≦V opposite to that of the substrate, and has a gate insulating film 33.32. It has a gate electrode 34 and is a channel transistor of the same type as a high voltage transistor. Tr is the above-mentioned high-voltage transistor p, and the well 26 of the opposite conductivity type.
The gate electrode 30 on the gate insulating film 29 and the heavily doped drain 28 of opposite conductivity type are separated from each other. Note that 27 is a source of opposite conductivity type. As shown in Part B, high voltage transistors can be constructed on the same substrate.

そこで本発明は、相補型MO8″P導体装置に於て、基
板と反対導電型のウェルな用いた高耐圧トランジスタの
保護装置として、使用電源電圧より大きくて、ある程度
の幅をもって、ウェルと基板とで決定される接合耐圧以
下の任意の値に耐圧を調節可能にする装置である。
Therefore, the present invention provides a protective device for a high voltage transistor using a well of a conductivity type opposite to that of the substrate in a complementary MO8''P conductor device. This is a device that allows the withstand voltage to be adjusted to any value below the junction withstand voltage determined by.

第3図に、本発明の実施例の保護装置の構造断面図を示
す。
FIG. 3 shows a structural sectional view of a protection device according to an embodiment of the present invention.

一導電型の半導体基板11に、曲状の高耐圧トランジス
タで用いているウェルと同様に1基板と反対導電型ウェ
ル12があシ、そのウェルに完全に含まれるようにし、
て、拡散層13.14がある。
A semiconductor substrate 11 of one conductivity type has a well 12 of a conductivity type opposite to that of the first substrate, similar to the well used in a curved high-voltage transistor, so that the well 12 is completely contained in the well,
There are diffusion layers 13 and 14.

° この拡散層13は、ウェルと同導電型であり、シェ
ルと接続するための電極となり、出力の高耐圧部と接続
されるもので、高耐圧トランジスタのドレインと同じ構
造である。次に、拡散層14は、この発明の特徴とする
ものであシ、ウェルと反対導電型(基板と同電型)で、
完全にウェルに含み込まれていて、ウェルの境界から内
側に入υ込んであり、拡散層13とウェル境界の距離よ
り短くなっている。そl−で、拡散層14は、高濃度で
電気的に浮いた状態であシ、存在するだけである。
° This diffusion layer 13 is of the same conductivity type as the well, serves as an electrode for connection to the shell, is connected to the output high voltage part, and has the same structure as the drain of the high voltage transistor. Next, the diffusion layer 14 is a characteristic of the present invention, and is of a conductivity type opposite to that of the well (same conductivity type as the substrate).
It is completely included in the well, extends inward from the boundary of the well, and is shorter than the distance between the diffusion layer 13 and the boundary of the well. In that case, the diffusion layer 14 only exists in a highly concentrated and electrically floating state.

ウェル12の外側のJy板11K、別の拡散N159− があり、これもウェルの境界からある程度離れて存在し
2、導電型は基板と同S電型である。従って、拡散層1
5は基板と接続し同電位になっている。
There is a Jy plate 11K outside the well 12 and another diffusion N159-, which also exists at a certain distance from the boundary of the well 2 and has the same conductivity type as the substrate. Therefore, the diffusion layer 1
5 is connected to the board and has the same potential.

濃度は基板より濃く、拡散層14と同様である。The concentration is higher than that of the substrate and similar to that of the diffusion layer 14.

この構造の保栃は、拡散層13がウェルとIZI導電型
で接続し7、同電位であるが不純物の濃曵:に差があり
、拡散層15が基板と同導電型で接続し、同電位である
が、不純物濃ばに差がある、ウェルと基板とPN[合ダ
イオードである。
In this structure, the diffusion layer 13 is connected to the well with the IZI conductivity type, and the diffusion layer 15 is at the same potential but has a difference in impurity concentration, and the diffusion layer 15 is connected to the substrate with the same conductivity type. Although the potential is different, there is a difference in impurity concentration between the well, the substrate, and the PN [combined diode].

拡散層13に印加さ孔た電位は、ウェルの電位は、ウェ
ルの電位となり、ウェルは比較的低濃度であるため、基
板側とウェルの内側へ空乏層は延びて行く、そして高い
電圧になす空乏層の拡が9の端部が高濃度部に接するよ
うになって来るとその部分が空乏層の拡がりが阻害され
、極部的W′附界強度の大なる所が生じて、ブレーク・
ダウンを生じて、電圧制限を受けることに7する。
The potential applied to the diffusion layer 13 becomes the potential of the well, and since the well has a relatively low concentration, the depletion layer extends toward the substrate side and inside the well, resulting in a high voltage. When the end of the depletion layer 9 comes into contact with a high-concentration region, the expansion of the depletion layer is inhibited at that part, and a region where the local W' boundary strength is large occurs, causing a break.
7, resulting in a voltage failure.

この時、ウェル内の量減拡散層での阻害よシ、反対導電
型拡散層14での阻害の方が効果は大である。一方基板
側への空乏層の拡がりは拡散層10− 15(基板と同導電型)で阻害されて、耐圧は、ウェル
だけの1制圧より低い値で制限する半が出来る。
At this time, inhibition by the diffusion layer 14 of the opposite conductivity type is more effective than inhibition by the amount-reducing diffusion layer in the well. On the other hand, the spread of the depletion layer toward the substrate side is inhibited by the diffusion layers 10 to 15 (same conductivity type as the substrate), and the withstand voltage is limited to a value lower than that of the well alone.

ウェル内への空乏層の拡がりと基板内への拡がりは、そ
れぞれの濃!Wに依存して異なるために、ウェル端と拡
散層15の距離11と、ウェル端と拡散層14の距離1
2とは比較出来ず変化させなければならない。それを特
性の把握から任意に選択して、選ぶことに依って、耐圧
を決定する事が出来る。ウェル端と拡散層13の距離!
、にも依存するが、最も決定し得るのほらである。ウェ
ルの濃度は基板濃度より大きくなっているのが通常であ
るため、ウェル内でウェルと反対導電型拡散層との距離
りに依存させると、一意的に耐圧を決定する事が出来る
。従って、it>7l−zsに依って決定させるように
、!ll!!潰上で決める事が出来る。
The spread of the depletion layer into the well and the spread into the substrate are different! The distance 11 between the well edge and the diffusion layer 15 and the distance 1 between the well edge and the diffusion layer 14 differ depending on W.
It cannot be compared with 2 and must be changed. The withstand voltage can be determined by arbitrarily selecting and selecting it based on the understanding of its characteristics. Distance between well edge and diffusion layer 13!
, it also depends, but the most determinable is the hora. Since the concentration of the well is usually higher than the concentration of the substrate, the breakdown voltage can be uniquely determined by making it dependent on the distance between the well and the diffusion layer of the opposite conductivity type within the well. Therefore, let it be determined by it>7l-zs! ll! ! You can decide on a final decision.

以上説明したように、本発明は、ひとつの半導体基板内
に、基板と反対導電型ウェルが形成され、このウェルに
含まれて、ウェルの端部から内側にある距離を隔てて、
ウェルと反対導電型の不純物拡散層を設けて、ウェル端
部と拡散層の距離を任意に選んで、ウェルと基板との接
合耐圧を選択して、高耐圧トランジスタの保護とするこ
とを特徴とする半導体保護装置である。
As explained above, in the present invention, a well of a conductivity type opposite to that of the substrate is formed in one semiconductor substrate, and is included in this well and is spaced a certain distance inward from the end of the well.
The feature is that an impurity diffusion layer of the opposite conductivity type to the well is provided, the distance between the end of the well and the diffusion layer is arbitrarily selected, and the junction breakdown voltage between the well and the substrate is selected to protect a high breakdown voltage transistor. It is a semiconductor protection device.

この装置を形成するにあたっては、基板導電型の拡散層
は、基板と反対導電型チャネル・トランジスタを形成す
る時の方法を用い、ウェル内には、ウェルと反対導電型
チャネル・トランジスタを形成する時の方法を用い、内
部素子の同型チャネル・l・ランジスタを形成する時の
マスク工程及び拡散を用いれば、相補型MO8半導体装
置として、高耐圧トランジスタ、出力保護装置内蔵のデ
バイスが得られる。
In forming this device, a diffusion layer of the substrate conductivity type is formed using the method used to form a channel transistor of the opposite conductivity type to that of the substrate, and a diffusion layer of the substrate conductivity type is formed in the well using the method used to form a channel transistor of the opposite conductivity type to that of the well. By using the method described above and using the mask process and diffusion when forming the same type channel L transistor as an internal element, a device with a built-in high voltage transistor and an output protection device can be obtained as a complementary MO8 semiconductor device.

以上に説明した拡散層の分離には、1)マスク工程に於
て分離する方法、2)第3図に示すフィールド絶縁膜1
6で分離する方法、3)ゲート・多結晶シリコンなどを
用いての自己整合的に分離する方法等があり、その方法
は様々採用する事が出来る。
The diffusion layer explained above can be separated by 1) a method of separating in a mask process, 2) a field insulating film 1 shown in FIG.
3) a method of separating in a self-aligned manner using a gate, polycrystalline silicon, etc., and various methods can be adopted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来用いられて来た高耐圧トランジスタを示
す構造断面図であシ、第2図は、高耐圧トランジスタを
同一基板上に構成した事を説明する相補型MO8半導体
装置の構造断面図である。 第3図は、本発明の半導体保護装置を示す構造断面図で
ある。 1.11.20・・・・・・半導体基板、2,21゜2
6・・・・・・基板と逆導電型ウェル、14,15゜2
2.23・・・・・・基板と同導電型拡散層、5,24
゜29.33・・・・・・ゲート絶縁膜、3,4,13
゜31.32,27,2B・・・・・・基板と逆導電型
拡散層、6,25.30.34・・・・・・ゲート電極
、7゜16・・・・・・フィールド絶縁膜である。 13−
Figure 1 is a cross-sectional view of the structure of a conventionally used high-voltage transistor, and Figure 2 is a cross-sectional view of a complementary MO8 semiconductor device illustrating the construction of high-voltage transistors on the same substrate. It is a diagram. FIG. 3 is a structural sectional view showing the semiconductor protection device of the present invention. 1.11.20... Semiconductor substrate, 2,21°2
6...Substrate and opposite conductivity type well, 14, 15°2
2.23...Diffusion layer of the same conductivity type as the substrate, 5, 24
゜29.33...Gate insulating film, 3, 4, 13
゜31.32,27,2B...Substrate and opposite conductivity type diffusion layer, 6,25.30.34...Gate electrode, 7゜16...Field insulating film It is. 13-

Claims (1)

【特許請求の範囲】[Claims] 相補型MO8″P導体装置に於て、−半導体基板内に、
基板と反対導電型のウェルが設けられ、該ウェルに含ま
れて、該ウェルの端部がら内側に、ある距離を隔てて、
−導電型の不純物拡散領域が電気的に浮いた状態で存在
し2、該ウェルと該基板間にダイオードを構成した事を
aIaとする半導体保護装置。
In the complementary MO8''P conductor device, - in the semiconductor substrate,
A well of opposite conductivity type to the substrate is provided, included in the well and spaced a certain distance inwardly from an end of the well,
- A semiconductor protection device in which a conductive type impurity diffusion region exists in an electrically floating state, and a diode is configured between the well and the substrate.
JP58129011A 1983-07-15 1983-07-15 Semiconductor protection device Granted JPS6021561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129011A JPS6021561A (en) 1983-07-15 1983-07-15 Semiconductor protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129011A JPS6021561A (en) 1983-07-15 1983-07-15 Semiconductor protection device

Publications (2)

Publication Number Publication Date
JPS6021561A true JPS6021561A (en) 1985-02-02
JPH0244156B2 JPH0244156B2 (en) 1990-10-02

Family

ID=14998954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129011A Granted JPS6021561A (en) 1983-07-15 1983-07-15 Semiconductor protection device

Country Status (1)

Country Link
JP (1) JPS6021561A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126770A (en) * 1975-04-25 1976-11-05 Sony Corp Semiconductor unit
JPS5681966A (en) * 1979-12-08 1981-07-04 Toshiba Corp Input protecting circuit for semiconductor device
JPS5723269A (en) * 1980-07-16 1982-02-06 Toshiba Corp Input protecting circuit
JPS5768071A (en) * 1980-10-14 1982-04-26 Nec Corp Semiconductor device with protective element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51126770A (en) * 1975-04-25 1976-11-05 Sony Corp Semiconductor unit
JPS5681966A (en) * 1979-12-08 1981-07-04 Toshiba Corp Input protecting circuit for semiconductor device
JPS5723269A (en) * 1980-07-16 1982-02-06 Toshiba Corp Input protecting circuit
JPS5768071A (en) * 1980-10-14 1982-04-26 Nec Corp Semiconductor device with protective element

Also Published As

Publication number Publication date
JPH0244156B2 (en) 1990-10-02

Similar Documents

Publication Publication Date Title
KR920008834A (en) Thin film semiconductor devices
US4814288A (en) Method of fabricating semiconductor devices which include vertical elements and control elements
JP2800702B2 (en) Semiconductor device
US6147386A (en) Semiconductor device and method of producing the same
JPH0652792B2 (en) Semiconductor device
JPS627701B2 (en)
JPH0936307A (en) Mos capacitor
JPS63244874A (en) Input protective circuit
JPS6021561A (en) Semiconductor protection device
US6709936B1 (en) Narrow high performance MOSFET device design
JP3283736B2 (en) Semiconductor integrated circuit device
JPH0241910B2 (en)
JPS58106871A (en) Semiconductor device
JP3419606B2 (en) Semiconductor device and manufacturing method thereof
JP3257519B2 (en) Electrostatic protection element circuit, semiconductor device having electrostatic protection circuit
JPS5898969A (en) Semiconductor device
JPS5943828B2 (en) Manufacturing method of MOS type integrated circuit
JPH0441499B2 (en)
KR20080060995A (en) Semiconductor device having mosfet including ring type gate electrode
JPS59202658A (en) Mos type semiconductor integrated circuit
JPS592363A (en) Complementary insulated gate field effect device
JPH0468575A (en) Electrostatic breakdown protective element of semiconductor integrated circuit
US20020008259A1 (en) Method of fabricating a semiconductor device with an open drain input/output terminal
JPH0453169A (en) Semiconductor protective device
JP2678081B2 (en) Semiconductor integrated circuit device