JPS60213061A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS60213061A
JPS60213061A JP59070436A JP7043684A JPS60213061A JP S60213061 A JPS60213061 A JP S60213061A JP 59070436 A JP59070436 A JP 59070436A JP 7043684 A JP7043684 A JP 7043684A JP S60213061 A JPS60213061 A JP S60213061A
Authority
JP
Japan
Prior art keywords
electrode
capacitance
thin layer
substrate
phi3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59070436A
Other languages
Japanese (ja)
Inventor
Hiromitsu Shiraki
白木 廣光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59070436A priority Critical patent/JPS60213061A/en
Publication of JPS60213061A publication Critical patent/JPS60213061A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76833Buried channel CCD
    • H01L29/7685Three-Phase CCD

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To enable charge transfer at high speed by small power consumption by forming a thin layer having a conduction type reverse to a semiconductor substrate having one conduction type on the upper surface of the substrate and providing a means completely depleting the thin layer and shaping a charge transfer elctrode on an insulating film formed on the thin layer. CONSTITUTION:When voltages are applied in three-phase pulses of phi1=phi3=0 and phi2= positive and there are signal charges under a phi2 electrode, reverse bias voltage 303 is increased sufficiently, and P type semiconductor thin layer 302 is depleted completely. A series capacitance of the capacitance of SiO2 102, the capacitance of the depleted P type thin layer and the capacitance of a depleted N substrate is obtained at that time. Since the capacitance of the depleted N substrate can be designed arbitrarily in a small value when donor concentration is lowered, a capacitance viewed from the electrode can also be reduced arbitrarily. The capacitance of potential in the depth direction under phi1, phi3 electrodes can be minimized arbitrarily when the donor concentration of the N substrate is lowered similarly. Signal charges transfer under the phi3 electrode on the right side of the phi2 electrode when phi1=phi2=0 and phi3 is brought to positive potential, and signal charges transfer under the phi1 electrode on the right side of the phi3 electrode when phi2=phi3=0 and phi1 is brought to positive potential.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電荷転送が小さな消費電力で行なえる電荷転送
デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a charge transfer device that can perform charge transfer with low power consumption.

(従来技術とその問題点) CCD (Charge Coupled Devic
eM半導体表面に複数個のMO8N量をその間隔があか
ないように連続的に配置し、これらのMO8容量に電荷
を蓄わえる機能と移動する機能とをもたせたデバイスで
あり、撮像デバイス、信号処理デバイス、メモリデバイ
スなどに使用される。CCUには表面チャネル構造、埋
込チャネル構造がありその基本構造はそれぞれ第1図、
第2図のように表わされる。第1図は表面チャネルCC
Dの構造でありされた金属電極であり、104 は金属
を極103への配線手段、φl、φ2.φ3は金属電極
104に印加される三相パルスである。また第2図11
!込チヤネルCCDの構造であり、201 はN型シリ
コン薄膜層、202はP型シリコン基板101 とその
上面に形成されたNff1薄層201 の間に逆バイア
スを印加するための電池であり、203は電池とP型基
板と〜型シリコン薄層とを結合するり−ド線である。ま
た前記逆バイアス電圧はN領域105 を空乏化するの
に十分な大きさに設定される。
(Prior art and its problems) CCD (Charge Coupled Device)
It is a device in which multiple MO8N capacitors are arranged continuously on the surface of an eM semiconductor with no gaps between them, and these MO8 capacitors have the function of storing charge and the function of moving it, and can be used as an imaging device, a signal Used in processing devices, memory devices, etc. The CCU has a surface channel structure and a buried channel structure, and their basic structures are shown in Figure 1, respectively.
It is expressed as shown in FIG. Figure 1 shows the surface channel CC
A metal electrode having the structure D, 104 is a means for wiring metal to the pole 103, φl, φ2 . φ3 is a three-phase pulse applied to the metal electrode 104. Also, Fig. 2 11
! 201 is an N-type silicon thin film layer, 202 is a battery for applying a reverse bias between the P-type silicon substrate 101 and the Nff1 thin layer 201 formed on its upper surface, and 203 is a A lead wire connects the battery, the P-type substrate, and the ~-type silicon thin layer. Further, the reverse bias voltage is set to a magnitude sufficient to deplete the N region 105.

これらのCODの動作を説明する。The operations of these CODs will be explained.

今、φl;φ3=0でφ2に正の電圧が印加されており
信号電子がφ2電極下にあるとする。
Suppose now that φl; φ3=0, a positive voltage is applied to φ2, and the signal electron is under the φ2 electrode.

次にφl;φ2=0 でφ3に正の電圧を移動すると信
号電子はφ2’l11極の一つ右側のφ3電極下に移動
する。更にφ2;φ3=0 でφ1に正の電圧を印加す
ると信号電子はφ3電極下の一つ右側のφl tffl
下に移動する。これらの移動のために電源から供給しな
けれはならないエネルギーEは一転送当り次のようにめ
られる。
Next, when a positive voltage is applied to φ3 with φl; φ2=0, the signal electrons move under the φ3 electrode, which is one position to the right of the φ2′l11 pole. Furthermore, when a positive voltage is applied to φ1 with φ2; φ3=0, the signal electrons are transferred to φl tffl one position to the right below the φ3 electrode.
Move down. The energy E that must be supplied from the power supply for these movements per transfer is calculated as follows.

E=CV 2 ここでCは信号電子を蓄積している電極の容量、■は電
極に印加する電圧である。ここでCは電極から信号電子
までの容tel (!:(!!号電子からP基板までの
容tC2の直列容量であるのでc1+c2 とあられされる。
E=CV 2 Here, C is the capacitance of the electrode storing signal electrons, and ■ is the voltage applied to the electrode. Here, C is the series capacitance of capacitance tC2 from the electrode to the signal electron (!:(!!) to the P substrate, so it can be written as c1+c2.

さて、CCDが利用される撮像デバイスやメモリデバイ
スでは転送段の数は50万〜100万、面積tiO,5
〜lcd にも達する。従って電荷転送に必要なエネル
ギーはきわめて大きくなる(、また転送速度も10〜2
0MHzに達することも稀ではないので転送に必要な電
力本きわめて大きくなる。
Now, in imaging devices and memory devices that use CCDs, the number of transfer stages is 500,000 to 1 million, and the area is tiO,5.
It also reaches ~lcd. Therefore, the energy required for charge transfer is extremely large (and the transfer speed is also 10 to 2
Since it is not rare for the frequency to reach 0 MHz, the amount of power required for transfer becomes extremely large.

(発明の目的) 本発明の目的りこのような欠点を改善した少ない消費電
力で高速の電荷転送が可能なCCDを提供することにあ
る。
(Object of the Invention) An object of the present invention is to provide a CCD which can improve the above-mentioned drawbacks and can perform high-speed charge transfer with low power consumption.

(発明の構成) 本発明によれは一導電形を廟する半導体基板の上面に該
半導体基板と反対導電型を有する薄層を形成し前記薄層
を完全に空乏化する手段と前記薄海上に形成された絶縁
膜上に電荷転送電極を設りたことを特徴とする電荷転送
デバイスが得られる。
(Structure of the Invention) According to the present invention, there is provided a means for forming a thin layer having a conductivity type opposite to that of the semiconductor substrate on the upper surface of a semiconductor substrate having one conductivity type and completely depleting the thin layer; A charge transfer device characterized in that a charge transfer electrode is provided on the formed insulating film is obtained.

さらに本発明によれは一導電形を有する半導体基板上の
上面に該半導体基板と反対導電形を有する薄層と同一導
電型を有する薄層を形成し、前記薄NIを完全に空乏化
する手段と前記同一導電型を有する薄層の上に形成した
絶縁膜上に電荷転送電極を設けたことを特徴とする電荷
転送デバイスが得られる。
Further, according to the present invention, there is a means for completely depleting the thin NI by forming a thin layer having the same conductivity type as a thin layer having a conductivity type opposite to that of the semiconductor substrate on the upper surface of a semiconductor substrate having one conductivity type. A charge transfer device is obtained, characterized in that a charge transfer electrode is provided on an insulating film formed on the thin layer having the same conductivity type.

(実施例) 以下、本発明について一実施例を図面を用いて説明する
(Example) Hereinafter, one example of the present invention will be described using the drawings.

第3図および第4図はそれぞれ本発明の実施例であって
、第3図は表面チャネルの場合であり、第4図は埋込チ
ャネルの場合である。
3 and 4 illustrate embodiments of the present invention, respectively, with FIG. 3 for a surface channel and FIG. 4 for a buried channel.

第3図において301 はN型半導体基板、302は前
記N型半導体基板302の上に形成したP型の薄層、3
03はリード線304を介してN型半導体基板301 
とP型半導体薄層302を逆バイアスするための電源で
ある。
In FIG. 3, 301 is an N-type semiconductor substrate, 302 is a P-type thin layer formed on the N-type semiconductor substrate 302, and 302 is a P-type thin layer formed on the N-type semiconductor substrate 302;
03 is an N-type semiconductor substrate 301 via a lead wire 304.
and a power source for reverse biasing the P-type semiconductor thin layer 302.

また第4図において401はへ型半導体基板、402 
Vi前記へ型半導体基板上に形成したP型の薄層、40
4tilJ−ド線404を介してN型半導体基板401
 とPM半導体薄層を逆バイアスするための電源である
。また第3図および144図においてP型半導体薄層3
02及び402は第1図、第2図におけるP型半導体基
板101 と同じ役割をする。
Further, in FIG. 4, 401 is a hexagonal semiconductor substrate, 402
Vi P-type thin layer formed on the hemi-shaped semiconductor substrate, 40
N-type semiconductor substrate 401 via 4tilJ-do wire 404
and a power supply for reverse biasing the PM semiconductor thin layer. In addition, in FIGS. 3 and 144, the P-type semiconductor thin layer 3
02 and 402 play the same role as the P-type semiconductor substrate 101 in FIGS. 1 and 2.

まず表面チャネルの場合についてP型半導体の電位を規
準(0ボルト)にして動作を説明する。
First, the operation in the case of a surface channel will be explained using the potential of the P-type semiconductor as a reference (0 volts).

初期状態として第1図の場合と同様にφ1=φ3=0、
φ2に正の電圧が印加されφ2電極下に信号電荷がある
とする。このとき逆バイアス電圧303は十分大きくP
型半導体薄層302は完全に空乏化しているとするとφ
21m!極下の閉極下向のポテンシャルはrg5図a、
bのように表わせる。atd信号電荷の量が少ない場合
、bVi多い場合である。
As the initial state, φ1=φ3=0, as in the case of FIG.
Assume that a positive voltage is applied to φ2 and there is a signal charge under the φ2 electrode. At this time, the reverse bias voltage 303 is sufficiently large P
Assuming that the type semiconductor thin layer 302 is completely depleted, φ
21m! The bottom closed pole downward potential is rg5 diagram a,
It can be expressed as b. This is the case when the amount of atd signal charge is small and the amount of bVi is large.

このとき、1!極から見た容量は8i02102 の容
量と空乏化したP型薄層の容量と空乏化したへ基板の容
量との直列容量になる。これらの容量のうち空乏化した
へ基板の容量はへ基板のドナー濃度を低くすれば任意に
小さく設計出来るので電極から見た容量も任意に小さく
出来る。またφl、φ3電極下の電極刃向のボテシャル
はCのように表わされ、その容tはa、bの場合と同様
にN基板のドナー濃度を低くすれは任意に小さく出来る
。次にφl=φ2=O9φ3を正の電位にすると信号電
荷はφ2電極の右側のφ3電極の下に移p、更にφ2=
φ3=0.φlを正の電位にすると信号電荷はφ3電極
の右側の−I!極下に移動する。従って電荷転送のため
の電力はけ宅送周波数をf、転送ミルの低レベル2!1
−vL1高レベしIvζへ基板への印加電圧をVs g
bとするとf(l(Vsub−VL)CLI−1(Vs
ub−VH)CHI)となる。ここでCL、CBは転送
電圧が低レベル、高レベルのときの容量であるので消費
電力を非常に小さくできる。
At this time, 1! The capacitance seen from the pole is the series capacitance of the capacitance of 8i02102, the capacitance of the depleted P-type thin layer, and the capacitance of the depleted substrate. Of these capacitances, the capacitance of the depleted substrate can be designed to be arbitrarily small by lowering the donor concentration of the substrate, so that the capacitance seen from the electrode can also be made arbitrarily small. Further, the botical in the direction of the electrode edge under the φl and φ3 electrodes is expressed as C, and its capacity t can be arbitrarily reduced by lowering the donor concentration of the N substrate, as in the case of a and b. Next, when φl=φ2=O9φ3 is set to a positive potential, the signal charge moves to the right side of the φ2 electrode and below the φ3 electrode, and further φ2=
φ3=0. When φl is set to a positive potential, the signal charge is −I! on the right side of the φ3 electrode. Move to the very bottom. Therefore, the power frequency for charge transfer is f, the low level of the transfer mill 2!1
-vL1 high level and apply voltage to the substrate to Ivζ Vs g
b, then f(l(Vsub-VL)CLI-1(Vs
ub-VH)CHI). Here, since CL and CB are capacitances when the transfer voltage is at a low level or a high level, power consumption can be extremely reduced.

埋込チャネルの場合も第2図の場合と同様にφ1=φ3
:Q、φ2 に正の電圧が印加きれφ2電極下に空乏化
しているとするとφ2電極下の深さ方向のポテンシャル
は第6図a、bのように表わされる。
In the case of a buried channel, φ1=φ3 as in the case of Fig. 2.
If a positive voltage is fully applied to Q and φ2 and the area under the φ2 electrode is depleted, the potential in the depth direction under the φ2 electrode is expressed as shown in FIGS. 6a and 6b.

aFi信号電荷がない場合、bは最大の信号電荷がある
場合である、この場合の電極から見た容量をユ8i02
102の容量と、空乏化したN型薄鳩105の容量と、
空乏化したP型薄層402の容重と、へ型基板の空乏化
している部分の容量との直列容量となる。
aFi when there is no signal charge, b when there is the maximum signal charge, the capacitance seen from the electrode in this case is expressed as U8i02
102 and the depleted N-type thin pigeon 105 capacitance,
The capacitance of the depleted P-type thin layer 402 and the capacitance of the depleted portion of the hexagonal substrate form a series capacitance.

このとき空乏化したN基板の容量はへ基板のドナー濃度
を低くすれば任意に小さくできるので!極から見た容量
も任意に小さく出来る。またφ1、φ3電極下の深さ方
向のポテンシャルhcのように表わされ、その容量はへ
基板のドナー濃8Lヲ低くすれは任意に小さく出来る。
At this time, the capacitance of the depleted N substrate can be arbitrarily reduced by lowering the donor concentration of the N substrate! The capacitance seen from the pole can also be made arbitrarily small. Further, the potential hc in the depth direction under the φ1 and φ3 electrodes is expressed as the potential hc, and the capacitance can be made arbitrarily small as the donor concentration of the substrate is lowered by 8L.

次にφl=φ2=0、φ3を正の電位にすると信号電荷
はφ2電極の右側のφ311極の下に移り、更にφ2=
φ3=O1φを正の電位にすると信号電荷はφ3電極の
右側のφl電極下に移動する。従って埋込チャネルの場
合にも、低濃度のN基板とその上面に形成したP型薄層
を逆バイアスυ、このP型薄層を完全空乏化することに
よって転送電極から見た容量を減少できるので表面チャ
ネルの場合と同様にCCDの電荷転送をきわめて小さな
消費電力で行なうことが出来る。
Next, when φl=φ2=0 and φ3 is set to a positive potential, the signal charge moves below the φ311 pole on the right side of the φ2 electrode, and further φ2=
When φ3=O1φ is set to a positive potential, the signal charge moves below the φ1 electrode on the right side of the φ3 electrode. Therefore, even in the case of a buried channel, the capacitance seen from the transfer electrode can be reduced by reverse biasing the lightly doped N substrate and the P-type thin layer formed on its upper surface, and completely depleting this P-type thin layer. Therefore, as in the case of the surface channel, charge transfer of the CCD can be performed with extremely low power consumption.

(発明の効果) このように本発明によれは電荷転送のだめの消費電力が
きわめて小さい電荷転正デノくイスを実現することがで
きる。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a charge transfer device with extremely low power consumption for charge transfer.

以上の実施例においてはへチャネルの場合について説明
したが、本発明の原理はPチャネルの場合にも適用でき
ることは当然である。また以上の例では三相駆動の場合
について説明してきたが4相駆動や二相駆動などにも適
用できることはあきらかである。
In the above embodiments, the case of the H channel was explained, but it goes without saying that the principles of the present invention can also be applied to the case of the P channel. Further, in the above example, the case of three-phase drive has been explained, but it is obvious that the present invention can also be applied to four-phase drive, two-phase drive, etc.

【図面の簡単な説明】 第1図、第2図は従来のCCDの電荷転送部の断面構造
、33図、第4図は本発明によるCODの電荷転送部の
断面図構造、第5図、第6図は本発明によるCODの電
荷転送部の断面図の深さ方向の電位分布金示す。これら
の図において101 P型半導体基板、102 5i0
2薄膜、103転送を極104配線 201 N型半導
薄層、202電池、203 リード線、301,401
 N型半導体基板、302.402P型半導体薄層、3
03.403電池、304.404配線 坤日− 割駿 手続補正書C′j5幻 特許庁長官 殿 1、事件の表示 昭和59年 特 許 順光70436
号2、発明の名称 電荷転送デバイス 3、補正をする者 事件との関係 出 願 人 東京都港区芝五丁目33番1号 (423) 日本電気株式会社 代表者 関本忠弘 4、代理人 〒108 東京都港区芝五丁目37番8号 住人三田ビ
ル5、補正命令の日付 昭和59年7月31日(発送日
)6、補正の対象 明細書の項目名 7、補正の内容 項目名の「特許請求の範囲」を記載した第一頁目を添附
のものと差し換えます。 、、、−−”−、。 明 細 奮 発明の名称 電荷転送デバイス 特許請求の範囲 (1)−導電型を有する半導体基板の上面に該半導体基
板と反対導電型を有する薄層を形成し、前記薄層を完全
に空乏化する手段と前記薄層上に形成された絶縁膜上に
電荷転送電極を設けたことを特徴とする電荷転送デバイ
ス。 (2)−導電型を有する半導体基板の上面に該半導体基
板と反対導電型を有する薄層と同一導電型を有する薄層
を形成し、前記薄層を完全に空乏化する手段と前記同一
導電型を有する薄層の上に形成した絶縁膜上に電荷転送
電極を設けたことを特徴とする電荷転送デバイス。 発明の詳細な説明 (産業上の利用分野) 本発明は電荷転送が小さな消費電力で行なえる電荷転送
デバイスに関する。
[BRIEF DESCRIPTION OF THE DRAWINGS] FIGS. 1 and 2 are cross-sectional structures of a charge transfer section of a conventional CCD, FIGS. 33 and 4 are cross-sectional structures of a charge transfer section of a COD according to the present invention, and FIGS. FIG. 6 shows the potential distribution in the depth direction of a cross-sectional view of the charge transfer section of the COD according to the present invention. In these figures, 101 P-type semiconductor substrate, 102 5i0
2 thin film, 103 transfer to pole 104 wiring 201 N-type semiconductor thin layer, 202 battery, 203 lead wire, 301, 401
N-type semiconductor substrate, 302.402P-type semiconductor thin layer, 3
03.403 Battery, 304.404 Wiring date - Warishun procedure amendment C'j5 Phantom Patent Office Commissioner 1, Indication of the case 1988 Patent Junko 70436
No. 2, Title of the invention Charge transfer device 3, Relationship to the amended person case Applicant 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative Tadahiro Sekimoto 4, Agent address 108 Resident Mita Building 5, 37-8 Shiba 5-chome, Minato-ku, Tokyo Date of amendment order July 31, 1980 (shipment date) 6 Item name 7 of the statement subject to amendment, Contents of amendment Item name `` The first page containing "Scope of Patent Claims" will be replaced with the attached one. ,,,--"-,. Description Title of the invention Charge transfer device Claim (1) - Forming a thin layer having a conductivity type opposite to that of the semiconductor substrate on the upper surface of a semiconductor substrate having a conductivity type, A charge transfer device comprising: means for completely depleting the thin layer; and a charge transfer electrode provided on an insulating film formed on the thin layer. (2) - Upper surface of a semiconductor substrate having a conductivity type. forming a thin layer having the same conductivity type as a thin layer having an opposite conductivity type to the semiconductor substrate, and completely depleting the thin layer; and an insulating film formed on the thin layer having the same conductivity type. A charge transfer device characterized by having a charge transfer electrode provided thereon.Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a charge transfer device that can perform charge transfer with low power consumption.

Claims (1)

【特許請求の範囲】 (11−導電型を有する半導体基板の上面に該半導体基
板と反対導電型を有する薄層を形成し、前記薄層を完全
に空乏化する手段と前記薄層上に形成された絶縁膜上に
電荷転送電極を設けたことを特徴とする電荷転送デバイ
ス。 (2)−導電型を有する半導体基板の上面に該半導体基
板と反対導電型を有する薄層と同一導電型を有する薄層
を形成し、前記薄層を完全に空乏化する手段とMiJ記
同−導電型を有する薄層の上に形成した絶縁膜上に電荷
転送電極を設けたことを特徴とする電荷転送デバイス。
(11-Means for forming a thin layer having a conductivity type opposite to that of the semiconductor substrate on the upper surface of a semiconductor substrate having a conductivity type, and completely depleting the thin layer; and forming a thin layer on the thin layer. A charge transfer device characterized in that a charge transfer electrode is provided on an insulating film having a conductivity type. A charge transfer method, characterized in that a charge transfer electrode is provided on an insulating film formed on an insulating film having a conductivity type as described in MiJ, and a means for completely depleting the thin layer. device.
JP59070436A 1984-04-09 1984-04-09 Charge transfer device Pending JPS60213061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59070436A JPS60213061A (en) 1984-04-09 1984-04-09 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59070436A JPS60213061A (en) 1984-04-09 1984-04-09 Charge transfer device

Publications (1)

Publication Number Publication Date
JPS60213061A true JPS60213061A (en) 1985-10-25

Family

ID=13431428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59070436A Pending JPS60213061A (en) 1984-04-09 1984-04-09 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS60213061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160731A (en) * 2011-01-28 2012-08-23 E2V Semiconductors Charge-integration multilinear image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160186A (en) * 1974-11-21 1976-05-25 Nippon Electric Co

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5160186A (en) * 1974-11-21 1976-05-25 Nippon Electric Co

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160731A (en) * 2011-01-28 2012-08-23 E2V Semiconductors Charge-integration multilinear image sensor

Similar Documents

Publication Publication Date Title
GB1377124A (en) Charge coupled circuits
JPS60213061A (en) Charge transfer device
JPH0695536B2 (en) Charge transfer device
JPS5632764A (en) Charge coupled device
US3961352A (en) Multi-ripple charge coupled device
KR920017261A (en) Solid state imaging device
JP2599813B2 (en) Driving method of solid-state imaging device
JP2570855B2 (en) Charge-coupled device
JP3060649B2 (en) Semiconductor device and driving method thereof
JP3152920B2 (en) Charge transfer device and method of manufacturing the same
JPS61252665A (en) Charge transfer device
JPS6143867B2 (en)
JPS6315753B2 (en)
JPH0697207A (en) Semiconductor device
JPH0423334A (en) Charge transfer device
GB1395558A (en) Charge-coupled circuits
JP2903008B2 (en) Driving method of solid-state imaging device
JPS6345097Y2 (en)
JPH03291945A (en) Charge transfer element and its manufacture
JPH0260235U (en)
JPH0231858B2 (en) DENKATENSOSOCHI
JPS6042625B2 (en) charge coupled device
JPS58137252A (en) Charge transfer device
JPH0555270A (en) Charge transfer device
JPH03163836A (en) Charge coupled device