JPS61252665A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS61252665A
JPS61252665A JP9421385A JP9421385A JPS61252665A JP S61252665 A JPS61252665 A JP S61252665A JP 9421385 A JP9421385 A JP 9421385A JP 9421385 A JP9421385 A JP 9421385A JP S61252665 A JPS61252665 A JP S61252665A
Authority
JP
Japan
Prior art keywords
peaks
charge transfer
substrate
transfer device
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9421385A
Other languages
Japanese (ja)
Inventor
Yoshihiro Miyamoto
義博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9421385A priority Critical patent/JPS61252665A/en
Publication of JPS61252665A publication Critical patent/JPS61252665A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To remove the effect of trapping, by providing two peaks of impurity distribution in an embedded channel part in the surface of a substrate and within the substrate, and providing the maximum point of the potential of the channel at the intermediate point between both peaks. CONSTITUTION:The impurity distribution in an embedded channel part is made to have at least two discontinuous peaks of the distribution in the surface of a substrate and within the substrate. The maximum point of the channel potential phich (b) is made to be set at the intermediate point between both peaks. When two peaks are provided in this way, the maximum point of the channel potential can be brought to the point, where impurity doping is less at the intermediate part between both peaks, by adjusting the concentration and the distribution. Since the electric charge is transferred in the vicinity of the maximum point of the channel potential, the electric charge can be transferred in a place where impurities are less. Therefore, the trapping of the electric charge by the impurities is decreased.

Description

【発明の詳細な説明】 〔概要〕 電荷転送装置の埋込チャネル部の不純物分布が、基板表
面と基板内に少なくとも2つの不連続な分布のピークを
有するようになし、チャネル電位の最大点が両ピークの
中間に来るようにし、転送電荷が不純物濃度の低い領域
を転送されることによシ、トラップの影響を除去する。
[Detailed Description of the Invention] [Summary] The impurity distribution in the buried channel portion of the charge transfer device is made to have at least two discontinuous distribution peaks on the substrate surface and in the substrate, and the maximum point of the channel potential is The transfer charge is placed between the two peaks, and the transfer charge is transferred through a region with low impurity concentration, thereby eliminating the influence of traps.

〔産業上の利用分野〕[Industrial application field]

本発明は電荷転送装置に係シ、特に低温動作に適した埋
込チャネル屋電荷転送装置に関する。
The present invention relates to a charge transfer device, and more particularly to a buried channel charge transfer device suitable for low temperature operation.

〔従来の技術〕[Conventional technology]

第5図に従来の埋込チャネル盤電荷転送装置(5ccn
 )の断面構造を示す。図において、p形シリコン基板
1の表面に5形の埋込チャネル部2が形成され、絶縁膜
(S402)5が基板表面に形成され、絶縁膜上に三相
の転送電極(φ1〜φS)が形成されている。
Figure 5 shows a conventional buried channel board charge transfer device (5ccn).
) shows the cross-sectional structure of In the figure, a 5-shaped buried channel portion 2 is formed on the surface of a p-type silicon substrate 1, an insulating film (S402) 5 is formed on the substrate surface, and three-phase transfer electrodes (φ1 to φS) are formed on the insulating film. is formed.

第2図(−に従来部ECCDの不純物分布を示している
。チャネル深さzi =L6J惰、ドープ濃度N。
Figure 2 (- shows the impurity distribution of the conventional ECCD. Channel depth zi = L6J, dope concentration N.

(ドナー濃度)=4X10”、惰−3にイオン注入で形
成している。基板のアクセプタの濃度はN人=4×10
幅  になされている。なお、埋込チャネル部は通常イ
オン注入によ)形成し、その不純物分布はガウス分布を
なしておシ、第2図6)はこれを解析上近似したもので
おる。
(Donor concentration) = 4 x 10'', formed by ion implantation into the inertia-3.The acceptor concentration on the substrate is N people = 4 x 10
It is made in width. Note that the buried channel portion is usually formed by ion implantation), and its impurity distribution has a Gaussian distribution, which is analytically approximated in FIG. 2 (6).

一方、第2図(6)にはチャネル電位を示しておシ、電
荷が転送される最大チャネル電位は基板表面から0.4
−犠の位置にあシ、不純物密度は4 X 1010l5
”である。このように電荷の転送を表面から離れて行な
うことができるので、界面の影響を受けることがなく、
高い転送効率が得られるのが埋込チャネル型電荷転送装
置の特色である。
On the other hand, Figure 2 (6) shows the channel potential, and the maximum channel potential at which charge is transferred is 0.4 from the substrate surface.
- Reed at the sacrificial position, impurity density is 4 x 1010l5
”. In this way, charge transfer can be performed away from the surface, so it is not affected by the interface.
A buried channel charge transfer device is characterized by high transfer efficiency.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、上述のような埋込チャネル屋電荷転送装置’
i 100f以下の低温度で動作させると、埋込チャネ
ルを形成する不純物がトラップとして作用し、転送効率
の低下を招くことが知られている( 5o14d 5t
ate Devise ’84−42 、電子通信学会
固体素子研究会)。
However, the buried channel charge transfer device as described above
It is known that when operating at a low temperature below 100f, impurities forming a buried channel act as a trap, leading to a decrease in transfer efficiency (5o14d 5t
ate Devise '84-42, Institute of Electronics and Communication Engineers Solid State Device Study Group).

即ち、実際に転送される電荷が成る時間不純物単位にト
ラップされ、再び転送電荷に加わるという転送電荷とト
ラップとの間の電荷のやシと〕によシ、転送速度が速い
場合、先に送った電荷がトラップされ、後から出てくる
ことになシ、転送ロスが生ずる。また、転送周期とトラ
ップとの間の電荷のやプとシの周期が同じになると、1
定の電荷を送っていても転送される電荷蓋に凸凹が生じ
、ノイズになる。
In other words, if the transfer speed is fast, the charge that is actually transferred is trapped in the impurity unit and added to the transferred charge again. Transfer losses will occur if the charged charges are trapped and come out later. In addition, if the charge dip and charge periods between the transfer period and the trap are the same, 1
Even if a constant charge is being sent, unevenness will occur on the transferred charge cap, resulting in noise.

〔問題点を解決するための手段〕[Means for solving problems]

本発明にお−ては、埋込チャネル部の不純物分布が、基
板表面と基板内に少なくとも2つの不連続な分布のピー
クを有するようになし、チャネル電位の最大点が両ピー
クの中間に来るようにし、転送電荷が不純物濃度の低い
領域を転送されることによ〕、トラップの影響を除去す
る。
In the present invention, the impurity distribution in the buried channel portion is made to have at least two discontinuous distribution peaks on the substrate surface and in the substrate, and the maximum point of the channel potential is located between the two peaks. In this way, the influence of traps is eliminated by transferring the transferred charge through a region with a low impurity concentration.

〔作用〕[Effect]

上記のようにピークを2つ設けると、その濃度や分布を
調整することによシ、両ピークの中間の不純物のドーピ
ングが少ないところにチャネル電位の最大点をもってく
ることができる。電荷はチャネル電位の最大点付近を転
送されるので、不純物の少ないところを転送することが
でき、したがって電荷が不純物にトラップされることが
減る。
When two peaks are provided as described above, by adjusting the concentration and distribution of the peaks, the maximum point of the channel potential can be brought to a place between the two peaks where doping of impurities is small. Since charges are transferred near the maximum point of the channel potential, they can be transferred to areas with few impurities, and therefore charges are less likely to be trapped by impurities.

なおかつ、電荷は界面から離れて転送されるから、界面
の影響による転送効率の劣化もない。
Furthermore, since the charge is transferred away from the interface, there is no deterioration in transfer efficiency due to the influence of the interface.

これに対して、従来部だと第2図(−) (6)のよう
にチャネル電位の最大点がドーピング濃度が一番高いと
ころに相当し、不純物のトラップとしての影響が大きい
On the other hand, in the conventional part, the maximum point of the channel potential corresponds to the highest doping concentration, as shown in FIG. 2 (-) (6), and has a large effect as a trap for impurities.

〔実施例〕〔Example〕

第1図−)に本発明の実施例における埋込チャネル屋電
荷転送装置の不純物分布を示す。この場合は不純物、例
えばアンチモン(Sb)やリン<p>は84025に隣
接する表面部(1)と、深さ1.8μ憔近傍の領域(1
K)に2つのピークを有し、この中間部分(II)は低
濃度になっている。この場合、電荷が転送される最大チ
ャネル電位は、第1図(6)のごとく基板表面からα5
μ悔の位置にう)、第1図(α)の低濃度部分(8X 
101014a’ )にあることから、トラップの影響
が少なくなシ、従来部の力になシ、転送効率の低下が緩
和される。
FIG. 1-) shows the impurity distribution of the buried channel charge transfer device according to the embodiment of the present invention. In this case, impurities such as antimony (Sb) and phosphorus <p> are present in the surface area (1) adjacent to 84025 and in the area (1) near the depth of 1.8 μm.
K) has two peaks, and the middle portion (II) has a low concentration. In this case, the maximum channel potential at which charge is transferred is α5 from the substrate surface as shown in Figure 1 (6).
μ), the low concentration part of Figure 1 (α) (8X
101014a'), the influence of traps is small, the conventional part is not affected, and the decrease in transfer efficiency is alleviated.

第1図(α)の不純物分布は、チャネリングイオン注入
を用いれば容易に形成できる。例えば、84(110)
基板に対して、不純物のsh+やrを、500〜500
KgFで注入すれば、表面から略2styhにピークを
有する(If)の不純物を導入でき、続iて低エネルギ
、例えば100fsFで注入を行なうことによj)、(
1)の不純物を導入できる。
The impurity distribution shown in FIG. 1 (α) can be easily formed using channeling ion implantation. For example, 84 (110)
The sh+ and r of impurities are 500 to 500 to the substrate.
If KgF is implanted, an impurity (If) having a peak approximately 2styh from the surface can be introduced, and by subsequent implantation at a low energy, for example, 100 fsF,
1) Impurities can be introduced.

〔発明の効果〕〔Effect of the invention〕

本発明によれば上述のように、埋込チャネル部の不純物
分布に基板表面と基板内に2つのピークを有するように
し、チャネル電位の最大点が両ピークの中間点に来るよ
うにすることにょシ、転送電荷が不純物濃度の低い領域
を転送されるようにできるので、トラップの影響を除去
することができ、低温動作で高い転送効率を得ることが
できる。
According to the present invention, as described above, the impurity distribution in the buried channel portion has two peaks on the substrate surface and inside the substrate, and the maximum point of the channel potential is located at the midpoint between the two peaks. Second, since the transferred charge can be transferred through a region with a low impurity concentration, the influence of traps can be removed, and high transfer efficiency can be obtained with low temperature operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (6)はそれぞれ本発明の実施例の埋込
チャネル部の不純物濃度分布図及びチャネル電位を示す
図、 第2図(、) (6)はそれぞれ従来のBCC:D O
埋込チャネル部の不純物濃度分布図及びチャネル電位を
示す図。 第3図はBCCDの断面構成図。 1・・・p形シリコン基板 2・・・埋込チャネル部 3・・・絶縁膜
Figures 1(a) and (6) are diagrams showing the impurity concentration distribution diagram and channel potential of the buried channel portion of the embodiment of the present invention, respectively, and Figures 2(a) and (6) are diagrams respectively showing the conventional BCC:D O
FIG. 3 is a diagram showing an impurity concentration distribution diagram and channel potential of a buried channel portion. FIG. 3 is a cross-sectional diagram of the BCCD. 1... P-type silicon substrate 2... Buried channel part 3... Insulating film

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に、絶縁膜を介して複数の電極を配
した電荷転送装置において、 該電荷転送装置の電荷転送部には、基板とは逆極性の導
電性を与える不純物が基板の深さ方向に少なくとも2つ
のピークを有するように導入されてなり、 該電荷転送部の電位の最大点が両ピークの中間に来るよ
うにして、転送電荷が両ピークの中間の不純物濃度の低
い領域を転送されることを特徴とする電荷転送装置。
(1) In a charge transfer device in which a plurality of electrodes are disposed on a semiconductor substrate with an insulating film interposed therebetween, the charge transfer portion of the charge transfer device contains impurities deep in the substrate that provide conductivity of opposite polarity to that of the substrate. The charge transfer portion is introduced so as to have at least two peaks in the horizontal direction, and the maximum point of the potential of the charge transfer portion is located in the middle of both peaks, so that the transferred charge covers a region with a low impurity concentration between the two peaks. A charge transfer device characterized in that charge transfer is performed.
(2)前記電荷転送装置は、半導体基板(110)面上
に形成されていることを特徴とする特許請求の範囲第1
項記載の電荷転送装置。
(2) The charge transfer device is formed on a semiconductor substrate (110) surface.
The charge transfer device described in Section 1.
JP9421385A 1985-05-01 1985-05-01 Charge transfer device Pending JPS61252665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9421385A JPS61252665A (en) 1985-05-01 1985-05-01 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9421385A JPS61252665A (en) 1985-05-01 1985-05-01 Charge transfer device

Publications (1)

Publication Number Publication Date
JPS61252665A true JPS61252665A (en) 1986-11-10

Family

ID=14104035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9421385A Pending JPS61252665A (en) 1985-05-01 1985-05-01 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS61252665A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613191A2 (en) * 1993-02-26 1994-08-31 Sumitomo Electric Industries, Limited Channel structure for field effect transistor
EP0613189A2 (en) * 1993-02-22 1994-08-31 Sumitomo Electric Industries, Ltd. Channel structure for field effect transistor and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0613189A2 (en) * 1993-02-22 1994-08-31 Sumitomo Electric Industries, Ltd. Channel structure for field effect transistor and method of manufacturing the same
EP0613189A3 (en) * 1993-02-22 1995-01-25 Sumitomo Electric Industries Channel structure for field effect transistor and method of manufacturing the same.
US5493136A (en) * 1993-02-22 1996-02-20 Sumitomo Electric Industries, Ltd. Field effect transistor and method of manufacturing the same
EP0613191A2 (en) * 1993-02-26 1994-08-31 Sumitomo Electric Industries, Limited Channel structure for field effect transistor
EP0613191A3 (en) * 1993-02-26 1995-01-25 Sumitomo Electric Industries Channel structure for field effect transistor.

Similar Documents

Publication Publication Date Title
US4229752A (en) Virtual phase charge transfer device
EP0174133A2 (en) A solid-state image sensor
GB1495453A (en) Charged coupled devices
EP0350091B1 (en) Tilted channel charge-coupled device
JPS61252665A (en) Charge transfer device
JPH09275207A (en) Horizontal charge transfer device capable of bidirectional transfer
JPS61198676A (en) Semiconductor integrated circuit device
US4994875A (en) Virtual phase charge transfer device
US4231810A (en) Process for producing bi-polar charge coupled devices by ion-implantation
JP2912533B2 (en) Solid-state imaging device
JPS61179574A (en) Charge coupled device
JP2599813B2 (en) Driving method of solid-state imaging device
JPH088348B2 (en) Charge transfer device
US5406101A (en) Horizontal charge coupled device
JPS6286862A (en) Charge transfer device
US4658497A (en) Method of making an imaging array having a higher sensitivity
JPH0465133A (en) Charge coupled device
JPS62179154A (en) Charge transfer device
JPH0714047B2 (en) Charge transfer device
KR970054294A (en) CCD solid-state imaging device
JPH0290678A (en) Frame transfer type image sensor device
JPH03227027A (en) Charge transfer device
JPS63275178A (en) Semiconductor device
JPH0697207A (en) Semiconductor device
JP2712424B2 (en) Method for manufacturing charge transfer device