JP2912533B2 - Solid-state imaging device - Google Patents

Solid-state imaging device

Info

Publication number
JP2912533B2
JP2912533B2 JP5283070A JP28307093A JP2912533B2 JP 2912533 B2 JP2912533 B2 JP 2912533B2 JP 5283070 A JP5283070 A JP 5283070A JP 28307093 A JP28307093 A JP 28307093A JP 2912533 B2 JP2912533 B2 JP 2912533B2
Authority
JP
Japan
Prior art keywords
impurity region
photoelectric conversion
type impurity
conversion unit
transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5283070A
Other languages
Japanese (ja)
Other versions
JPH07142696A (en
Inventor
富大 山口
恭志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP5283070A priority Critical patent/JP2912533B2/en
Publication of JPH07142696A publication Critical patent/JPH07142696A/en
Application granted granted Critical
Publication of JP2912533B2 publication Critical patent/JP2912533B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、固体撮像装置に関し、
更に詳しくは、固体撮像装置の光電変換部の信号容量を
高める技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state imaging device,
More specifically, the present invention relates to a technique for increasing a signal capacity of a photoelectric conversion unit of a solid-state imaging device.

【0002】[0002]

【従来の技術】従来から2次元固体撮像装置には種々の
装置が知られているが、ノイズが少ないという点で、C
CD型固体撮像装置が優れている。かかるCCD型固体
撮像装置としては、インターライン転送型固体撮像装置
とフレーム転送型固体撮像装置とに大別されるが、現在
では、短波長感度が高く、スミアと称される偽信号が少
なく、チップサイズも小さくできるという実用上有利な
インターライン転送型固体撮像装置が主流となってい
る。
2. Description of the Related Art Conventionally, various types of two-dimensional solid-state imaging devices have been known.
The CD type solid-state imaging device is excellent. Such CCD type solid-state imaging devices are roughly classified into an interline transfer type solid-state imaging device and a frame transfer type solid-state imaging device. At present, short-wavelength sensitivity is high, false signals called smear are small, and An interline transfer type solid-state imaging device, which is practically advantageous in that the chip size can be reduced, has become mainstream.

【0003】図3はインターライン転送型固体撮像装置
の場合の画素構造を示したものである。ここで、図3
(a)は従来のインターライン転送型固体撮像装置の平
面図、同(b)は平面図中I−I′線での断面図、同
(c)は平面図中II−II′線での断面図である。図3に
おいて、1はn型シリコン基板、2はp-型ウエル領
域、3はp型不純物領域、4はn型不純物領域、5は画
素分離のためのp+型不純物領域、6はn型不純物領
域、7はp+型不純物領域、8は絶縁膜、9はトランス
ファーゲート部、10は絶縁膜、11は転送電極となる
ゲートポリシリコン層である。尚、信号電荷は電子の場
合について示す。 また、図3(a)において、13は
CCD転送部、16,17,18,19は2層よりなる
4つの転送電極である。該転送電極16,17,18,
19には4電極周期でΦV1、ΦV2、ΦV3、ΦV4
の4相クロックが印加される。
FIG. 3 shows a pixel structure in the case of an interline transfer type solid-state imaging device. Here, FIG.
(A) is a plan view of a conventional interline transfer type solid-state imaging device, (b) is a cross-sectional view taken along line II 'in the plan view, and (c) is a cross-sectional view taken along line II-II' in the plan view. It is sectional drawing. In FIG. 3, 1 is an n-type silicon substrate, 2 is a p -type well region, 3 is a p-type impurity region, 4 is an n-type impurity region, 5 is a p + -type impurity region for pixel isolation, and 6 is an n-type impurity region. An impurity region, 7 is a p + -type impurity region, 8 is an insulating film, 9 is a transfer gate portion, 10 is an insulating film, and 11 is a gate polysilicon layer serving as a transfer electrode. The signal charge is shown for the case of electrons. In FIG. 3A, 13 is a CCD transfer unit, and 16, 17, 18, and 19 are four transfer electrodes composed of two layers. The transfer electrodes 16, 17, 18,
19, ΦV1, ΦV2, ΦV3, ΦV4 at four electrode cycles
Are applied.

【0004】これら転送電極16,17,18,19に
覆われていない窓の部分が光電変換を行う光電変換部1
4であり、15は該光電変換部14からの信号をCCD
転送部13へ移送するトランスファーゲート領域であ
る。図3に示すように画素分離のためのp+型不純物領
域5をCCD転送部13と光電変換部14との間だけス
トライプ状に設ける方法は、特開昭59−16472等
で知られていた周知技術である。
A window portion not covered by the transfer electrodes 16, 17, 18, 19 has a photoelectric conversion unit 1 for performing photoelectric conversion.
Reference numeral 15 denotes a signal from the photoelectric conversion unit 14 which is a CCD.
This is a transfer gate area to be transferred to the transfer unit 13. As shown in FIG. 3, a method of providing p + -type impurity regions 5 for pixel separation in a stripe form only between the CCD transfer unit 13 and the photoelectric conversion unit 14 has been known in Japanese Patent Application Laid-Open No. 59-16472. This is a well-known technique.

【0005】図3(b)及び(c)に示すように、本例
では光電変換部14の下側はp-型ウエル領域2を挟ん
でn型シリコン基板1が存在する、従来より知られた縦
型オーバーフロードレイン構造とする。また、上記光電
変換部14の表面には高濃度のp+型不純物領域7が設
けられている。これらの構造は、例えば、特開昭62−
124771等に記載されている。
As shown in FIGS. 3 (b) and 3 (c), in the present example, an n-type silicon substrate 1 is present below a photoelectric conversion portion 14 with a p - type well region 2 interposed therebetween. Vertical overflow drain structure. A high concentration p + -type impurity region 7 is provided on the surface of the photoelectric conversion unit 14. These structures are described, for example, in
124711, etc.

【0006】図3の構成において、転送電極16,1
7,18,19に印加するクロックΦV1、ΦV2、Φ
V3、ΦV4のタイミングを図4に示す。図4におい
て、各クロックの電圧レベルはΦV1、ΦV3はVL
M,VHの3値とし、ΦV2、ΦV4はVL,VHの2値
とする。
In the configuration of FIG. 3, the transfer electrodes 16, 1
Clocks ΦV1, ΦV2, Φ applied to 7, 18, 19
FIG. 4 shows the timings of V3 and ΦV4. In FIG. 4, the voltage level of each clock is ΦV1, ΦV3 is VL ,
V M and V H have three values, and ΦV 2 and ΦV 4 have two values VL and V H.

【0007】図4において、時刻t1及びt2ではΦV
1、ΦV3がVHレベルとなり、光電変換部14からの
信号電荷を上記トランスファーゲート領域15を介して
CCD転送部13へ読み出す。その後はクロックΦV
1、ΦV2、ΦV3、ΦV4が通常の転送動作を行っ
て、信号電荷を順次出力部側へ転送していく。1転送サ
イクルは期間Tで示されている。尚、図4は従来の固体
撮像装置の動作タイミングを示す図である。
In FIG. 4, at times t 1 and t 2 ΦV
1, .PHI.V3 goes to the VH level, and the signal charge from the photoelectric conversion unit 14 is read out to the CCD transfer unit 13 via the transfer gate region 15. After that, the clock ΦV
1, .PHI.V2, .PHI.V3, and .PHI.V4 perform a normal transfer operation to sequentially transfer signal charges to the output unit side. One transfer cycle is indicated by a period T. FIG. 4 is a diagram showing the operation timing of the conventional solid-state imaging device.

【0008】[0008]

【発明が解決しようとする課題】図3の構成において、
I−I′方向でのポテンシャル分布を図5に示す。同図
(b)は各クロックがVL,VHで転送動作をしている場
合を示し、トランスファーゲート領域15のポテンシャ
ルは低レベルのため、光電変換部14は電荷蓄積動作を
行う。一方、図5(c)は光電変換部14に蓄積された
電荷をCCD転送部13へ読み出す動作を示し、クロッ
クΦV1、ΦV3がVHレベルとなってトランスファー
ゲート部15のポテンシャルが高レベルとなって光電変
換部14に蓄積した電荷がCCD転送部13に読み出さ
れる。
SUMMARY OF THE INVENTION In the configuration of FIG.
FIG. 5 shows the potential distribution in the II ′ direction. FIG (b) shows a case where the clock is a transfer operation with V L, V H, for the potential of the transfer gate region 15 is a low level, the photoelectric conversion unit 14 performs the charge accumulation operation. On the other hand, FIG. 5C shows an operation of reading out the electric charge accumulated in the photoelectric conversion unit 14 to the CCD transfer unit 13, and the clocks ΦV1 and ΦV3 become the V H level, so that the potential of the transfer gate unit 15 becomes the high level. Thus, the charges accumulated in the photoelectric conversion unit 14 are read out to the CCD transfer unit 13.

【0009】しかしながら、この場合、以下のような問
題点がある。すなわち、図5(b)に示したように、光
電変換部14のポテンシャル分布は、2次元効果によっ
て光電変換部14の周辺部が浅くなる。ここで、2次元
効果とは、周囲の濃度によって特性が変化することをい
う。このため、実効的な光電変換部14の容量が低下
し、光電変換部14に蓄積できる最大電荷量が低下す
る。特に、光電変換部14の面積が小さくなる程、この
2次元効果は大きくなる。
However, in this case, there are the following problems. That is, as shown in FIG. 5B, the potential distribution of the photoelectric conversion unit 14 becomes shallow at the periphery of the photoelectric conversion unit 14 due to the two-dimensional effect. Here, the two-dimensional effect means that characteristics change depending on the surrounding density. For this reason, the effective capacity of the photoelectric conversion unit 14 decreases, and the maximum charge amount that can be accumulated in the photoelectric conversion unit 14 decreases. In particular, as the area of the photoelectric conversion unit 14 decreases, the two-dimensional effect increases.

【0010】この問題の対策として、特開昭63−18
665に示されるような方法がある。図6(a)は画素
平面図、同(b)は同平面図のIb−Ib′線での断面
図、同(c)は同部分のポテンシャル分布図を示す。上
記方法の特徴は、各光電変換部のn型不純物領域21の
濃度を、光電変換部の周辺に設けられた画素分離のため
のp+不純物領域23と接する領域22で高めることに
ある。しかしながら、この方法にも以下の問題点があ
る。
As a countermeasure against this problem, Japanese Patent Application Laid-Open No. 63-18 / 1988
665. 6A is a plan view of a pixel, FIG. 6B is a cross-sectional view taken along the line Ib-Ib ′ of the plan view, and FIG. 6C is a potential distribution diagram of the same portion. The feature of the above method is that the concentration of the n-type impurity region 21 of each photoelectric conversion unit is increased in the region 22 provided around the photoelectric conversion unit and in contact with the p + impurity region 23 for pixel separation. However, this method also has the following problems.

【0011】即ち、この方法では、各光電変換部の表面
に高濃度のp+不純物領域は無いが、n型不純物領域2
1を低くして完全に空乏化させ、n型不純物領域21の
信号電荷を完全に転送することが考えられている。この
場合、n型不純物領域21の濃度の差はポテンシャルを
大きく変えるので、周辺の濃度を高くする場合、増大量
の僅かのバラツキが周辺部ポテンシャルを深くしすぎ、
信号電荷を取り残す可能性が高くなる。つまり、図6
(c)に示すように、周辺部のポテンシャル29は他の
領域より深く、ここで電荷を取り残しやすくなる。
That is, in this method, although there is no high concentration p + impurity region on the surface of each photoelectric conversion portion, the n-type impurity region 2
It is considered that the signal charge in the n-type impurity region 21 is completely transferred by lowering 1 to complete depletion. In this case, the difference in the concentration of the n-type impurity region 21 greatly changes the potential. Therefore, when the concentration in the periphery is increased, a slight variation in the increase amount causes the peripheral potential to be too deep.
There is a high possibility that signal charges are left behind. That is, FIG.
As shown in (c), the potential 29 in the peripheral portion is deeper than in other regions, and the charge is easily left here.

【0012】尚、図6(c)において、25は転送電
極、26はp+型不純物領域23下のポテンシャル、2
7はトランスファーゲート部下のポテンシャル、28は
n型不純物領域21下のポテンシャルを示す。
In FIG. 6C, reference numeral 25 denotes a transfer electrode; 26, a potential below the p + -type impurity region 23;
7 denotes a potential below the transfer gate portion, and 28 denotes a potential below the n-type impurity region 21.

【0013】また、該技術はn又はn+型不純物領域を
2回に分けて形成する必要があり、n+型不純物領域の
深さが深いため、形成は熱拡散で伸ばすか、高エネルギ
ーを注入する必要がある。そして、熱拡散の場合には、
横方向にものびるので、画素サイズが小さい場合周辺の
みの形成が困難となる。高エネルギー注入の場合には、
1回目と2回目で周辺の境界を合わせる必要があるが、
一般に用いられるポリシリコン電極を用いたセルフ注入
の場合には、高エネルギーで2回注入するため、注入イ
オンが一部電極を貫いてしまうという問題がある。
Further, in this technique, it is necessary to form an n or n + -type impurity region in two steps, and since the depth of the n + -type impurity region is deep, the formation can be performed by thermal diffusion or high energy. Need to be injected. And in the case of thermal diffusion,
Since the horizontal direction increases, it is difficult to form only the periphery when the pixel size is small. For high energy implants,
It is necessary to match the surrounding borders in the first and second times,
In the case of self-implantation using a generally used polysilicon electrode, since implantation is performed twice with high energy, there is a problem that implanted ions partially penetrate the electrode.

【0014】本発明は、以上の問題点に鑑み、ポテンシ
ャルの制御性が良く、合わせ精度も緩くて良い構造によ
り、各光電変換部における2次元効果を抑制できる結
果、光電変換部の最大蓄積電荷量増大が容易に可能とな
る手段を提供することを目的とする。
In view of the above problems, the present invention can suppress the two-dimensional effect in each photoelectric conversion unit by a structure having good controllability of potential and low alignment accuracy, and as a result, the maximum accumulated charge of the photoelectric conversion unit It is an object of the present invention to provide means capable of easily increasing the amount.

【0015】[0015]

【課題を解決するための手段】本発明の固体撮像装置
は、第1導電型の半導体領域の表面に、複数の第1導電
型の第1不純物領域と該第1不純物領域下に形成された
第2導電型の第2不純物領域とから成る光電変換部が形
成されて成る固体撮像装置において、上記第1不純物領
域の不純物濃度が中央部より周辺部の方が低くなってい
ることを特徴とするものである。
According to the present invention, there is provided a solid-state imaging device having a plurality of first conductivity type first impurity regions formed under a surface of a first conductivity type semiconductor region and below the first impurity regions. In a solid-state imaging device in which a photoelectric conversion unit including a second impurity region of a second conductivity type is formed, an impurity concentration of the first impurity region is lower in a peripheral part than in a central part. Is what you do.

【0016】[0016]

【作用】上記本発明を用いることにより、各光電変換部
のポテンシャルが周辺部で深くなる効果を最適化すれ
ば、画素サイズを小さくした場合に、2次元効果によっ
て各光電変換部のポテンシャルが周辺部で浅くなる効果
は完全に打ち消される。
According to the present invention, by optimizing the effect that the potential of each photoelectric conversion portion becomes deeper in the peripheral portion, when the pixel size is reduced, the potential of each photoelectric conversion portion is reduced by the two-dimensional effect. The effect of shallowness in the part is completely negated.

【0017】[0017]

【実施例】以下、一実施例に基づいて、本発明を詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail based on one embodiment.

【0018】図1(a)は本発明の一実施例の固体撮像
装置の平面図であり、同(b)は同(a)のI−I′断面
図であり、同(c)は同(a)のII−II′断面図であ
る。図1(a)において、各光電変換部14の表面に形
成されたp+型不純物領域は、各光電変換部14表面全
体を覆うp+不純物領域7aと該p+型不純物領域7aの
中央部に形成されたp+型不純物領域7bとからなる。
この結果、p+型不純物領域の濃度は各光電変換部14
毎に中央部で高く、周辺部で低くなっている。また、上
記p+型不純物領域7bの不純物濃度は従来のp+型不純
物領域7の不純物濃度とほぼ同じとする。
FIG. 1A is a plan view of a solid-state imaging device according to an embodiment of the present invention, FIG. 1B is a sectional view taken along the line II ′ of FIG. 1A, and FIG. FIG. 2A is a sectional view taken along the line II-II ′ of FIG. In FIG. 1 (a), p + -type impurity region formed in a surface of the photoelectric conversion unit 14, the central portion of the p + impurity region 7a and the p + -type impurity regions 7a which covers the entire respective photoelectric conversion portion 14 surface And ap + -type impurity region 7b formed at
As a result, the concentration of the p + -type impurity region is
Every time it is high at the center and low at the periphery. Further, the impurity concentration of the p + -type impurity region 7b is substantially the same as the impurity concentration of the conventional p + -type impurity region 7.

【0019】また、図2(a)はポテンシャル分布に対
応する画素断面図であり、(b)は各クロックΦV1、
ΦV2、ΦV3、ΦV4が図4に示すように従来と同じ
タイミングでVL,VHレベルで転送動作をしている場合
の電荷蓄積時及び電荷転送時のポテンシャル分布図を示
し、(c)は同タイミングで光電変換部14の電荷をC
CD転送部13へ読み出す場合の電荷蓄積時及び電荷転
送時のポテンシャル分布図を示す。
FIG. 2A is a sectional view of a pixel corresponding to a potential distribution, and FIG.
FIG. 4 shows potential distribution diagrams during charge accumulation and charge transfer when ΦV2, ΦV3, and ΦV4 perform transfer operations at the VL and VH levels at the same timing as in the prior art, as shown in FIG. At the same timing, the charge of the photoelectric
FIG. 4 shows a potential distribution diagram at the time of charge accumulation and charge transfer when reading out to the CD transfer unit 13.

【0020】図2(a)では、トランスファーゲート領
域15のポテンシャルが低レベルのため、光電変換部1
4は電荷蓄積動作を行う。また、図2(b)では、クロ
ックΦV1、ΦV3がVHレベルとなってトランスファ
ーゲート部のポテンシャルが高レベルとなり、光電変換
部14に蓄積した電荷がCCD転送部13に読み出され
る。
In FIG. 2A, since the potential of the transfer gate region 15 is low, the photoelectric conversion unit 1
4 performs a charge storage operation. In FIG. 2B, the clocks ΦV1 and ΦV3 are at the V H level, the potential of the transfer gate section is at a high level, and the charges accumulated in the photoelectric conversion section 14 are read out to the CCD transfer section 13.

【0021】図2(b)に示すように、光電変換部14
のポテンシャル分布は2次元効果で周辺部が浅くなる
が、光電変換部14表面のp+型不純物領域7a,7b
により、周辺部ほどポテンシャルが深くなる作用によっ
て打ち消され、各光電変換部14毎にポテンシャル分布
のボトムがフラットとなる。このため、実効的な光電変
換部14の容量が増大し、光電変換部14に蓄積できる
最大電荷量を大幅に増大することが可能となる。特に光
電変換部14の面積が狭くなるほど、この効果は大きく
なる。
As shown in FIG. 2B, the photoelectric conversion unit 14
Is shallow in the peripheral portion due to the two-dimensional effect, but the p + -type impurity regions 7a and 7b on the surface of the photoelectric conversion portion 14
Accordingly, the potential is deepened in the peripheral portion, and the potential is canceled out, and the bottom of the potential distribution becomes flat for each photoelectric conversion unit 14. For this reason, the effective capacity of the photoelectric conversion unit 14 is increased, and the maximum charge amount that can be stored in the photoelectric conversion unit 14 can be significantly increased. In particular, the effect becomes larger as the area of the photoelectric conversion unit 14 becomes smaller.

【0022】以下、本発明の実施例の固体撮像装置の製
造工程を説明する。
Hereinafter, the manufacturing process of the solid-state imaging device according to the embodiment of the present invention will be described.

【0023】図7は本発明の第1の実施例の固体撮像装
置の製造工程図であり、図8は本発明の第2の実施例の
固体撮像装置の製造工程図である。
FIG. 7 is a manufacturing process diagram of the solid-state imaging device according to the first embodiment of the present invention, and FIG. 8 is a manufacturing process diagram of the solid-state imaging device of the second embodiment of the present invention.

【0024】尚、トランスファーゲート電極以外の電極
形成プロセスは省略し、光電変換部の形成工程について
主に説明する。
The process for forming electrodes other than the transfer gate electrode is omitted, and the process for forming the photoelectric conversion portion will be mainly described.

【0025】図7において、1はn型シリコン基板、2
はp-型ウエル領域、3はp型不純物領域、4はn型不
純物領域、5はp+型不純物領域、6はn型不純物領
域、7a及び7bはp+不純物領域、8a,8b及び1
0は絶縁膜、9は2層目転送電極となるポリシリコン
層、11は1層目転送電極となるポリシリコン層であ
る。
In FIG. 7, reference numeral 1 denotes an n-type silicon substrate;
Is a p -type well region, 3 is a p-type impurity region, 4 is an n-type impurity region, 5 is a p + -type impurity region, 6 is an n-type impurity region, 7a and 7b are p + impurity regions, 8a, 8b and 1
Reference numeral 0 denotes an insulating film, 9 denotes a polysilicon layer serving as a second-layer transfer electrode, and 11 denotes a polysilicon layer serving as a first-layer transfer electrode.

【0026】まず、半導体基板であるn型シリコン基板
1にボロンのイオン注入を行い、熱処理を行い、p-
ウエル層2を形成し、このp-型ウエル層2上にフォト
レジスト(図示ぜず。)を塗布、露光、現像を行い、p
型不純物領域3の所定の領域に窓開けを行い、ボロンの
イオン注入を行って電荷転送部直下にp型不純物領域3
を形成し、同様にリンのイオン注入を行い電荷転送部で
あるn型不純物領域4を形成する。
[0026] First, the ion implantation of boron into the n-type silicon substrate 1 is a semiconductor substrate, followed by heat treatment, p - -type well layer 2, the p - photoresist (shown on the type well layer 2 Is applied, exposed and developed, and p
A window is opened in a predetermined region of the p-type impurity region 3, boron ions are implanted, and the p-type impurity region
Is formed, and similarly, ion implantation of phosphorus is performed to form an n-type impurity region 4 which is a charge transfer portion.

【0027】次に、フォトレジストを除去した後、ゲー
ト下の絶縁膜8a、例えば、Sinを膜厚350Åまた
は、SiO2を膜厚600Åをシリコン基板1上に形成
し、n型不純物領域4の所定領域上の絶縁膜8a上にフ
ォトレジスト(図示せず。)を用いてp+型不純物領域
のパターンを窓開けしてイオン注入を行って、p+型不
純物領域5を形成する。
Next, after removing the photoresist, an insulating film 8a under the gate, for example, Sin having a thickness of 350 ° or SiO 2 having a thickness of 600 ° is formed on the silicon substrate 1, and the n-type impurity region 4 is removed. A p + -type impurity region 5 is formed by opening a window of a p + -type impurity region using a photoresist (not shown) on the insulating film 8 a on a predetermined region and performing ion implantation.

【0028】次に、フォトレジスト除去後、ポリシリコ
ンを膜厚4500Å程度堆積し、フォトレジストを用い
てゲートパターンを形成し、エッチングを行い、1層目
転送電極となるポリシリコン層9を形成する。
Next, after removing the photoresist, polysilicon is deposited to a thickness of about 4500 °, a gate pattern is formed using the photoresist, and etching is performed to form a polysilicon layer 9 serving as a first-layer transfer electrode. .

【0029】次に、フォトレジスト除去後、ポリシリコ
ン層9をマスクに絶縁膜8aを全面除去し再度シリコン
基板1上に均一で、膜厚が例えば1100Å程度の絶縁
膜8bを形成する。
Next, after removing the photoresist, the insulating film 8a is entirely removed using the polysilicon layer 9 as a mask, and an insulating film 8b having a uniform thickness of, for example, about 1100 ° is formed on the silicon substrate 1 again.

【0030】次に、ポリシリコン層9と該ポリシリコン
層9上の絶縁膜10の片側をマスクをなるように、n型
不純物領域6のパターンをフォトレジスト(図示せ
ず。)により形成し、リンのイオン注入を加速エネルギ
ーが20〜60keV、ドーズ量が1013〜1015cm
-2の条件下でセルフアラインで行い、n型不純物領域6
を形成する(図7(a))。
Next, a pattern of the n-type impurity region 6 is formed with a photoresist (not shown) so that one side of the polysilicon layer 9 and the insulating film 10 on the polysilicon layer 9 is used as a mask. The ion implantation of phosphorus has an acceleration energy of 20 to 60 keV and a dose of 10 13 to 10 15 cm.
Self-aligned under the condition of -2 , and the n-type impurity region 6
Is formed (FIG. 7A).

【0031】次に、フォトレジスト除去後、ポリシリコ
ン層9と該ポリシリコン層9上の絶縁膜10をマスクと
なるようにボロンのイオン注入をセルフアラインで行
い、n型不純物領域6表面にp+型不純物領域7aを形
成する(図7(b))。
Next, after the photoresist is removed, boron ions are implanted in a self-aligned manner using the polysilicon layer 9 and the insulating film 10 on the polysilicon layer 9 as a mask. A + type impurity region 7a is formed (FIG. 7B).

【0032】次に、フォトレジスト30をポリシリコン
層9より離れた位置に窓開けパターニングを行い(図7
(c))、次に、イオン注入を行い、表面にp+型不純
物領域7aの中央部にp+型不純物領域7bを形成する
(図7(d))。尚、イオン注入条件は、p+型不純物
領域7a形成時と同じでよい。
Next, a photoresist 30 is opened at a position distant from the polysilicon layer 9 and patterning is performed (FIG. 7).
(C)), then subjected to ion implantation to form the p + -type impurity region 7b in the central portion of the p + -type impurity region 7a on the surface (FIG. 7 (d)). The ion implantation conditions may be the same as those for forming the p + -type impurity region 7a.

【0033】次に、図8を用いて本発明の第2の実施例
の固体撮像装置の製造工程を説明する。
Next, a manufacturing process of the solid-state imaging device according to the second embodiment of the present invention will be described with reference to FIG.

【0034】まず、図7(a)と同様の工程の後(図8
(a))、p+型不純物領域7aを形成した後、絶縁膜
31、例えば、SiO2を膜厚2000〜8000Å程
度堆積する(図8(b))。
First, after steps similar to those shown in FIG.
(A)) After forming the p + -type impurity region 7a, an insulating film 31, for example, SiO 2 is deposited to a thickness of about 2000 to 8000 ° (FIG. 8B).

【0035】次に、エッチバックを行い、サイドウォー
ル31を形成し(図8(c))、イオン注入を行い、p
+型不純物領域7bを形成する(図8(d))。イオン
注入の条件は、上記第1の実施例と同様でよい。
Next, an etch back is performed to form a side wall 31 (FIG. 8C), an ion is implanted, and p
A + type impurity region 7b is formed (FIG. 8D). The conditions for ion implantation may be the same as those in the first embodiment.

【0036】尚、図9は、本実施例における光電変換部
中央部と周辺部のシリコン基板深さ方向の不純物濃度分
布図であり、光電変換部において、周辺部のp+型不純
物領域の不純物濃度を中央部より低下させ、本発明の目
的である光電変換部の信号電荷蓄積容量が2次元効果に
よって減少する問題を解決することを示す。
FIG. 9 is an impurity concentration distribution diagram in the depth direction of the silicon substrate in the central portion and the peripheral portion of the photoelectric conversion portion in this embodiment. In the photoelectric conversion portion, the impurity concentration of the p + -type impurity region in the peripheral portion is reduced. It is shown that the concentration is lowered from the central portion to solve the problem of reducing the signal charge storage capacity of the photoelectric conversion unit due to the two-dimensional effect, which is the object of the present invention.

【0037】また、図10は、光電変換部14における
+型不純物領域7a及び7bとn型不純物領域6とを
形成する際のイオン注入量について光電変換部の空乏化
ポテンシャル特性を示す図である。図10によると、p
+型不純物領域7a及び7bを形成する場合の方がn型
不純物領域6を形成する場合より、相対注入量に対する
受光部の空乏化ポテンシャルの変化量が小さいので、p
+型不純物領域7a及び7b形成の際のイオン注入が光
電変換部のポテンシャルに与える影響を比較的小さくす
ることができるため、ポテンシャル制御性がよい。
FIG. 10 is a graph showing the depletion potential characteristics of the photoelectric conversion unit with respect to the ion implantation amount when forming the p + -type impurity regions 7a and 7b and the n-type impurity region 6 in the photoelectric conversion unit 14. is there. According to FIG.
Since the change in the depletion potential of the light-receiving portion with respect to the relative implantation amount is smaller in the case where the + -type impurity regions 7a and 7b are formed than in the case where the n-type impurity region 6 is formed, p
Since the influence of the ion implantation at the time of forming the + type impurity regions 7a and 7b on the potential of the photoelectric conversion portion can be made relatively small, the potential controllability is good.

【0038】[0038]

【発明の効果】以上、詳細に説明した様に、本発明を用
いることにより、光電変換部を構成するp型不純物領域
が高濃度になるほど、該p型不純物領域の下のn型不純
物領域の濃度を打ち消す効果が強まり、該n型不純物領
域の空乏化ポテンシャルを下げる作用がある。したがっ
て、本発明においては、各光電変換部のポテンシャルは
中央部で浅くなり、周辺部で深くなる。
As described in detail above, by using the present invention, the higher the concentration of the p-type impurity region constituting the photoelectric conversion portion becomes, the more the n-type impurity region below the p-type impurity region becomes. The effect of canceling the concentration is enhanced, and the effect of lowering the depletion potential of the n-type impurity region is provided. Therefore, in the present invention, the potential of each photoelectric conversion unit becomes shallower at the center and deeper at the periphery.

【0039】そして、本発明のようにp+型不純物領域
の濃度を制御することにより、従来のn型不純物領域に
よってポテンシャル分布を制御する場合に比べ、光電変
換部のポテンシャル分布に与える影響を比較的小さくす
ることができるため、ポテンシャル制御性がよい。
By controlling the concentration of the p + -type impurity region as in the present invention, the influence on the potential distribution of the photoelectric conversion portion is compared with the conventional case where the potential distribution is controlled by the n-type impurity region. Therefore, the potential controllability is good.

【0040】また、本発明における2段階の濃度分布を
もつp+型不純物領域形成に際し、2回目のイオン注入
は1回目のイオン注入によって形成されたp+型不純物
領域の中央部に合わせればよいため、両者の合わせ精度
の緩くてよい。
In forming the p + -type impurity region having a two-stage concentration distribution in the present invention, the second ion implantation may be performed at the center of the p + -type impurity region formed by the first ion implantation. Therefore, the alignment accuracy of both may be loose.

【0041】以上より、各光電変換部のポテンシャルが
周辺部で深くなる効果を最適化すれば、画素サイズを小
さくした場合に2次元効果によって各光電変換部のポテ
ンシャルが周辺部で浅くなる効果は完全に打ち消すこと
が可能となる。したがって、信号蓄積は光電変換部全域
に広げられる結果、光電変換部の最大信号蓄積容量が大
幅に高められる。また、それを実現するための方法は容
易であって、その実用的価値は極めて大きい。
As described above, by optimizing the effect that the potential of each photoelectric conversion portion becomes deeper in the peripheral portion, the effect that the potential of each photoelectric conversion portion becomes shallower in the peripheral portion due to the two-dimensional effect when the pixel size is reduced is reduced. It is possible to completely cancel. Therefore, as a result of the signal accumulation being spread over the entire area of the photoelectric conversion unit, the maximum signal storage capacity of the photoelectric conversion unit is greatly increased. Moreover, the method for realizing it is easy, and its practical value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)は本発明の一実施例の固体撮像装置の平
面図、(b)は同(a)におけるI−I′断面図、(c)
は同(a)におけるII−II′断面図である。
FIG. 1A is a plan view of a solid-state imaging device according to an embodiment of the present invention, FIG. 1B is a cross-sectional view taken along the line II ′ in FIG. 1A, and FIG.
FIG. 2 is a sectional view taken along the line II-II ′ in FIG.

【図2】(a)は本発明のポテンシャル分布に対応する
画素断面図、(b)及び(c)は電荷蓄積時及び電荷転
送時のポテンシャル分布図である。
FIG. 2A is a sectional view of a pixel corresponding to a potential distribution according to the present invention, and FIGS. 2B and 2C are potential distribution diagrams at the time of charge accumulation and charge transfer.

【図3】(a)は従来のインターライン転送型固体撮像
装置の平面図、(b)は同(a)におけるI−I′断面
図、(c)は同(a)におけるII−II′断面図である。
3A is a plan view of a conventional interline transfer type solid-state imaging device, FIG. 3B is a cross-sectional view taken along line II ′ in FIG. 3A, and FIG. 3C is a cross-sectional view taken along line II-II ′ in FIG. It is sectional drawing.

【図4】従来の固体撮像装置の動作タイミングを示す図
である。
FIG. 4 is a diagram showing operation timing of a conventional solid-state imaging device.

【図5】(a)は図3(a)におけるI−I′断面図、
(b)は各クロックがVL,VHで転送動作をしている場
合のポテンシャル分布図、(c)は光電変換部に蓄積さ
れた電荷をCCD転送部への読み出し動作をしている場
合のポテンシャル分布図である。
FIG. 5A is a sectional view taken along the line II ′ in FIG. 3A;
(B) is a potential distribution diagram when each clock is transferring at VL and VH , and (c) is a case where charges accumulated in the photoelectric conversion unit are read out to the CCD transfer unit. FIG. 4 is a potential distribution diagram of FIG.

【図6】(a)は従来の固体撮像装置の画素平面図、
(b)は(a)におけるIb−Ib′断面図、(c)は
(b)のポテンシャル分布図である。
FIG. 6A is a pixel plan view of a conventional solid-state imaging device,
(B) is a sectional view taken along the line Ib-Ib 'in (a), and (c) is a potential distribution diagram in (b).

【図7】本発明の第1の実施例の固体撮像装置の製造工
程図である。
FIG. 7 is a manufacturing process diagram of the solid-state imaging device according to the first embodiment of the present invention.

【図8】本発明の第2の実施例の固体撮像装置の製造工
程図である。
FIG. 8 is a manufacturing process diagram of the solid-state imaging device according to the second embodiment of the present invention.

【図9】本実施例における光電変換部中央部と周辺部の
シリコン基板深さ方向の不純物濃度分布図である。
FIG. 9 is an impurity concentration distribution diagram in the depth direction of the silicon substrate in the central part and the peripheral part of the photoelectric conversion unit in this example.

【図10】光電変換部におけるp+型不純物領域とn型
不純物領域とを形成する際のイオン注入量について光電
変換部の空乏化ポテンシャル特性を示す図である。
FIG. 10 is a diagram showing a depletion potential characteristic of a photoelectric conversion unit with respect to an ion implantation amount when forming ap + -type impurity region and an n-type impurity region in the photoelectric conversion unit.

【符号の説明】[Explanation of symbols]

1 n型シリコン基板 2 p-型ウエル領域 3 p型不純物領域 4 n型不純物領域 5 p+型不純物領域 6 n型不純物領域 7a,7b p+型不純物領域 8a,8b,10,31 絶縁膜 9,11 ポリシリコン層 13 CCD転送部 14 光電変換部 15 トランスファーゲート領域 16,17,18,19 転送電極 30 フォトレジストReference Signs List 1 n-type silicon substrate 2 p - type well region 3 p-type impurity region 4 n-type impurity region 5 p + -type impurity region 6 n-type impurity region 7 a, 7 b p + -type impurity region 8 a, 8 b, 10, 31 insulating film 9 , 11 polysilicon layer 13 CCD transfer section 14 photoelectric conversion section 15 transfer gate area 16, 17, 18, 19 transfer electrode 30 photoresist

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型の半導体領域の表面に、複数
の第1導電型の第1不純物領域と該第1不純物領域下に
形成された第2導電型の第2不純物領域とから成る光電
変換部が形成されて成る固体撮像装置において、 上記第1不純物領域の不純物濃度が中央部より周辺部の
方が低くなっていることを特徴とする固体撮像装置。
A plurality of first impurity regions of a first conductivity type and a second impurity region of a second conductivity type formed under the first impurity region on a surface of the semiconductor region of the first conductivity type; A solid-state imaging device including a photoelectric conversion unit, wherein an impurity concentration of the first impurity region is lower in a peripheral portion than in a central portion.
JP5283070A 1993-11-12 1993-11-12 Solid-state imaging device Expired - Fee Related JP2912533B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5283070A JP2912533B2 (en) 1993-11-12 1993-11-12 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5283070A JP2912533B2 (en) 1993-11-12 1993-11-12 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH07142696A JPH07142696A (en) 1995-06-02
JP2912533B2 true JP2912533B2 (en) 1999-06-28

Family

ID=17660821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5283070A Expired - Fee Related JP2912533B2 (en) 1993-11-12 1993-11-12 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2912533B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690423B1 (en) 1998-03-19 2004-02-10 Kabushiki Kaisha Toshiba Solid-state image pickup apparatus
JP4577737B2 (en) * 1999-06-08 2010-11-10 富士フイルム株式会社 Solid-state imaging device
KR20050106495A (en) 2003-03-06 2005-11-09 소니 가부시끼 가이샤 Solid state image sensing device and production method therefor, and method of driving solid state image sensing device
KR101115092B1 (en) * 2004-07-29 2012-02-28 인텔렉츄얼 벤처스 투 엘엘씨 Image sensor with improved charge transfer efficiency and method for fabrication thereof
JP2006108590A (en) 2004-10-08 2006-04-20 Matsushita Electric Ind Co Ltd Solid state image pickup device

Also Published As

Publication number Publication date
JPH07142696A (en) 1995-06-02

Similar Documents

Publication Publication Date Title
JP2825004B2 (en) Sidewall charge-coupled imaging device and method of manufacturing the same
JPH1070263A (en) Solid state image sensor
US11626433B2 (en) Transistors having increased effective channel width
JP3225939B2 (en) Solid-state imaging device and manufacturing method thereof
JPH02267966A (en) Solid-state image pick-up device and its manufacture
US20230207587A1 (en) Transistors having increased effective channel width
JP2912533B2 (en) Solid-state imaging device
KR100645061B1 (en) Image sensor and method for fabricating the same
JP2909158B2 (en) Charge coupled device
JP3176300B2 (en) Solid-state imaging device and manufacturing method thereof
JPS63312669A (en) Solid-state image sensor
JP3105781B2 (en) Solid-state imaging device
JPH0697416A (en) Solid-state image sensing device and manufacture thereof
JP3384509B2 (en) Solid-state imaging device
JP2002373980A (en) Solid state imaging device and its manufacturing method
JPH0465165A (en) Charge coupled device and manufacture thereof
JP2980196B2 (en) Solid-state imaging device
JPH0424871B2 (en)
JPH11251572A (en) Solid-state image-pickup element and manufacture thereof
JPH05145056A (en) Solid state image sensor
JPS62269355A (en) Solid-state image sensing element
JPH0499381A (en) Solid-state image sensor and manufacture thereof
JPH0278272A (en) Image sensing device and manufacture thereof
JPH0997893A (en) Solid-state image pickup device and manufacture thereof
JP2001308309A (en) Solid-state image pickup element and its manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090409

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100409

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120409

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees