JPH0555270A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPH0555270A
JPH0555270A JP3217719A JP21771991A JPH0555270A JP H0555270 A JPH0555270 A JP H0555270A JP 3217719 A JP3217719 A JP 3217719A JP 21771991 A JP21771991 A JP 21771991A JP H0555270 A JPH0555270 A JP H0555270A
Authority
JP
Japan
Prior art keywords
transfer
type diffusion
diffusion layer
charge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3217719A
Other languages
Japanese (ja)
Inventor
Hiroaki Ito
宏明 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3217719A priority Critical patent/JPH0555270A/en
Publication of JPH0555270A publication Critical patent/JPH0555270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To transfer charge at a high speed without imprudently reducing the length of a transfer electrode in a transferring direction by depleting a P-type diffused layer under a channel. CONSTITUTION:A P-type diffused layer 2, an N-type diffused layer 3 for forming a channel and P-type diffused layers 4, 5, 6 for preventing the reverse flow of a transfer charge are sequentially formed on an N-type semiconductor substrate 1. Then, transfer electrodes 7-13 are formed through an insulating film 14. The layer 2 is depleted to reduce a diffusion capacity. Thus, the high speed transfer of a charge transfer device can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電荷転送装置に関し、
特に電荷の高速転送に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge transfer device,
In particular, it relates to high-speed transfer of charges.

【0002】[0002]

【従来の技術】従来の電荷転送装置は、図5に示すよう
に、N型半導体基板1に、P型拡散層32、チャネルを
形成するN型拡散層3,電荷の逆流を防ぐP型拡散層4
〜6を有し、さらに、表面の絶縁膜14を介して転送電
極7〜13を有している。
2. Description of the Related Art In a conventional charge transfer device, as shown in FIG. 5, a P-type diffusion layer 32, an N-type diffusion layer 3 for forming a channel, and a P-type diffusion for preventing backflow of charges are formed on an N-type semiconductor substrate 1. Layer 4
6 to 6 and further has transfer electrodes 7 to 13 via the insulating film 14 on the surface.

【0003】次に動作について説明する。今、Φ1 に高
レベル、Φ2 に低レベルの電圧を印加しているとする
と、電荷は転送電極9下のN型拡散層3とP型拡散層3
2の接合容量C31に蓄積される。次にΦ1 に低レベル,
Φ2 に高レベルの電圧を印加すると、接合容量C31に蓄
積されていた電荷は転送電極10下のチャネルを通って
転送電極11下のN型拡散層3とP型拡散層32の接合
容量C32に蓄積される。このとき転送電極9と同電位で
ある転送電極8下にP型拡散層4が形成されていること
により、転送電極8下のポテンシャルは必ず転送電極9
下のポテンシャルより浅くなり、転送電極9下に蓄積さ
れていた電荷は転送電極7側へ逆流することを防いでい
る。
Next, the operation will be described. Assuming that a high level voltage is applied to Φ 1 and a low level voltage is applied to Φ 2 , the charges are transferred to the N-type diffusion layer 3 and the P-type diffusion layer 3 below the transfer electrode 9.
It is stored in the junction capacitance C 31 of 2. Then low level to Φ 1 ,
When a high-level voltage is applied to Φ 2 , the charge accumulated in the junction capacitance C 31 passes through the channel below the transfer electrode 10 and the junction capacitance between the N-type diffusion layer 3 and the P-type diffusion layer 32 below the transfer electrode 11 is transferred. It is stored in C 32 . At this time, since the P-type diffusion layer 4 is formed under the transfer electrode 8 having the same potential as the transfer electrode 9, the potential under the transfer electrode 8 is always the transfer electrode 9.
The potential becomes shallower than the lower potential, and the charges accumulated under the transfer electrode 9 are prevented from flowing back to the transfer electrode 7 side.

【0004】今、接合容量C31に蓄積されていた電荷を
接合容量C32に転送するのに要する時間をt3 とすると
[0004] Now, if the time required to transfer the charges accumulated in the junction capacitance C31 in the junction capacitance C32 and t 3

【0005】 [0005]

【0006】またC31はN型拡散層3とP型拡散層32
との間の空乏層幅をd3 とすると
C 31 is an N-type diffusion layer 3 and a P-type diffusion layer 32.
When the depletion layer width d 3 between the

【0007】 [0007]

【0008】となる。従って(1)(2)より[0008] Therefore, from (1) and (2)

【0009】 [0009]

【0010】となり、転送速度は空乏層幅に反比例す
る。
Therefore, the transfer rate is inversely proportional to the depletion layer width.

【0011】[0011]

【発明が解決しようとする課題】この従来の電荷転送装
置では、転送電極下のP型拡散層32が空乏化しておら
ず、空乏層幅が約2μmと小さいため電荷の高速転送が
行なえないという問題点があった。
In this conventional charge transfer device, the P-type diffusion layer 32 under the transfer electrode is not depleted and the width of the depletion layer is as small as about 2 μm, so that high-speed transfer of charges cannot be performed. There was a problem.

【0012】[0012]

【課題を解決するための手段】本発明の電荷転送装置
は、チャネル下のP型拡散層を空乏化させることによ
り、転送電極の転送方向の長さをむやみに小さくするこ
となしに、電荷の高速転送を可能にすることを特徴とし
ている。
In the charge transfer device of the present invention, the P-type diffusion layer under the channel is depleted, so that the length of the transfer electrode in the transfer direction is not unnecessarily reduced, and the charge transfer It is characterized by enabling high-speed transfer.

【0013】[0013]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の断面図である。N型半導
体基板1にP型拡散層2,チャネルを形成するN型拡散
層3,転送電荷の逆流を防ぐためのP型拡散層4〜6を
形成し、さらに表面の絶縁膜14を介して転送電極7〜
13を形成する。また、N型半導体基板1の濃度は、2
×1014cm-3,P型拡散層の濃度を従来の約1/2の
5×1014cm-3,N型拡散層3の濃度は、2×1016
cm-3である。さらにN型半導体基板1とP型拡散層の
接合の深さは8μm,P型拡散層2とN型拡散層3の接
合の深さは4μmと従来と同じになっている。
The present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of an embodiment of the present invention. On the N-type semiconductor substrate 1, a P-type diffusion layer 2, an N-type diffusion layer 3 for forming a channel 3, P-type diffusion layers 4 to 6 for preventing backflow of transfer charges are formed, and an insulating film 14 on the surface is interposed. Transfer electrode 7-
13 is formed. The concentration of the N-type semiconductor substrate 1 is 2
× 10 14 cm -3 , the concentration of the P-type diffusion layer is about 1/2 that of the conventional one, 5 × 10 14 cm -3 , and the concentration of the N-type diffusion layer 3 is 2 × 10 16.
cm -3 . Further, the junction depth between the N-type semiconductor substrate 1 and the P-type diffusion layer is 8 μm, and the junction depth between the P-type diffusion layer 2 and the N-type diffusion layer 3 is 4 μm, which is the same as the conventional one.

【0014】次に動作について説明する。図2はタイミ
ングチャート,図3は、電荷転送装置(図3(a))
と、そのポテンシャル(図3(b)、(c)、(d))
を示す図である。今、t=T1 においてΦ1 に5vの電
圧が印加されておりΦ2 はOvとなっている。この時に
は、図3(b)に示すように、電荷Qは転送電極9下の
接合容量C1 に蓄積されている。次にt=T2 とき(図
3(c))、Φ1 は1v,Φ2 には4vの電圧が印加さ
れている状態であり、このとき接合容量C1 に蓄積され
ていた電荷Qは転送電極10下を通って転送電極11下
の接合容量C2 に転送される。t=T3 になると、図3
(d)に示すように、Φ1 はOv,Φ2 は5vの電圧が
印加されている状態になり、電荷Qは完全に接合容量C
2 に蓄積される。
Next, the operation will be described. 2 is a timing chart, and FIG. 3 is a charge transfer device (FIG. 3 (a)).
And its potential (Fig. 3 (b), (c), (d))
FIG. Now, at t = T 1 , a voltage of 5v is applied to Φ 1 and Φ 2 is Ov. At this time, the charge Q is accumulated in the junction capacitance C 1 below the transfer electrode 9, as shown in FIG. Next, when t = T 2 (FIG. 3C), Φ 1 is in a state where a voltage of 1v and Φ 2 is in a state of 4v, and the electric charge Q accumulated in the junction capacitance C 1 at this time is It is transferred under the transfer electrode 10 to the junction capacitance C 2 under the transfer electrode 11. When t = T 3 , FIG.
As shown in (d), a voltage of Ov is applied to Φ 1 and a voltage of 5 v is applied to Φ 2 , and the charge Q is completely connected to the junction capacitance C.
Accumulated in 2 .

【0015】ここでt=T2 の時、すなわち、電荷Qが
接合容量C1 から接合容量C2 に転送される時にはP型
拡散層2は空乏化しており、空乏層幅dは約9μmで,
従来の、場合の約5倍になっている。
Here, when t = T 2 , that is, when the charge Q is transferred from the junction capacitance C 1 to the junction capacitance C 2 , the P-type diffusion layer 2 is depleted, and the depletion layer width d is about 9 μm. ,
It is about 5 times that of the conventional case.

【0016】一般に転送時間をT,容量をCとすると、Generally, when the transfer time is T and the capacity is C,

【0017】 [0017]

【0018】となるので本実施例では、転送時間が約5
分の1に減少する。従って従来の5倍の高速転送が可能
となる。
Therefore, in this embodiment, the transfer time is about 5
It is reduced by a factor of 1. Therefore, high-speed transfer which is 5 times faster than the conventional one is possible.

【0019】図4は本発明の他の実施例の断面図であ
る。
FIG. 4 is a sectional view of another embodiment of the present invention.

【0020】本実施例ではP型拡散層22の濃度が従来
と同じ1×1015cm-3となっていたが、P型拡散層2
2とN型半導体基板1との接合面が6μmと従来の比べ
て浅くなっている。この場合もP型拡散層32は空乏化
しており、空乏化層幅は約6μmとなり従来の比べて約
3倍の高速転送が可能となる。
In this embodiment, the concentration of the P-type diffusion layer 22 was 1 × 10 15 cm -3 , which is the same as the conventional one.
The junction surface between 2 and the N-type semiconductor substrate 1 is 6 μm, which is shallower than the conventional one. Also in this case, the P-type diffusion layer 32 is depleted, and the width of the depletion layer is about 6 μm, so that high-speed transfer which is about three times that of the conventional one can be performed.

【0021】[0021]

【発明の効果】以上説明したように本発明は転送チャネ
ル下のP型拡散層を空乏化することにより、転送チャネ
ルの底面の容量を減少させ、電荷の高速転送を可能にす
るという効果を有する。
As described above, the present invention has the effect of depleting the P-type diffusion layer below the transfer channel, thereby reducing the capacitance at the bottom of the transfer channel and enabling high-speed transfer of charges. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の断面図。FIG. 1 is a sectional view of an embodiment of the present invention.

【図2】動作を説明するためのタイミング図。FIG. 2 is a timing chart for explaining an operation.

【図3】ボテンシャル図。FIG. 3 is a potential diagram.

【図4】本発明の他の実施例の断面図。FIG. 4 is a sectional view of another embodiment of the present invention.

【図5】従来例の断面図。FIG. 5 is a sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 N型半導体基板 2,22,32 P型拡散層 3 N型拡散層 4,5,6 P型拡散層 7〜13 転送電極 14 絶縁膜 1 N-type semiconductor substrate 2,22,32 P-type diffusion layer 3 N-type diffusion layer 4,5,6 P-type diffusion layer 7 to 13 Transfer electrode 14 Insulating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板上に第2の導電
型層を有し、該第2導電型層上に前記第1導電型の半導
体基板とは異なる第2の第1導電型層を有し、該第2の
第1導電型層上に絶縁膜を介して転送電極を有する電荷
転送装置において、前記第2の第1導電型層下の前記第
2導電型層が空乏化していることを特徴とする電荷転送
装置。
1. A second conductivity type layer having a second conductivity type layer on a first conductivity type semiconductor substrate, and a second first conductivity type different from the first conductivity type semiconductor substrate on the second conductivity type layer. In a charge transfer device having a layer and a transfer electrode on the second first conductivity type layer via an insulating film, the second conductivity type layer below the second first conductivity type layer is depleted. A charge transfer device characterized in that
JP3217719A 1991-08-29 1991-08-29 Charge transfer device Pending JPH0555270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3217719A JPH0555270A (en) 1991-08-29 1991-08-29 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3217719A JPH0555270A (en) 1991-08-29 1991-08-29 Charge transfer device

Publications (1)

Publication Number Publication Date
JPH0555270A true JPH0555270A (en) 1993-03-05

Family

ID=16708667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3217719A Pending JPH0555270A (en) 1991-08-29 1991-08-29 Charge transfer device

Country Status (1)

Country Link
JP (1) JPH0555270A (en)

Similar Documents

Publication Publication Date Title
US3771149A (en) Charge coupled optical scanner
US4012759A (en) Bulk channel charge transfer device
US3852799A (en) Buried channel charge coupled apparatus
US4733286A (en) Semiconductor photoelectric converting device
JPH0458700B2 (en)
JPH0325980A (en) Thin film transistor for high voltage
JPH084136B2 (en) Charge transfer device
JPS588150B2 (en) How a charge-coupled semiconductor device operates
US3543052A (en) Device employing igfet in combination with schottky diode
JPH0555270A (en) Charge transfer device
US3986059A (en) Electrically pulsed charge regenerator for semiconductor charge coupled devices
US4594604A (en) Charge coupled device with structures for forward scuppering to reduce noise
US4165537A (en) Analog charge transfer apparatus
JPS5842629B2 (en) Analog inverters used in charge transfer devices
US4028715A (en) Use of floating diffusion for low-noise electrical inputs in CCD's
US4178519A (en) Input circuit for charge transfer apparatus
US6891243B2 (en) Solid-state image pick-up device
JPS5829634B2 (en) charge coupled device
US4223329A (en) Bipolar dual-channel charge-coupled device
JPS5842630B2 (en) charge coupled device
JPS5850032B2 (en) Hand tie souchi
JP3060649B2 (en) Semiconductor device and driving method thereof
US3947863A (en) Charge coupled device with electrically settable shift direction
JPS61232676A (en) Semiconductor device
JPS6315753B2 (en)