JPS60211767A - Manufacturing method of nickel positive electrode for alkaline storage battery - Google Patents

Manufacturing method of nickel positive electrode for alkaline storage battery

Info

Publication number
JPS60211767A
JPS60211767A JP59066079A JP6607984A JPS60211767A JP S60211767 A JPS60211767 A JP S60211767A JP 59066079 A JP59066079 A JP 59066079A JP 6607984 A JP6607984 A JP 6607984A JP S60211767 A JPS60211767 A JP S60211767A
Authority
JP
Japan
Prior art keywords
nickel
powder
positive electrode
hydroxide powder
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59066079A
Other languages
Japanese (ja)
Other versions
JPH0622112B2 (en
Inventor
Isao Matsumoto
功 松本
Shoichi Ikeyama
正一 池山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59066079A priority Critical patent/JPH0622112B2/en
Publication of JPS60211767A publication Critical patent/JPS60211767A/en
Publication of JPH0622112B2 publication Critical patent/JPH0622112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve and stabilize the coefficient of utilization of an active material by containing the alkaline metal including at least lithium in nickel hydroxide powder that forms the principal substance of the active material powder. CONSTITUTION:An aggregate of elementary particles is formed by adding lithium hydroxide powder as alkali while nickel sulfate is being dissolved and agitated in water and leaving them alone for one hour at approximately 50 deg.C for aging. Then powder whose principal component is nickel hydroxide powder is obtained by filtering, drying, pulverizing, adjusting in specified granularity, fully washing with water, and drying this precipitate. This nickel hydroxide powder, carbonyl nickel powder, and carbonyl cobalt powder are mixed and formed into paste by adding water to them. An electrode is obtained by filling the inside of a foamed nickel plate with the paste, drying and pressurizing it.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はアルカリ蓄電池用ニッケル正極の製造法に関す
るもので、水酸化ニッケル粉末を生活物質として使用し
、これを直接支持体内部に充填するか、または支持板に
塗着する正極一般に適用できるものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing a nickel positive electrode for alkaline storage batteries, in which nickel hydroxide powder is used as a living material and is directly filled inside a support. It can be applied to general positive electrodes that are coated on support plates.

従来例の構成とその問題点 ニッケル正極は大別して次のものが主に用いられている
。その第1はニッケル塩溶液を使用し、これをニッケル
焼結体内に充填後、活物質である水酸化ニッケルに転化
する焼結式と称されるものである。その第2は水酸化ニ
ッケル粉末を直接支持体に充填して用いるものである。
Structures of conventional examples and their problems The following types of nickel positive electrodes are mainly used: The first method is called a sintering method in which a nickel salt solution is used, filled into a nickel sintered body, and then converted into nickel hydroxide, which is an active material. The second method is to directly fill a support with nickel hydroxide powder.

後者には、通常、多数の微孔を有する金属製の袋もしく
は、発泡状金属体の内部に水酸化ニッケル粉末を主構成
制料として充填するポケット式もしくは発泡メタル式が
工業的に採用もしくは提案されている。また、パンチン
グメタルやエキスバンプイツトメタルなどの板状金属に
塗着し加圧一体化する方法で代表される加圧方式も提案
されている。
For the latter, a metal bag with many micropores or a pocket type or foamed metal type, in which the inside of a foamed metal body is filled with nickel hydroxide powder as the main constituent, are usually adopted or proposed industrially. has been done. In addition, a pressurizing method has also been proposed, typified by a method in which the coating is applied to a sheet metal such as punched metal or expanded metal and pressurized into one piece.

これらの方式によるニッケル正極は水酸化ニッケル粉末
を活物質粉末として直接電極用制料に使用する点が共通
している。そして焼結式ニッケル正極と比べてその製法
が比較的簡単であるとともに、発泡メタル式や加圧方式
による電極では、活物質の充填密度を高め得る可能性を
有している。
Nickel positive electrodes based on these methods have in common that nickel hydroxide powder is used directly as an electrode material as an active material powder. The manufacturing method is relatively simple compared to a sintered nickel positive electrode, and electrodes using a foamed metal type or a pressurized type have the possibility of increasing the packing density of the active material.

これは焼結基板に比べて支持体である発泡メタルやパン
チングメタルなどが電極中に占める体積比率を小さくで
きることによる0 ところが、これら三方式は、その方式および活物質合剤
の組成による差は認められるが、概して焼結式ニッケル
正極よりも活物宵の利用率が低いのが現状である。その
うち発泡メタル式では比較的活物質利用率の差は少ない
が、その安定性において劣るのが現状で、平均すると5
〜1o%(水酸化ニッケル3価→2価反応の理論量を1
00%とした場合)の低下が認められる。
This is because the volume ratio of the support material, such as foamed metal or punched metal, in the electrode can be reduced compared to a sintered substrate. However, the current situation is that the utilization rate of active materials is generally lower than that of sintered nickel positive electrodes. Among them, the foamed metal type has a relatively small difference in active material utilization rate, but its stability is currently inferior, with an average of 5.
~1o% (the theoretical amount of trivalent nickel hydroxide → divalent reaction is 1%)
00%) is observed.

種々の電極特性(充放電率や物理的強度)は、一般的に
これら三方式よりも焼結式が優れているが、エネルギー
密度の点では通常の放電率でUjlJに前者の方が高く
できる可能性を有しているoしかしその長所を実用の点
(エネルギー密度捷たは放電容量密度)でも充分発揮さ
せるには、さらに活物質利用率の向上(現状は76〜9
0%)をはかる必要がある。
In general, the sintered type is superior to these three types in terms of various electrode properties (charge/discharge rate and physical strength), but in terms of energy density, the former can achieve higher UjlJ at a normal discharge rate. However, in order to make full use of its advantages in practical terms (energy density reduction or discharge capacity density), it is necessary to further improve the active material utilization rate (currently 76 to 9
0%).

これらの方式で使用される水酸化ニッケル粉末は、通常
ニッケル塩(硫酸塩、硝酸塩等)溶液に水酸化す) I
Jウム粉末またはその溶液であるアルカリを加えてニッ
ケル水酸化物を析出させる方法が採用されている。これ
で得られた粉末をそのまま単独で電極用拐料として使用
した場合には、その活物質利用率は60〜60%である
。そこで利用率の向上のために、コバルト、ニッケルや
カーボンを加える方法により75〜90%に高める提案
がある。しかしそれでも汎用の焼結式ニッケル正極(9
0〜1o0%)と比較するとその111がまだ低く、バ
ラツキも大きいのが現状である。またリチウム添加の効
果(活物質利用率や充電受入れ性の向上)はすでに知ら
れており、焼結式ニッケル正極ではその添加方法として
活物質の充填→転化後のアルカリ中での化成工程でリチ
ウムを加える提案がなされている。しかし、活物質粉末
を直接充填する電極の場合は焼結式と異なり、硝酸根等
のアニオンを除去する必要がなく、化成を省略できる特
徴があり、化成→水洗→乾燥の工程を省略することが好
ましい。また化成でリチウムを添加した場合には、水酸
化リチウムの表面に添加されるだけで、活物質の利用率
の点では大きな効果が認められなかった。
The nickel hydroxide powder used in these methods is usually hydrated in a nickel salt (sulfate, nitrate, etc.) solution).
A method is adopted in which nickel hydroxide is precipitated by adding Jium powder or an alkali solution thereof. When the powder thus obtained is used alone as it is as a filler for electrodes, the active material utilization rate is 60 to 60%. Therefore, in order to improve the utilization rate, there is a proposal to increase the utilization rate to 75-90% by adding cobalt, nickel, or carbon. However, the general-purpose sintered nickel positive electrode (9
At present, the value of 111 is still low compared to 0% to 1o0%, and the variation is large. In addition, the effects of adding lithium (improvement of active material utilization rate and charge acceptance) are already known, and in sintered nickel positive electrodes, lithium is added in the active material filling → conversion step, followed by the chemical formation process in alkali. A proposal has been made to add However, in the case of electrodes that are directly filled with active material powder, unlike the sintered type, there is no need to remove anions such as nitrate radicals, and chemical formation can be omitted, and the process of chemical formation → water washing → drying can be omitted. is preferred. Furthermore, when lithium was added through chemical formation, it was only added to the surface of lithium hydroxide, and no significant effect was observed in terms of the utilization rate of the active material.

発明の目的 本発明は、生活物質粉末である水酸化ニッケル粉末を改
良することで、活物質利用率の向上と安定化を図ること
を目的とする。
Purpose of the Invention The purpose of the present invention is to improve and stabilize the utilization rate of active materials by improving nickel hydroxide powder, which is a powder of living substances.

発明の構成 本発明は、上記の目的を達成するため、活物質粉末の主
体をなす水酸化ニッケル粉末の内部に少なくともリチウ
ムを含むアルカリ金属を有したものを用意し、これを支
持板に塗着するか、または支持体内部に充填してニッケ
ル正極とすることを特徴としたものである0 第1図に水酸化ニッケル粉末を主体とした活物質粉末1
を支持体である発泡状ニッケル多孔体2の空間部3に充
填したニッケル電極の概略断面図を示した。ここで用い
Σ水酸化ニッケル粉末は、その内部に0.005 wt
 4以上のリチウムを有する粉末である。リチウムは0
.005〜0.02wt%まで利用率向上をもたらし、
0.02wt%以上含んでも活物質の利用率は飽和状態
で以下に述べる水酸化ニッケルの析出、熟成水洗等条件
でその含有量は変動するので、あえて上限値を設けなか
った0 水酸化ニッケル粉末の製造法は第2図に示す主工程、す
なわちA硫酸ニッケルの溶解→B NaOHなどのアル
カリを加えての水酸化ニッケルを析出・熟成→G濾過→
D乾燥→E粉砕→F水洗→G乾燥→H水酸化ニッケル粉
末の過程において、Bのアルカリ添加による水酸化ニッ
ケルの析出時には少なくともLiOHを加えて、この工
程内での放置熟成で水酸化ニッケルの集合粒子を形成す
る際にLlを内部に包含させる。
Structure of the Invention In order to achieve the above-mentioned object, the present invention prepares a nickel hydroxide powder, which is the main component of an active material powder, which has an alkali metal containing at least lithium inside it, and coats it on a support plate. The active material powder 1 mainly consists of nickel hydroxide powder.
A schematic cross-sectional view of a nickel electrode in which a space 3 of a foamed nickel porous body 2 serving as a support is filled with is shown. The Σnickel hydroxide powder used here contains 0.005 wt
It is a powder containing 4 or more lithium. Lithium is 0
.. 0.005 to 0.02 wt%, resulting in an improvement in the utilization rate.
Even if it contains 0.02 wt% or more, the utilization rate of the active material will be saturated, and the content will vary depending on conditions such as precipitation of nickel hydroxide and aging and washing described below, so we purposely did not set an upper limit.0 Nickel hydroxide powder The manufacturing method is the main steps shown in Figure 2: A: Dissolution of nickel sulfate → B: Addition of an alkali such as NaOH to precipitate and age nickel hydroxide → G: Filtration →
In the process of D drying → E crushing → F water washing → G drying → H nickel hydroxide powder, at least LiOH is added when nickel hydroxide is precipitated by addition of alkali in B, and nickel hydroxide is left to age during this process. When forming aggregate particles, Ll is included inside.

この水酸化ニッケル粉末金主活物宵粉末として使用する
ポケット式、発泡メタル式、加圧式のニッケル正極はほ
ぼ似た製法をとるので、実施例として発泡メタル式ニッ
ケル正極をとり上は具体的な説明を行なう。
The pocket type, foam metal type, and pressurized type nickel positive electrodes used as this nickel hydroxide powder powder are manufactured using almost similar manufacturing methods, so we will take the foam metal type nickel positive electrode as an example and explain the specific details. Give an explanation.

実施例の説明 (実施例1 ) 6水塩の結晶硫酸ニッケル13館を水に溶解して全容積
を401とする。これを約26℃の状態で攪拌しながら
、アルカリとして水酸化リチウム粉末6.5kLiを加
えたのち、約60°Cで1時間放置して熟成し、素粒子
の集合体を形成する。つぎにこの沈澱物を濾過し、乾燥
後粉砕して所望の粒度に調整したのち充分に水洗、乾燥
を行なって水酸化ニッケル粉末を主成分とする粉末約6
館を得る。
Description of Examples (Example 1) 13 volumes of crystalline nickel sulfate in the form of hexahydrate are dissolved in water to a total volume of 40 ml. While stirring this at about 26° C., 6.5 kLi of lithium hydroxide powder is added as an alkali, and then left to ripen at about 60° C. for 1 hour to form an aggregate of elementary particles. Next, this precipitate is filtered, dried and pulverized to adjust the desired particle size, thoroughly washed with water, and dried to obtain a powder containing nickel hydroxide powder as the main component.
Get a mansion.

この粒径0.1〜150μmの水酸化ニッケル粉末とカ
ーボニルニッケル粉末トカーボニルコバルト粉末を85
 wt%:10wtチ:5wt係に混合し、それに水を
加えてペースト状にしたものを発泡状ニッケル板(多孔
度95%、平均孔径200μm。
This nickel hydroxide powder with a particle size of 0.1 to 150 μm, carbonyl nickel powder, carbonyl cobalt powder
A foamed nickel plate (porosity 95%, average pore diameter 200 μm) was prepared by mixing wt%: 10wt: 5wt and adding water to make a paste.

厚さ1.3喘)内に充填し、乾燥後加圧して厚さ約0.
7配の電極を得る0 (実施例2) 実施例1における硫酸ニッケル溶液に水酸化リチウムを
加える工程において、水酸化リチウムを1.5 kg加
えたのち直ちに水酸化ナトリウム4kgまたは水酸化カ
リウ′ム5.6 kgを加え、以後の工程は実施例1と
同様にして発泡メタル式ニッケル正極を得る。
It is filled to a thickness of 1.3mm), dried and then pressurized to a thickness of about 0mm.
Obtaining 7 electrodes (Example 2) In the step of adding lithium hydroxide to the nickel sulfate solution in Example 1, immediately after adding 1.5 kg of lithium hydroxide, 4 kg of sodium hydroxide or potassium hydroxide was added. 5.6 kg was added, and the subsequent steps were carried out in the same manner as in Example 1 to obtain a foam metal type nickel positive electrode.

(実施例3) 実施例1または実施例2における硫酸ニッケル溶液を調
整する際、コバルト金属粉末を○、skg、ニッケル粉
末1kgを同時に加えて実施例1または実施例2と同様
にして水酸化ニッケル粉末、コバルトおよびニッケルの
混練物を得る。この混練物を実施例1と同様の発泡状ニ
ッケル内に充填し。
(Example 3) When preparing the nickel sulfate solution in Example 1 or Example 2, nickel hydroxide was prepared in the same manner as in Example 1 or Example 2 by adding ○, skg of cobalt metal powder and 1 kg of nickel powder at the same time. A kneaded mixture of powder, cobalt and nickel is obtained. This kneaded product was filled into the same foamed nickel as in Example 1.

発泡メタル式ニッケル正極を得る。Obtain a foamed metal nickel positive electrode.

実施例1で得たニッケル正極(Ni(OH)2中のLi
量は0.03 wt%の粉末を使用)の活物質利用率を
調べる一手段として円筒密閉形ニッケル・カドミウム蓄
電池のうちに−R−AAサイズをとり上げた。汎用の焼
結式ニッケル正極と同程度の厚さく約0.7n++++
)であるが面積を約10%小さくし、その体積相当分の
負極容量を増加して、理論上の密閉構成条件を満たして
電池を構成した。この電池を50mAで15時間充電し
、100mAで放電したときの放電容量(終止電圧1.
OVlを調べ、充填したN1(OH)2 (重量測定)
は289 mAh/qとしてその利用率を計算した結果
を第3図に示す。
Nickel positive electrode obtained in Example 1 (Li in Ni(OH)2
The -R-AA size of the sealed cylindrical nickel-cadmium storage battery was taken up as a means of investigating the active material utilization rate (using powder with an amount of 0.03 wt%). Approximately 0.7n++++, the same thickness as a general-purpose sintered nickel positive electrode
), but by reducing the area by about 10% and increasing the negative electrode capacity by an equivalent volume, a battery was constructed that satisfied the theoretical sealed configuration conditions. Discharge capacity when this battery is charged at 50 mA for 15 hours and discharged at 100 mA (final voltage 1.
Check OVl and fill N1(OH)2 (gravimetric measurement)
Figure 3 shows the results of calculating the utilization rate as 289 mAh/q.

第3図には、炸裂した電池10個のうち放電容量の最高
値と最低値を除去し、残り8個の電池の利用率の最高値
と最低値の幅で示した。なお充放電は20′Cで行なっ
た。
In FIG. 3, the highest and lowest discharge capacities of the 10 batteries that exploded are removed, and the range of the highest and lowest utilization rates of the remaining eight batteries is shown. Note that charging and discharging were performed at 20'C.

同時に比較のため実施例2て得た電極I N’1(OH
)2中のLi量は約0.015 wt % )および実
施例2で加えるLiOH量を減じて得た電極(Li量約
0.01wt%と0.005 wt%)および従来どお
り(7)N30Hだけを加えてNi (OH)2を析出
させた粉末(N l(OH) 2中のNa量は約0.0
3wt%)を用いて実施例1と同様にして得た発泡メタ
ル式ニッケル正極を適用した電池の結果を横軸にそのL
i量(wt%)を変数として示した。いずれも電池1Q
個を試験して放電容量の最大値と最小値を除去した残り
8個の結果である。
At the same time, for comparison, the electrode I N'1 (OH
) 2) and electrodes obtained by reducing the amount of LiOH added in Example 2 (Li amounts of approximately 0.01 wt% and 0.005 wt%) and as conventional (7) N30H The amount of Na in Nl(OH)2 is approximately 0.0
The horizontal axis shows the results of a battery using a foamed metal nickel positive electrode obtained in the same manner as in Example 1 using 3wt%).
The amount of i (wt%) is shown as a variable. Both are battery 1Q
These are the results of the remaining 8 samples after testing 8 samples and removing the maximum and minimum values of discharge capacity.

この結果、本発明のリチウムを内部に有する水酸化ニッ
ケル粉末を用いて、それを直接充填した電極は、リチウ
ムを含まない従来の粉末を用いた場合よりも活物質利用
率が向上し、汎用の焼結式ニッケル正極と同等になるこ
とがわかった。その効果はLJ、006 wt%からみ
られ、量の増加とともに0503wt%4では利用率も
向上し、同時にそのバラツキも低下する傾向がみられた
As a result, an electrode directly filled with the nickel hydroxide powder containing lithium according to the present invention has a higher active material utilization rate than a conventional powder that does not contain lithium, and can be used for general purpose. It was found to be equivalent to a sintered nickel positive electrode. The effect was seen from LJ, 006 wt%, and as the amount increased, the utilization rate improved at 0503 wt%4, and at the same time, there was a tendency for the variation to decrease.

発明の効果 以上の記載から明らかなように、本発明のニッケル正極
はリチウムを含むアルカリ金属を内蔵した水酸化ニッケ
ル粉末を直接支持体内に充填するか、または支持板に塗
着することにより工程が比較的簡単に製作でき、かつ容
量密度の高い電極を提供できるものである。
Effects of the Invention As is clear from the above description, the nickel positive electrode of the present invention can be manufactured by directly filling the support with nickel hydroxide powder containing alkali metals including lithium or by coating it on the support plate. It is possible to provide an electrode that is relatively easy to manufacture and has a high capacity density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明におけるニッケル電極の断面図、第2図
は水酸化ニッケルの製作工程の概略図、第3図は本願の
リチウムを内部に含む水酸化ニッケル粉末を用いた電池
の活物質利用率を実測した結果を示す図である。 1・・・・・・水酸化ニッケルを主体とする活物質粉末
、2・・・・・発泡状ニッケル多孔体、3・・・・・・
空間部。 第1図 ン舌斗勿質利片ロ雛 1%ジ
Figure 1 is a cross-sectional view of the nickel electrode according to the present invention, Figure 2 is a schematic diagram of the manufacturing process of nickel hydroxide, and Figure 3 is the use of active material in batteries using the nickel hydroxide powder containing lithium according to the present invention. It is a figure which shows the result of actually measuring a ratio. 1... Active material powder mainly composed of nickel hydroxide, 2... Foamed nickel porous body, 3...
Space department. Figure 1 Ntontono Mashiri Kataro Hina 1% Ji

Claims (1)

【特許請求の範囲】 (1)水酸化ニッケル粉末を主とする活物質粉末を支持
板に塗着するか、または支持体内部に充填したニッケル
正極の製造法であって、前記水酸化ニッケル粉末の内部
に少なくともリチウムを含むアルカリ金属を有したもの
を用いることを特徴とするアルカリ蓄電池用ニッケル正
極の製造法。 (2)水酸化ニッケル粉末中に含まれるリチウム量が0
.005wt%以上である特許請求の範囲第1項に記載
のアルカリ蓄電池用ニッケル正極の製造法。 (3)水酸化ニッケル粉末が、ニッケル塩溶液に、少な
くともリチウムを有するアルカリを加えて析出させたも
のである特許請求の範囲第1項に記載のアルカリ蓄電池
用ニッケル正極の製造法。 (4) リチウムを有するアルカリを加えたニッケル塩
溶液から水酸化ニッケル粉末を析出させる際、ニッケル
塩溶液にコバルト金属単独またはコバルト塩をアルカリ
と同時に添加したことを特徴とする特許請求の範囲第3
項に記載のアルカリ蓄電池用ニッケル正極の製造法。 (6) リチウムを有するアルカリを加えたニッケル塩
溶液から水酸化ニッケル粉末を析出させる際、ニッケル
塩溶液にアルカリと同時に電導性粉末を添加することを
特徴とする特許請求の範囲第3項又は第4項に記載のア
ルカリ蓄電池用ニッケル正極の製造法。
[Scope of Claims] (1) A method for producing a nickel positive electrode in which an active material powder mainly composed of nickel hydroxide powder is applied to a support plate or filled inside the support, the method comprising: 1. A method for producing a nickel positive electrode for an alkaline storage battery, comprising using an alkali metal containing at least lithium inside the nickel positive electrode. (2) The amount of lithium contained in the nickel hydroxide powder is 0
.. The method for producing a nickel positive electrode for an alkaline storage battery according to claim 1, wherein the content is 0.005 wt% or more. (3) The method for producing a nickel positive electrode for an alkaline storage battery according to claim 1, wherein the nickel hydroxide powder is precipitated by adding an alkali containing at least lithium to a nickel salt solution. (4) Claim 3, characterized in that when nickel hydroxide powder is precipitated from a nickel salt solution containing lithium and an alkali added, cobalt metal alone or cobalt salt is added to the nickel salt solution simultaneously with the alkali.
A method for producing a nickel positive electrode for an alkaline storage battery as described in . (6) When precipitating nickel hydroxide powder from a nickel salt solution to which an alkali containing lithium is added, a conductive powder is added to the nickel salt solution at the same time as the alkali. The method for producing a nickel positive electrode for alkaline storage batteries according to item 4.
JP59066079A 1984-04-03 1984-04-03 Manufacturing method of nickel positive electrode for alkaline storage battery Expired - Lifetime JPH0622112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066079A JPH0622112B2 (en) 1984-04-03 1984-04-03 Manufacturing method of nickel positive electrode for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066079A JPH0622112B2 (en) 1984-04-03 1984-04-03 Manufacturing method of nickel positive electrode for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS60211767A true JPS60211767A (en) 1985-10-24
JPH0622112B2 JPH0622112B2 (en) 1994-03-23

Family

ID=13305483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066079A Expired - Lifetime JPH0622112B2 (en) 1984-04-03 1984-04-03 Manufacturing method of nickel positive electrode for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0622112B2 (en)

Also Published As

Publication number Publication date
JPH0622112B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH0559546B2 (en)
US20050238960A1 (en) Non-sintered type positive electrode and alkaline storage battery using the same
JPH0350384B2 (en)
JPS60211767A (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JPH0221098B2 (en)
JPH0243308B2 (en)
JP2615538B2 (en) Nickel positive electrode for alkaline storage batteries
JP3077473B2 (en) Alkaline storage battery
JPS6137733B2 (en)
JPS64787B2 (en)
JP3877179B2 (en) Nickel positive electrode for alkaline storage battery
JPS60253156A (en) Nickel positive electrode for alkaline battery and its manufacturing method
JP3287165B2 (en) Manufacturing method of nickel positive electrode for alkaline storage battery
JPH0541213A (en) Unsintering type positive nickel electrode for alkaline storage battery
JP3443209B2 (en) Active material powder for non-sintered nickel electrode of alkaline storage battery and method for producing the same, and non-sintered nickel electrode for alkaline storage battery and method for producing the same
JPH0917429A (en) Nickel hydroxide for non-sintered nickel positive electrode of alkaline storage battery
JP2730137B2 (en) Alkaline secondary battery and charging method thereof
JPH09147904A (en) Paste type nickel electrode for alkaline storage battery
JPS6316556A (en) Manufacture of non-sintered type electrode
JPH0326903B2 (en)
JPH10270017A (en) Non-aqueous electrolytic battery positive pole plate and non-aqueous electrolytic battery therewith
JPH1021902A (en) Manufacture of paste type nickel electrode for alkaline secondary battery
JPH0652856A (en) Positive electrode active material for alkaline storage battery and manufacture thereof
JPS5834906B2 (en) Iron electrode for alkaline batteries

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term