JPS60211026A - High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture - Google Patents

High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture

Info

Publication number
JPS60211026A
JPS60211026A JP24682884A JP24682884A JPS60211026A JP S60211026 A JPS60211026 A JP S60211026A JP 24682884 A JP24682884 A JP 24682884A JP 24682884 A JP24682884 A JP 24682884A JP S60211026 A JPS60211026 A JP S60211026A
Authority
JP
Japan
Prior art keywords
alloy
molten metal
corrosion
high strength
boride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24682884A
Other languages
Japanese (ja)
Other versions
JPS6135257B2 (en
Inventor
Toshiki Takeiri
竹入 俊樹
Noboru Yonezawa
米沢 登
Kazuo Ikuta
和夫 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP24682884A priority Critical patent/JPS60211026A/en
Publication of JPS60211026A publication Critical patent/JPS60211026A/en
Publication of JPS6135257B2 publication Critical patent/JPS6135257B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high strength Cu alloy contg. dispersed borides and having superior resistance to corrosion by molten metal by blending Cu with specified amounts of B, Zr and/or Ti and one or more among Cr, Cd and Ni. CONSTITUTION:The composition of a Cu alloy is composed of, by weight, 0.15- 2% B, 0.75-10.5% Zr and/or 1.2-7.5% Ti, one or more among 0.1-1.5% Cr, 0.1-3% Cd and 0.5-6% Ni, and the balance Cu with inevitable impurities. The Cu alloy is cold worked at 40-90% working rate and heat reated by holding at 425-550 deg.C for 10min-3hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高い高温強度と導電性を有し、さらにZn
やA1、あるいはこれらの合金などの溶融金属に対して
すぐれた耐食性を示す硼化物分散型Cu合金およびその
製造法に関するものである。
[Detailed description of the invention] [Industrial application field] This invention has high high temperature strength and conductivity, and furthermore, Zn
The present invention relates to a boride-dispersed Cu alloy that exhibits excellent corrosion resistance against molten metals such as A1, A1, or alloys thereof, and a method for producing the same.

〔従来の技術〕[Conventional technology]

一般に、例えばスポット溶接用電極には、導電性、伝熱
性、耐アーク性、耐酸化性、加工の容易性、および常温
および高温における機械的強度にすぐれ、かつ被溶接物
と合金化しないなどの性質を具備することが要求されて
いる。このため、軽合金やCu合金などのスポット溶接
、に用いられる電極の製造には純銅が、また鋼のそれに
はCd。
In general, for example, spot welding electrodes have properties such as good conductivity, heat conductivity, arc resistance, oxidation resistance, ease of processing, and mechanical strength at room and high temperatures, and do not alloy with the workpiece. It is required to have the following characteristics. For this reason, pure copper is used to manufacture electrodes used for spot welding light alloys and Cu alloys, and Cd is used for steel.

Or 、W、Co 、Be 、Ti 、Nl 、Zr 
、およびAl11などの合金成分のうちの1種または2
種以上を含有したCu合金が用いられているのが現状で
ある。
Or, W, Co, Be, Ti, Nl, Zr
, and one or two of alloy components such as Al11
Currently, Cu alloys containing more than one species are used.

一方、スポット溶接においては、溶接時に溶接面に働く
大きな力および大きな溶接電流によって前記溶接面が高
温となるため、電極先端部に汚染が生じ、この汚染は溶
接打点数が増すにしたがって増大すると共に電極先端部
を腐食変形させ、これに付随して溶接電流密度が低下し
、この結果溶接強度も低下していくが、所定の溶接強度
を得ることができない時点をもって電極の寿命としてい
る。例えば、Znメッキ鋼板をスポット溶接する場合、
Znは融点が420℃ときわめて低く、したがってナゲ
ツトを形成する前に、前記Znメッキが溶けるため、こ
の溶融znが電極先端部にピックアップされて合金化し
、このように合金化した電極先端部は腐食変形し易くな
るため、その先端径が大きくなる一方、母材と電極先端
のなじみ性が悪くなることから、溶接電流密度が低下し
、所定の溶接強度が得られなくなるが、この時点を電極
の寿命としているのである。
On the other hand, in spot welding, the welding surface becomes hot due to the large force and large welding current applied to the welding surface during welding, resulting in contamination at the electrode tip, and this contamination increases as the number of welding points increases. The tip of the electrode is corroded and deformed, and the welding current density decreases accordingly, and as a result, the welding strength also decreases, but the life of the electrode is defined as the point at which a predetermined welding strength cannot be obtained. For example, when spot welding Zn-plated steel sheets,
Zn has a very low melting point of 420°C, and therefore the Zn plating melts before forming a nugget. This molten Zn is picked up by the electrode tip and alloyed, and the alloyed electrode tip is corroded. As the electrode becomes more easily deformed, the diameter of the tip increases, while the compatibility between the base metal and the electrode tip deteriorates, resulting in a decrease in welding current density and the ability to achieve the desired welding strength. It is considered as the lifespan.

(発明が解決しようとする問題点) しかし、従来のCu合金製電極は、上記のように7nや
At、あるいはこれらの合金などの溶融金属と合金化し
やすく、かつ腐食変形しやすいものであるため、きわめ
て使用寿命が短かく、その痕毎に生産ラインを停止して
電極のクリーニングや取り換えを行なっており、経済的
損失には大なるものがある。
(Problems to be Solved by the Invention) However, as mentioned above, conventional Cu alloy electrodes are easily alloyed with molten metals such as 7N, At, or alloys thereof, and are easily corroded and deformed. However, the service life is extremely short, and the production line must be stopped to clean or replace the electrodes every time there is a trace, resulting in a significant economic loss.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、上述のような観点から、溶融金
属に影響されず、かつa湿強度とam電性を有し、特に
スポット溶接などの溶接用電極の製造に使用するのに適
した材料を得べく研究を行なった結果、重量%で(以下
%はすべて重量%を示す)、 3:0.15〜2%。
Therefore, from the above-mentioned viewpoints, the present inventors have developed a material that is not affected by molten metal, has a wet strength and an am conductivity, and is particularly suitable for use in manufacturing electrodes for welding such as spot welding. As a result of conducting research to obtain a material with a high content, the result was 3:0.15 to 2% in weight% (all percentages below indicate weight%).

を含有し、さらに、 Zj : 0.75〜10.5%。Contains, and furthermore, Zj: 0.75-10.5%.

Ti : 1.2〜7.5%。Ti: 1.2-7.5%.

のうちの1種または2種と、 Cr : 0.1〜1.5%。One or two of the following: Cr: 0.1-1.5%.

Cd : 0.1〜3%。Cd: 0.1-3%.

Ni : 0.5〜6%。Ni: 0.5-6%.

のうちの1種または2種を含有し、残りがCuと不可避
不純物からなる組成を有するCu合金に、40〜90%
の範囲内の加工率で冷間加工を施した後、425〜55
0℃の範囲内の温度に10分〜3時間の範囲内の時間保
持の条件で熱処理を施すと、Z「およびTiの一部と、
Or 、 Cd 、およびNiが前記熱処理によって金
属単体および/または金属間化合物の形で素地中に析出
し、さらにこのように析出強化された素地中にはZ「お
よびT1の硼化物が均一に分散晶出するようになり、こ
のような組織を有するCu合金は、特に溶融金属に対す
る耐食性にすぐれ、かつ高温強度および高導電性をもつ
ことから、スポット溶接などの溶接用電極、さらにダイ
キャスト用金型、連続鋳造用鋳型、および製錬炉用羽口
などの製造に使用した場合にきわめてすぐれた性能を発
揮するという知見を得たのである。
40 to 90% of Cu alloy containing one or two of
After cold working at a processing rate within the range of 425 to 55
When heat treatment is carried out at a temperature in the range of 0°C for a period of time in the range of 10 minutes to 3 hours, Z' and a part of Ti,
Or, Cd, and Ni are precipitated in the matrix in the form of simple metals and/or intermetallic compounds by the heat treatment, and further, borides of Z' and T1 are uniformly dispersed in the matrix strengthened by precipitation in this way. Cu alloys with such a structure have excellent corrosion resistance against molten metals, high-temperature strength, and high conductivity, and are therefore used as welding electrodes for spot welding, as well as die-casting metals. They discovered that it exhibits extremely excellent performance when used in the production of molds, continuous casting molds, and tuyeres for smelting furnaces.

この発明は、上記知見にもとづいてなされたものであっ
て、成分組成、加工率、および熱処理条件を上記の通り
限定した理由を以下に説明する。
This invention was made based on the above findings, and the reason why the component composition, processing rate, and heat treatment conditions were limited as described above will be explained below.

A、成分組成 (a) B 日成分には、鋳造時にZ「およびT1と結合して硼化物
を晶出し、znやA1などの溶融金属に対する安定性、
すなわち合金がこれら溶融金属と合金化して軟化し、1
11食変形するのを防止する性質を合金に付与し、かつ
高温強度および高温硬さを向上させる作用があるが、そ
の含有量が0.15%未満では、前記作用に所望の効果
が得られず、一方2%を越えて含有させると、高温強度
が低下するようになるほか、冷間加工性も劣化するよう
になることから、その含有量を0.15〜2%と定めた
A, Ingredient composition (a) B The component contains boride that crystallizes by combining with Z and T1 during casting, and has stability against molten metals such as Zn and A1.
That is, the alloy is alloyed with these molten metals and softened, and 1
11 It has the effect of imparting properties to the alloy to prevent deformation and improving high-temperature strength and high-temperature hardness, but if its content is less than 0.15%, the desired effects cannot be obtained. On the other hand, if the content exceeds 2%, the high temperature strength and cold workability will deteriorate, so the content was set at 0.15 to 2%.

(b)Zrおよびl’−1 7rおよびTi成分には、上記のようにその一部はすべ
てのBと結合して硼化物を晶出形成し、溶融金属に対す
る耐食性、高温強度、および高温硬さを改善し、残りの
一部は熱処理により素地中に析出して素地の強度を向上
させる均等的作用があるが、それぞれZr : 0.7
5%未満、T1 :1.2%未満では前記作用に所望の
効果が得られず、一方Zr:1G、5%、 Ti : 
7.5%をそれぞれ越えて含有させると、冷間加工性が
劣化するようになることから、それぞれの含有量を、Z
r : 0.75〜10.5%、 Ti : 1゜2〜
7.5%と定めた。
(b) As mentioned above, some of the Zr and l'-17r and Ti components combine with all the B to crystallize and form boride, providing corrosion resistance to molten metals, high-temperature strength, and high-temperature hardness. Zr: 0.7.
If Zr: less than 5% and T1: less than 1.2%, the desired effect cannot be obtained; on the other hand, Zr: 1G, 5%, Ti: less than 1.2%.
If each content exceeds 7.5%, cold workability will deteriorate, so the respective contents should be adjusted to Z
r: 0.75~10.5%, Ti: 1°2~
It was set at 7.5%.

(C) Or 、 Cd 、およびNiこれらの成分に
は、いずれも熱処理により素地中に析出して素地の常温
および高温強度を向上させる均等的作用があるが、それ
ぞれCr : 0.1%未満、 Cd : 0.1%未
満、およびNi : 0.5%未満の含有では、前記作
用に所望の向上効果が得られず、一方それぞれcr :
 i、s%、Cd :3%。
(C) Or, Cd, and Ni These components all precipitate into the base material by heat treatment and have the uniform effect of improving the strength of the base material at room temperature and high temperature, but Cr: less than 0.1%, respectively. When Cd: less than 0.1% and Ni: less than 0.5%, the desired effect of improving the above action cannot be obtained, while cr:
i, s%, Cd: 3%.

およびNi :6%を越えて含有させると、冷間加工性
の劣化を招くようになることから、それぞれの含有量を
Cr : 0.1〜1.5%、Cd:0.1〜3%、お
よびNi : 0.5〜6%と定めた。
and Ni: If the content exceeds 6%, cold workability deteriorates, so the respective contents are set to Cr: 0.1 to 1.5% and Cd: 0.1 to 3%. , and Ni: 0.5 to 6%.

B、冷間加工率 冷間加工は後工程での熱処理において、硼化物を形成し
た残りのTiおよび7r、さらにC「。
B. Cold working rate During the heat treatment in the post-process, cold working removes the remaining Ti and 7r that have formed borides, as well as C''.

Cd、およびNiの析出を容易にするために施されるが
、その加工率が40%未満では、所望の析出をはかるこ
とができず、一方 90%を越えた加工率にしてもより
一層の析出効果は現われず、90%以下の加工率で十分
な量の析出をはかることができることから、加工率を4
0〜90%と定めた。
It is applied to facilitate the precipitation of Cd and Ni, but if the processing rate is less than 40%, the desired precipitation cannot be achieved, while even if the processing rate exceeds 90%, it will be difficult to achieve the desired precipitation. Since no precipitation effect appears and a sufficient amount of precipitation can be obtained with a processing rate of 90% or less, the processing rate was set to 4.
It was set as 0 to 90%.

C0熱処理条件 熱処理温度が425℃未満にして、保持時間が10分未
満では、析出が不十分で所望の特性を合金に付与するこ
とができず、一方熱処理温度が550℃を越え、かつ保
持時間が3時間を越えると、かえって過時効になってし
まって所望の特性を確保することができなくなることか
ら、熱処理温度を425〜550℃、保持時間を10分
〜3時罰とそれぞれ定めた。
C0 heat treatment conditions If the heat treatment temperature is less than 425°C and the holding time is less than 10 minutes, precipitation will be insufficient and the desired properties cannot be imparted to the alloy. If it exceeds 3 hours, it becomes over-aged and the desired properties cannot be secured, so the heat treatment temperature was set at 425 to 550°C and the holding time was set at 10 minutes to 3 hours.

〔実施例〕〔Example〕

つぎに、この発明のCu合金を実施例により従来例と対
比しながら説明する。
Next, the Cu alloy of the present invention will be explained using Examples while comparing it with a conventional example.

真空誘導炉を使用し、機械的攪拌を加えながら、通常の
条件にて、それぞれ第1表に示される最終成分組成をも
った溶湯を調製し、インゴットに鋳造し、このインゴッ
トに温度二850℃にて熱間鍛造と熱間圧延を施して板
厚:36Jllの熱延板とし、ついでこの熱延板に温度
=900℃に1時間保持の条件で溶体化処理を施した後
、この発明の方法にしたがって、それぞれ第1表に示さ
れる条々 、件で冷間圧延と熱処理を施すことによって、本発明C
u合金1〜26および従来OL1合金1.2の板材をそ
れぞれ製造した。
Molten metals having the final component compositions shown in Table 1 were prepared under normal conditions using a vacuum induction furnace with mechanical stirring, and cast into ingots at a temperature of 2850°C. After hot forging and hot rolling to obtain a hot-rolled plate with a thickness of 36 Jll, this hot-rolled plate was then subjected to solution treatment at a temperature of 900°C for 1 hour. According to the method, the present invention C is subjected to cold rolling and heat treatment under the conditions shown in Table 1.
Plate materials of u alloys 1 to 26 and conventional OL1 alloy 1.2 were manufactured, respectively.

この結果得られた本発明Cu合金1〜26および従来C
u合金1.2について、常温および500℃のビッカー
ス硬さを測定すると共に、溶融Zn浸漬試験を行なった
。溶融zn浸漬試験は、機械加工によって切出した厚さ
:3M×幅:25履×長さ:35履の試験片を、温度:
500℃の溶融Zn中に2時間浸漬し、取出した後、そ
の表面に付着したZnを50%塩酸で除去した状態で秤
囚を行ない、l腐食減量を算出することによって行なっ
た。これらの測定結果を第1表に合せて示した。
The resulting Cu alloys 1 to 26 of the present invention and conventional C
For u alloy 1.2, the Vickers hardness at room temperature and 500° C. was measured, and a molten Zn immersion test was conducted. In the molten ZN immersion test, a test piece of thickness: 3M x width: 25 shoes x length: 35 shoes was cut out by machining, and the temperature:
After being immersed in molten Zn at 500° C. for 2 hours and taken out, the Zn adhering to the surface was removed with 50% hydrochloric acid and weighed, and the corrosion loss was calculated. These measurement results are also shown in Table 1.

第1表に示されるように、本発明Cu合金1〜26は、
いずれもBを含有しない、すなわち素地中に硼化物の析
出がない従来Cu合金1.2に比して、高い高温硬さを
示し、このことは本発明Cu合金がすぐれた高温強度を
もっことを裏付けるものであり、また本発明Cu合金は
従来Cu合金に比してすぐれた耐溶融Zn腐食性をもっ
ことも明らかである。
As shown in Table 1, the Cu alloys 1 to 26 of the present invention are:
Both exhibit higher high-temperature hardness than the conventional Cu alloy 1.2, which does not contain B, that is, has no boride precipitation in the matrix, and this indicates that the Cu alloy of the present invention has excellent high-temperature strength. It is also clear that the Cu alloy of the present invention has superior molten Zn corrosion resistance compared to conventional Cu alloys.

ついで、本発明Cu合金21と従来Cu合金1の電極に
ついて、電極形状:先端径5IMφ×本体径12am+
φ、被溶接物:厚さ0.8.のZnメッキ鋼板、溶接態
様:重合せ溶接、溶接電流:8500A、加圧力ニ20
0Kgの条件でスポット抵抗溶接を行ない、その使用寿
命を測定した。この結果、本発明Cu合金21の電極は
、連続して4500点(10回操業の平均値)のスポッ
ト溶接を行なうことができたのに対して、従来Cu合金
1の電極は1000点で寿命に達した。
Next, regarding the electrodes of the present invention Cu alloy 21 and the conventional Cu alloy 1, the electrode shape: tip diameter 5IMφ x body diameter 12am+
φ, object to be welded: thickness 0.8. Zn-plated steel plate, welding mode: overlap welding, welding current: 8500A, pressure force 20
Spot resistance welding was performed under the condition of 0 kg, and its service life was measured. As a result, the electrode made of Cu alloy 21 of the present invention was able to perform continuous spot welding of 4500 points (average value of 10 operations), whereas the conventional electrode made of Cu alloy 1 had a service life of 1000 points. reached.

また、本発明Cu合金1〜26は、いずれも55〜70
%(IAC8%)の範囲内の導電率を示し、導電性の良
好なものであった。
In addition, Cu alloys 1 to 26 of the present invention all have 55 to 70
% (IAC 8%), indicating good conductivity.

上述のように、この発明のCU金合金、特に、きわめて
すぐれた耐溶融金属腐食性および高温強度を有し、さら
に良好な導電性も兼ね備えているので、例えばZnメッ
キ鋼板やAIメッキ鋼板などのスポット溶接用電極やそ
の他の電極、ダイキャスト用金型やその部品、連続鋳造
用鋳型、さらに羽口などの1造に使用した場合に著しく
すぐれた性能を発揮するなど工業上有用な特性を有する
のである。
As mentioned above, the CU gold alloy of the present invention has particularly excellent molten metal corrosion resistance and high-temperature strength, and also has good electrical conductivity, so it is suitable for use with Zn-plated steel sheets, AI-plated steel sheets, etc. It has industrially useful properties such as exhibiting outstanding performance when used in spot welding electrodes and other electrodes, die-casting molds and their parts, continuous casting molds, and even tuyeres. It is.

出願人 三菱金属株式会社 代理人 富 1)和 夫 外2名Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 2 others

Claims (2)

【特許請求の範囲】[Claims] (1) B : 0.15〜2%。 を含有し、さらに、 7r : 0.75〜10.5%。 ■i:1.2〜7.5%。 のうちの1種または2種と、 cr : 0.1〜1.5%。 Cd : 0.1〜3%。 Ni : 0.5〜6%。 のうちの1種または2種以上を含有し、残りがCuと不
可避不純物からなる組成(以上重量%)を有することを
特徴とする耐溶融金属腐食性にすぐれた高強度硼化物分
散型Cu合金。
(1) B: 0.15-2%. Further, 7r: 0.75 to 10.5%. ■i: 1.2-7.5%. One or two of these and cr: 0.1-1.5%. Cd: 0.1-3%. Ni: 0.5-6%. A high-strength boride-dispersed Cu alloy with excellent molten metal corrosion resistance, characterized by containing one or more of the following, with the remainder consisting of Cu and unavoidable impurities (weight percent). .
(2)B : 0.15 〜2%。 を含有し、さらに、 Z「:0゜75〜10.5%。 Ti : 1.2〜1.5%。 のうちの1種または2種と、 Or : 0.1〜1.5%。 Cd : 0.1〜3%。 Ni : 0.5〜6%。 のうちの1種または2種以上を含有し、残りがCuと不
可避不純物からなる組成(以上重量%)を有するCu合
金に、40〜90%の範囲内の加工率で冷間加工を施し
た後、425〜550℃の範囲内の温度に10分〜3時
間の範囲内の時間保持の条件で熱処理を施すことを特徴
とする耐溶融金属腐食性にすぐれた高強度硼化物分散型
Cu合金の製造法。
(2) B: 0.15 to 2%. and further contains one or two of the following: Z': 0°75-10.5%; Ti: 1.2-1.5%; and Or: 0.1-1.5%. Cd: 0.1 to 3%. Ni: 0.5 to 6%. A Cu alloy containing one or more of the following, with the remainder consisting of Cu and unavoidable impurities (the above weight %) , after performing cold working at a processing rate within the range of 40 to 90%, heat treatment is performed at a temperature within the range of 425 to 550°C for a time within the range of 10 minutes to 3 hours. A method for producing a high-strength boride-dispersed Cu alloy with excellent molten metal corrosion resistance.
JP24682884A 1984-11-21 1984-11-21 High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture Granted JPS60211026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24682884A JPS60211026A (en) 1984-11-21 1984-11-21 High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24682884A JPS60211026A (en) 1984-11-21 1984-11-21 High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8183580A Division JPS6013415B2 (en) 1980-06-16 1980-06-16 High-strength boride-dispersed Cu alloy with excellent molten metal corrosion resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS60211026A true JPS60211026A (en) 1985-10-23
JPS6135257B2 JPS6135257B2 (en) 1986-08-12

Family

ID=17154296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24682884A Granted JPS60211026A (en) 1984-11-21 1984-11-21 High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture

Country Status (1)

Country Link
JP (1) JPS60211026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397818A (en) * 1989-09-11 1991-04-23 Kobe Steel Ltd Electrode material for resistance welding
GB2406579B (en) * 2002-07-18 2006-04-05 Honda Motor Co Ltd Copper alloy, method, of manufacturing copper alloy
US20100147483A1 (en) * 2004-03-29 2010-06-17 Akihisa Inoue Copper alloy and copper alloy manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0397818A (en) * 1989-09-11 1991-04-23 Kobe Steel Ltd Electrode material for resistance welding
GB2406579B (en) * 2002-07-18 2006-04-05 Honda Motor Co Ltd Copper alloy, method, of manufacturing copper alloy
US20100147483A1 (en) * 2004-03-29 2010-06-17 Akihisa Inoue Copper alloy and copper alloy manufacturing method
US9777348B2 (en) 2004-03-29 2017-10-03 Akihisa Inoue Copper alloy and copper alloy manufacturing method

Also Published As

Publication number Publication date
JPS6135257B2 (en) 1986-08-12

Similar Documents

Publication Publication Date Title
US4559200A (en) High strength and high conductivity copper alloy
JP2501275B2 (en) Copper alloy with both conductivity and strength
EP0189637B1 (en) Copper alloy and production of the same
WO2018045695A1 (en) Softening resistant copper alloy, preparation method, and application thereof
JP2007126739A (en) Copper alloy for electronic material
JPH10168532A (en) Copper alloy for backing plate and its production
KR102486303B1 (en) Mold materials for casting, and copper alloy materials
CN110814500B (en) Copper electrode material suitable for resistance spot welding of aluminum alloy and preparation method thereof
JPS58197241A (en) High strength cu alloy with high electric conductivity and superior resistance to erosion due to molten metal
JPS60211026A (en) High strength cu alloy containing dispersed boride and having superior resistance to corrosion by molten metal and its manufacture
JP4293580B2 (en) Corson alloy for metal mold and manufacturing method thereof
JPS6369934A (en) Cupprous metal alloy especially suitable for constitution of electronic parts
JPS62182238A (en) Cu alloy for continuous casting mold
JPS6219264B2 (en)
JPS6013415B2 (en) High-strength boride-dispersed Cu alloy with excellent molten metal corrosion resistance and its manufacturing method
JPH01165733A (en) High strength and high electric conductive copper alloy
JP3563311B2 (en) Copper alloy electrode material for resistance welding and method for producing the same
JPS6219263B2 (en)
JPH0649572A (en) High strength zinc alloy for die casting and zinc alloy die-cast parts
JPH0832935B2 (en) High strength and high toughness Cu alloy with little characteristic anisotropy
JPH0819504B2 (en) Zinc alloy for casting, dimensional change-free, cast parts and heat treatment method for cast parts
JPS6144930B2 (en)
JPS59133341A (en) High strength cu alloy with superior corrosion resistance and hot workability
JPH0681057A (en) Cu-fe alloy for welding electrode and soldering iron tip excellent in molten metal corrosion resistance and strength at high temperature and its production
JP2000273562A (en) High strength and high electrical conductivity copper alloy excellent in stress relaxation resistance