JPS60209137A - Predicting method of fatigue damage - Google Patents

Predicting method of fatigue damage

Info

Publication number
JPS60209137A
JPS60209137A JP6527984A JP6527984A JPS60209137A JP S60209137 A JPS60209137 A JP S60209137A JP 6527984 A JP6527984 A JP 6527984A JP 6527984 A JP6527984 A JP 6527984A JP S60209137 A JPS60209137 A JP S60209137A
Authority
JP
Japan
Prior art keywords
prediction piece
notch
prediction
piece
cracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6527984A
Other languages
Japanese (ja)
Other versions
JPH0374785B2 (en
Inventor
Hisao Aoki
青木 尚夫
Minoru Tsuzawa
津沢 稔
Koji Fujieda
藤枝 幸二
Mitsuo Okimura
沖村 美津雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP6527984A priority Critical patent/JPS60209137A/en
Publication of JPS60209137A publication Critical patent/JPS60209137A/en
Publication of JPH0374785B2 publication Critical patent/JPH0374785B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/062Special adaptations of indicating or recording means with mechanical indicating or recording means

Abstract

PURPOSE:To predict the fatigue damage of a structure which has excellent precision and detection performance by fitting a prediction piece with a cut to the structure, and detecting its cracking. CONSTITUTION:The prediction piece 2 made of the same material with the structure 1 is fitted to a fatigue cracking dangerous position of the structure 1. Fatigue cracking starts at the position of the cut 3 earlier in the piece with the cut 3 than in the structure 1. The cracking starting at the cut 3 stops at a hole 4. The hole 4 has a smooth internal-diameter surface, so notch effect is small and the growth of the cracking to the structure body 1 is impeded. For the purpose, the generation of cracking in the piece 2 is detected to know the fatigue damage of the structure 1 before harmful cracking is generated in the structure 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、橋梁等の構造物において、構造物本体に疲労
亀裂等が発生してしまう前に疲労損傷の危険性があるこ
とを予知する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for predicting the risk of fatigue damage in structures such as bridges before fatigue cracks or the like occur in the structure body. It is something.

従来技術 橋梁等の構造物に適用され得る従来より行なわれている
疲労損傷の危険性を予知する方法として、次の方法が考
えられる。
Prior Art The following method can be considered as a conventional method for predicting the risk of fatigue damage that can be applied to structures such as bridges.

まず、第1の方法は歪ゲージによる応力測定の適用であ
る。すなわち、疲労損傷の危険性を有する部位に歪みゲ
ージを貼付し、そのゲージ出力から応力度を算出し、そ
の大きさから損傷度を推測する方法である。
First, the first method is to apply stress measurement using a strain gauge. That is, this is a method in which a strain gauge is affixed to a region that is at risk of fatigue damage, the degree of stress is calculated from the output of the gauge, and the degree of damage is estimated from the magnitude.

しかし、この方法には、既設の高架構造物に歪みゲージ
を貼付するのが大変である、歪ゲージ貼付のために塗装
部の処理が貼付前後で必要となる、歪ゲージを貼付した
ところしか情報が得られない等の問題があった。
However, with this method, it is difficult to affix strain gauges to existing elevated structures, the painted area must be treated before and after the strain gauge is affixed, and information can only be obtained from the area where the strain gauge is affixed. There were problems such as not being able to obtain

また、第2の方法としてアコースティックエミッション
による弾性波測定の方法がある。これは鋼などでは、材
料の塑性変形もしくは亀裂発生、進展時に音すなわち弾
性波が発生することを利用し、危険部位にアコースティ
ックエミッション波受信子を設置して、その信号から損
傷の危険性を判断するものである。
Further, as a second method, there is a method of measuring elastic waves using acoustic emission. This method takes advantage of the fact that in materials such as steel, sound or elastic waves are generated when plastic deformation or cracks occur or propagate.Acoustic emission wave receivers are installed in dangerous areas, and the risk of damage is determined from the signal. It is something to do.

しかし、この方法には、亀裂発生前の可塑性変形などに
よる!性波出力は大きいものではなく検出しにくく、一
般的には亀裂長さ3mm程度が検出限界とされ、この場
合には予知にはならないという問題があった。
However, this method relies on plastic deformation before crack initiation! The electromagnetic wave output is not large and difficult to detect, and the detection limit is generally considered to be a crack length of about 3 mm, which poses a problem in that it cannot be predicted.

さらに、第3の方法として目視検査および非破壊検査が
ある。これは、定期的検査により、危険部位に疲労亀裂
が発生しているか否かを目視検査および非破壊検査によ
り検出するものである。
Furthermore, a third method includes visual inspection and non-destructive inspection. This is a periodic inspection to detect whether or not fatigue cracks have occurred in dangerous areas by visual inspection and non-destructive inspection.

しかし、この方法には、一般に橋梁などの高架構造物は
検査環境が悪く、精度良い非破壊検査法を適用するには
困難かもしくは足場などの検査準備に多大な工数がかか
るという問題があった。また、検査の結果、亀裂が既に
発生しては予知にならないので、かなり初期の段階から
、検査回数を頻繁にとる必要があるという問題があった
However, this method has the problem that the inspection environment for elevated structures such as bridges is generally poor, making it difficult to apply highly accurate non-destructive inspection methods, or requiring a large amount of man-hours to prepare scaffolding for inspection. . In addition, since the inspection results cannot be predicted if cracks have already occurred, there is a problem in that inspections must be carried out frequently from a very early stage.

発明の目的 本発明は、上記の問題を解消するために、検査環境が悪
い橋梁等の構造物にも適用可能で、取付は作業もそれ程
大変でなく、精度、検出性も良好な構造物の疲労損傷予
知法を提供することを目的とする。
Purpose of the Invention In order to solve the above-mentioned problems, the present invention is applicable to structures such as bridges where the inspection environment is poor, the installation work is not so difficult, and the accuracy and detectability are good. The purpose is to provide a fatigue damage prediction method.

発明の構成 この目的に沿う本発明の第1発明に係る疲労損傷予知法
は、構造物に、切欠きを有する予知ピースを取付け、構
造物より先に予知ピースに亀裂を発生させて該予知ピー
スの亀裂発生より構造物の寿命を予知する方法から成る
Structure of the Invention A fatigue damage prediction method according to the first aspect of the present invention that meets this objective is to attach a prediction piece having a notch to a structure, generate a crack in the prediction piece before the structure, and then remove the prediction piece. It consists of a method of predicting the lifespan of a structure based on the occurrence of cracks.

また、本発明の第2発明に係る疲労損傷予知法は、構造
物に、切欠きを有しかつ内部に負波を封入したホールを
有する予知ピースを取付け、構造物よ・り先に予知ピー
スに亀裂を発生させ予知ピースの表面に浸み出た負波を
目視して予知ピースの亀裂発生を認識し、該予知ピース
の亀裂発生より構造物の寿命を予知する方法から成る。
Further, in the fatigue damage prediction method according to the second aspect of the present invention, a prediction piece having a notch and a hole in which a negative wave is sealed is attached to a structure, and the prediction piece is placed beyond the structure. This method consists of a method in which cracks are generated in the prediction piece, the negative waves seeped out onto the surface of the prediction piece are visually observed, the generation of cracks in the prediction piece is recognized, and the life of the structure is predicted from the occurrence of cracks in the prediction piece.

発明の作用、効果 上記のような疲労損傷予知法では、予知ピースに切欠き
が設けであるので、構造物本体に亀裂が発生する前に予
知ピースに疲労亀裂が発生し、予知ピースのみを望遠鏡
などで観察し、亀裂が発生しているか否かを調べること
で、構造物の疲労損傷度を予知することができる。この
場合、予知ピースの切欠き形状を適宜選択することによ
り、構造物本体の疲労損傷度をどの段階で予知するかを
コントロールすることができる。また、予知ピースの材
質を構造物本体と同材質ならびに同塗装仕様にしておけ
ば、疲労損傷に対する環境の影響を同じにすることがで
きる。
Functions and Effects of the Invention In the fatigue damage prediction method as described above, since a notch is provided in the prediction piece, fatigue cracks occur in the prediction piece before cracks occur in the structure body, and only the prediction piece can be viewed through the telescope. It is possible to predict the degree of fatigue damage in a structure by observing it and determining whether or not cracks have occurred. In this case, by appropriately selecting the notch shape of the prediction piece, it is possible to control at what stage the degree of fatigue damage of the structure body is predicted. Furthermore, if the prediction piece is made of the same material and has the same coating specifications as the structure itself, the influence of the environment on fatigue damage can be made the same.

また、密封ホールに負波を封入した場合は、予知ピース
に亀裂が発生したときに亀裂がホールに通じ、封入され
た負波の予知ピース表面への漏洩により、予知ピースの
亀裂発生を遠くから肉眼で簡便に識別可能になり便宜性
、識別性が向上する。
In addition, if a negative wave is sealed in the sealed hole, when a crack occurs in the prediction piece, the crack will lead to the hole, and the sealed negative wave will leak to the surface of the prediction piece, preventing the occurrence of cracks in the prediction piece from a distance. It can be easily identified with the naked eye, improving convenience and identifiability.

実施例 以下に本発明の疲労損傷予知法の望ましい実施例を図面
を参照して説明する。
EXAMPLES Below, preferred examples of the fatigue damage prediction method of the present invention will be described with reference to the drawings.

第1図ないし第7図は本発明の第1発明の場合を示して
いる。
1 to 7 show the case of the first invention of the present invention.

第1図は構造物として橋梁を例にとった場合を示してい
る。図中1が構造物で、基礎支柱の上に支持されている
。このような構造物1では曲げ応力による大きな引張応
力は構造物1の下縁に生じ、しかも、橋梁を通る車両、
鉄道車両等の通行により繰返しかかる。このため、構造
物1の下縁部分が疲労亀裂の発生する危険部位となる。
Figure 1 shows a case where a bridge is used as an example of a structure. In the figure, 1 is the structure, which is supported on foundation supports. In such a structure 1, large tensile stress due to bending stress occurs at the lower edge of the structure 1, and moreover, vehicles passing through the bridge,
This occurs repeatedly due to the passage of railway vehicles, etc. Therefore, the lower edge portion of the structure 1 becomes a dangerous area where fatigue cracks may occur.

構造物1の疲労亀裂発生危険部位には、以下に説明する
予知ピース2が、取付けられる。
A prediction piece 2, which will be described below, is attached to a fatigue crack-prone area of the structure 1.

取付けは、溶接、接着、ボルト締め等の適宜の手段によ
る。
Attachment is by appropriate means such as welding, gluing, bolting, etc.

予知ピース2は、構造物1の本体と同一の材料から構成
され、第2図ないし第3図に示すように、切欠き3を有
する板部材から成る。切欠き3は、該予知ピース2に構
造物1から曲げ応力がかかったときに最大の曲げ応力の
かかる下辺側に設けられている。予知ピース2には、切
欠き3に対向する位置でかつ切欠き3から離れた位置に
滑らかな湾曲内径面を有するホール4が形成されている
。予知ピース2は、構造物1に溶接5で取付けられる場
合、該溶接部位5は滑らかな湾曲をもって、ノツチが形
成されないように仕上げられる。
The prediction piece 2 is made of the same material as the main body of the structure 1, and is made of a plate member having a notch 3, as shown in FIGS. 2 and 3. The notch 3 is provided on the lower side where the maximum bending stress is applied when the prediction piece 2 is subjected to bending stress from the structure 1. A hole 4 having a smooth curved inner diameter surface is formed in the prediction piece 2 at a position facing the notch 3 and at a position away from the notch 3. When the prediction piece 2 is attached to the structure 1 by welding 5, the welding portion 5 is finished with a smooth curve so that no notch is formed.

予知ピース2は、第4図および第5図に示すように、切
欠き3の開角α、切欠き3の先端の湾曲r2、切欠き3
とホール4との間の距離d1予知ピース2の切欠き3の
左右の側辺に溶接部5に続くように設けた湾曲r1を適
宜に選択されることにより、切欠き3からの亀裂の入り
やすさがコントロールされる。
As shown in FIGS. 4 and 5, the prediction piece 2 has an opening angle α of the notch 3, a curvature r2 of the tip of the notch 3, and
By appropriately selecting the curvature r1 provided on the left and right sides of the notch 3 of the prediction piece 2 so as to continue to the welded part 5, the distance d1 between the hole 4 and the hole 4 prevents cracks from forming from the notch 3. Ease is controlled.

この予知ピース2を使用して構造物1の疲労損傷を予知
するには、まず、予知ピース2を構造物の疲労損傷危険
部位に適宜個取付ける。取付けは構造物1の建設前に予
め取付けておいてもよいし、既設の構造物1に取付けて
もよい。
In order to predict fatigue damage in the structure 1 using the prediction pieces 2, first, the prediction pieces 2 are attached to appropriate fatigue damage-prone parts of the structure. The attachment may be done in advance before construction of the structure 1, or may be attached to the existing structure 1.

構造物1には繰返し荷重がかかり、予知ピース2も繰返
し応力を受ける。予知ピース2と構造物1とでは、切欠
き3のある予知ピース2の方が先に切欠き3部位から疲
労亀裂が始まる。
The structure 1 is subjected to repeated loads, and the prediction piece 2 is also subjected to repeated stresses. Between the prediction piece 2 and the structure 1, fatigue cracks begin in the prediction piece 2 with the notch 3 first from the notch 3 portion.

切欠き3から亀裂6が生じても該亀裂6はホール4で止
まる。−ホール4は滑らかな内径面をもっているので、
ノツチ効果は小であり、亀裂6が構造物1本体に伝帳す
るのを阻止している。
Even if a crack 6 occurs from the notch 3, the crack 6 stops at the hole 4. -Hole 4 has a smooth inner diameter surface, so
The notch effect is small and prevents the crack 6 from propagating into the main body of the structure 1.

予知ピース2における亀裂60発生を検知することによ
り、構造物1に有害な亀裂が発生する前に構造物1の疲
労損傷度を知ることができる。亀裂6の発生の検出は、
たとえば微小径の導線を切欠き3とホール4との間の部
位に貼付しておき、亀裂発生によって導線が切断したと
きに適宜目視し易い部位に設けたランプが点灯するよう
にしてもよいし、他の手段によってもよい。
By detecting the occurrence of cracks 60 in the prediction piece 2, the degree of fatigue damage of the structure 1 can be known before harmful cracks occur in the structure 1. To detect the occurrence of crack 6,
For example, a conductive wire with a minute diameter may be pasted to the area between the notch 3 and the hole 4, and when the conductive wire is cut due to a crack, a lamp provided in an easily visible area may be lit. , or by other means.

第6図は予知ピース2と構造物1の本体との疲労特性の
関係、とくに第4図のA、B、C部位の亀裂発生を示し
ている。予知ピース2をつけない部位Aでは第6図の特
性線Aに従って構造物1本体に亀裂が発生する。予知ピ
ース2と構造物1本体を極力応力集中が生じないように
rlと溶接部5の仕上げをすると、溶接部5は特性線B
に従って亀裂が発生する。溶接部5近傍の部位Bは部位
Aより早く亀裂が発生するかもしれないが、極力Aと同
じ寿命を有するように仕上げられる。0部は切欠き3の
開角α、切欠き先端の湾曲r2で決まる応力集中度によ
り、かなり早(亀裂が発生する。0部で発生した亀裂は
ホール4までの距離dを伝帳する寿命がある。これが特
性線C′である。ホール4まで亀裂が貫通してから構造
物1の本体に亀裂が発生するまでの余裕度は第6図のE
で示され、予知ピース2のrl、r2、α、d、r3な
どの諸寸法形状に左右されることになり、余裕度を自由
に調節することが可能である。
FIG. 6 shows the relationship between the fatigue properties of the prediction piece 2 and the main body of the structure 1, particularly the occurrence of cracks at locations A, B, and C in FIG. 4. In the part A where the prediction piece 2 is not attached, cracks occur in the main body of the structure 1 according to the characteristic line A in FIG. If the prediction piece 2 and the main body of the structure 1 are finished at rl and the welded part 5 so that stress concentration does not occur as much as possible, the welded part 5 will follow the characteristic line B.
Accordingly, cracks occur. Although part B near the weld 5 may crack earlier than part A, it is finished to have the same lifespan as A as much as possible. At part 0, due to the degree of stress concentration determined by the opening angle α of notch 3 and the curvature r2 of the tip of the notch, cracks occur quite quickly (cracks occur). This is the characteristic line C'.The margin from when the crack penetrates to hole 4 until the crack occurs in the main body of structure 1 is E in Figure 6.
It depends on various dimensions and shapes such as rl, r2, α, d, and r3 of the prediction piece 2, and the margin can be freely adjusted.

第7図は第4図とは別の実施例に係るもので、予知ピー
ス2に切欠き3のホール4と反対側にも切欠き3′を設
けた場合を示している。このようにすることによって予
知ピース1の亀裂発生を確実化している。ただし、切欠
き3−は、その亀裂の方向が構造物10本体に進展しな
い方向に設けられなければならない。
FIG. 7 shows a different embodiment from FIG. 4, in which a notch 3' is also provided in the prediction piece 2 on the side opposite to the hole 4 of the notch 3. By doing this, it is ensured that cracks will not occur in the prediction piece 1. However, the notch 3- must be provided in a direction in which the crack does not propagate toward the structure 10 body.

第8図ないし第9図は本発明の第2発明の場合を示して
いる。第2発明においてはホール4は密封ホールとされ
、その中に免液7が封入されている。その他は第1発明
に準じるので準じる部分に第1図ないし第7図と同一の
符号を付すことにより説明を省略する。
FIGS. 8 and 9 show the case of the second invention of the present invention. In the second invention, the hole 4 is a sealed hole, and the liquid absorbent 7 is sealed therein. Since the rest is in accordance with the first invention, the same reference numerals as in FIGS. 1 to 7 are given to the corresponding parts, and the explanation thereof will be omitted.

第2発明の場合、切欠き3から発生した亀裂6がホール
4に貫通すると、ホール4内の免液7が予知ピース2の
表面に浸み出、それを遠くから望遠鏡等で目視すること
により、容易に亀裂発生を知ることができ、構造物′1
の損傷度を知ることができる。すなわち、予知ピース2
の表面に色変化があれば、余裕度Eから判断して総点検
を行なうかどうかを判断し、色変化がなければ疲労損傷
に対して十分に安全度があるとみなしてよい。したがっ
て色変化のみを観察することで、簡便に構造物1の本体
の疲労損傷を予知できる。
In the case of the second invention, when the crack 6 generated from the notch 3 penetrates the hole 4, the liquid absorbent 7 in the hole 4 seeps onto the surface of the prediction piece 2, and it can be visually observed from a distance with a telescope etc. , the occurrence of cracks can be easily detected, and the structure '1
You can know the degree of damage. In other words, prediction piece 2
If there is a color change on the surface, it can be judged from the margin E to decide whether to conduct a complete inspection, and if there is no color change, it can be considered that there is a sufficient degree of safety against fatigue damage. Therefore, fatigue damage to the main body of the structure 1 can be easily predicted by observing only the color change.

なお、上記説明においては、構造物1として橋梁を例に
とったが、その他の構造物であ、ってもよく、たとえば
鉄塔、クレーンなどであってもよい。
In the above description, a bridge is taken as an example of the structure 1, but it may be any other structure, such as a steel tower or a crane.

以上説明したように、本発明によるときは、切欠き3を
有する予知ピース2を構造物1に貼着して、先に予知ピ
ース2に疲労亀裂を発生させるようにしたので、構造物
本体に亀裂を発生させることなく、しかも検査環境の悪
い構造物にも適用可能で、取付けも大変でなく、検出性
も良好に構造物の疲労損傷度を知ることができるという
効果が得られる。
As explained above, according to the present invention, the prediction piece 2 having the notch 3 is attached to the structure 1, and fatigue cracks are generated in the prediction piece 2 first. It does not generate cracks, can be applied to structures in poor inspection environments, is not difficult to install, and has the advantage of being able to determine the degree of fatigue damage of structures with good detectability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1発明を適用した構造物の全体正面
図、 第2図は予知ピース取付部近傍の構造物の部分正面図、 第3図は第2図の側面図、 第4図は第2図の予知ピース部位の部分正面図、 第5図は第4図の部位の側面図、 第6図は疲労特性線図、 第7図は第1発明の別の例の予知ピース部位の部分正面
図、 第8図は本発明の第2発明の予知ピース部位の部分正面
図、 第9図は第8図の部位の側面図、 第10図は第8図の亀裂部位の正面図、である。 1・・・・・・構造物 2・・・・・・予知ピース 3・・・・・・切欠き 4・・・・・・ホール 5・・・・・・溶接部 6・・・・・・亀裂 7・・・・・・色液 第7図 第9図 1
FIG. 1 is an overall front view of a structure to which the first invention of the present invention is applied, FIG. 2 is a partial front view of the structure near the predictive piece attachment part, FIG. 3 is a side view of FIG. 2, and FIG. The figure is a partial front view of the part of the prediction piece in Figure 2, Figure 5 is a side view of the part in Figure 4, Figure 6 is a fatigue characteristic diagram, and Figure 7 is another example of the prediction piece of the first invention. FIG. 8 is a partial front view of the predictive piece portion of the second invention of the present invention; FIG. 9 is a side view of the portion shown in FIG. 8; FIG. 10 is a front view of the crack portion shown in FIG. 8. Figure. 1... Structure 2... Predicted piece 3... Notch 4... Hole 5... Welded part 6...・Crack 7・・・Color liquid Fig. 7 Fig. 9 1

Claims (2)

【特許請求の範囲】[Claims] (1) 構造物に、切欠きを有する予知ピースを取付け
、構造物より先に予知と−スに亀裂を発生させて該予知
ピースの亀裂発生より構造物の寿命を予知することを特
徴とする疲労損傷予知法。
(1) A prediction piece having a notch is attached to a structure, a crack is generated in the prediction piece before the structure, and the life of the structure is predicted from the occurrence of a crack in the prediction piece. Fatigue damage prediction method.
(2) 構造物に、切欠きを有しかつ内部に白液を封入
したホールを有する予知ピースを取付け、構造物より先
に予知ピースに亀裂を発生させ予知ピースの表面に浸み
出た白液を目視して予知ピースの亀裂発生を認識し、該
予知ピースの亀裂発生より構造物の寿命を予知すること
を特徴とする疲労損傷予知法。
(2) A prediction piece that has a notch and a hole filled with white liquid is attached to a structure, and cracks occur in the prediction piece before the structure and white seeps onto the surface of the prediction piece. 1. A fatigue damage prediction method characterized by recognizing the occurrence of cracks in a prediction piece by visually observing a liquid, and predicting the life of a structure based on the occurrence of cracks in the prediction piece.
JP6527984A 1984-04-03 1984-04-03 Predicting method of fatigue damage Granted JPS60209137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6527984A JPS60209137A (en) 1984-04-03 1984-04-03 Predicting method of fatigue damage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6527984A JPS60209137A (en) 1984-04-03 1984-04-03 Predicting method of fatigue damage

Publications (2)

Publication Number Publication Date
JPS60209137A true JPS60209137A (en) 1985-10-21
JPH0374785B2 JPH0374785B2 (en) 1991-11-28

Family

ID=13282326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6527984A Granted JPS60209137A (en) 1984-04-03 1984-04-03 Predicting method of fatigue damage

Country Status (1)

Country Link
JP (1) JPS60209137A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653616A2 (en) * 1993-11-13 1995-05-17 DORNIER GmbH Device for monitoring the resistance to ageing of structures
JP4873391B2 (en) * 2007-09-19 2012-02-08 メシア−ダウティ リミテッド Load indicator
JP2013002960A (en) * 2011-06-16 2013-01-07 Universal Shipbuilding Corp Fatigue monitoring structure and steel structure
US20130220210A1 (en) * 2012-02-28 2013-08-29 Meritor Heavy Vehicle Braking Systems (Uk) Limited Cast or forged component with fatigue life indication
JP2014178209A (en) * 2013-03-14 2014-09-25 Press Kogyo Co Ltd Crack detection structure for axle cases
JP2016078696A (en) * 2014-10-17 2016-05-16 三菱自動車工業株式会社 Vehicle stabilizer support structure
JP2021524031A (en) * 2018-05-18 2021-09-09 マック ライズ ゲーエムベーハー ウント コー カーゲーMack Rides GmbH & Co.KG Sensor system that detects mechanical changes at an early stage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939434A (en) * 1972-08-15 1974-04-12
JPS56117144A (en) * 1980-02-20 1981-09-14 Hitachi Ltd Measurement of fatigue damage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939434A (en) * 1972-08-15 1974-04-12
JPS56117144A (en) * 1980-02-20 1981-09-14 Hitachi Ltd Measurement of fatigue damage

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0653616A2 (en) * 1993-11-13 1995-05-17 DORNIER GmbH Device for monitoring the resistance to ageing of structures
EP0653616A3 (en) * 1993-11-13 1995-11-08 Dornier Gmbh Device for monitoring the resistance to ageing of structures.
JP4873391B2 (en) * 2007-09-19 2012-02-08 メシア−ダウティ リミテッド Load indicator
JP2013002960A (en) * 2011-06-16 2013-01-07 Universal Shipbuilding Corp Fatigue monitoring structure and steel structure
US20130220210A1 (en) * 2012-02-28 2013-08-29 Meritor Heavy Vehicle Braking Systems (Uk) Limited Cast or forged component with fatigue life indication
JP2014178209A (en) * 2013-03-14 2014-09-25 Press Kogyo Co Ltd Crack detection structure for axle cases
JP2016078696A (en) * 2014-10-17 2016-05-16 三菱自動車工業株式会社 Vehicle stabilizer support structure
JP2021524031A (en) * 2018-05-18 2021-09-09 マック ライズ ゲーエムベーハー ウント コー カーゲーMack Rides GmbH & Co.KG Sensor system that detects mechanical changes at an early stage

Also Published As

Publication number Publication date
JPH0374785B2 (en) 1991-11-28

Similar Documents

Publication Publication Date Title
US6155117A (en) Edge detection and seam tracking with EMATs
Mangual et al. Acoustic-emission-based characterization of corrosion damage in cracked concrete with prestressing strand
JP5403976B2 (en) Concrete structure quality inspection method
JP2019105477A (en) Method to detect damage/deformation of structure with cfrp tendon for introducing pre-stress and cfrp tendon
JPS60209137A (en) Predicting method of fatigue damage
JP6061767B2 (en) Method and apparatus for exploring delamination inside concrete
JP2013160500A (en) Defect inspection apparatus and inspection method
CN116147547A (en) Nondestructive testing system for detecting depth of concrete opening crack
JP4784556B2 (en) Sensitivity correction method for ultrasonic inspection
JP6016589B2 (en) Structure and method for detecting peeling of structure
EP1108196A1 (en) Method for strain deformation
JPH1090085A (en) Evaluation method for welding residual stress
CN212134587U (en) Test block for measuring relation between aluminum alloy transverse wave sound path and probe incident point error
O’Donnell et al. Engineering Criticality Assessments of Floating Offshore Platforms Based on Time Domain Structural Response Analysis
JP2019020309A (en) Monitoring system and method for crack repair part
JPH0674875A (en) Structure fatigue life prediction sensor
JP3761883B2 (en) Ultrasonic flaw detection method
JP3834660B2 (en) Crack detection device for structures
JP3091521B2 (en) Monitor for detecting fatigue damage
RU2293249C9 (en) Pipe and method of its repairing
CN113567349B (en) Laser ultrasonic determination method for weld joint interface structure and application thereof
KR100561065B1 (en) Method for detecting crack position of material with sensor
Roberts et al. Structural integrity of welded steel structures
JP2017207441A (en) Evaluation method and evaluation system of degradation state of metallic structure
SU974215A1 (en) Specimen for determination of welded joint mechanical properties