JP4784556B2 - Sensitivity correction method for ultrasonic inspection - Google Patents

Sensitivity correction method for ultrasonic inspection Download PDF

Info

Publication number
JP4784556B2
JP4784556B2 JP2007140038A JP2007140038A JP4784556B2 JP 4784556 B2 JP4784556 B2 JP 4784556B2 JP 2007140038 A JP2007140038 A JP 2007140038A JP 2007140038 A JP2007140038 A JP 2007140038A JP 4784556 B2 JP4784556 B2 JP 4784556B2
Authority
JP
Japan
Prior art keywords
probe
wave
calibration
inspection
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007140038A
Other languages
Japanese (ja)
Other versions
JP2008292385A (en
Inventor
靖弘 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2007140038A priority Critical patent/JP4784556B2/en
Publication of JP2008292385A publication Critical patent/JP2008292385A/en
Application granted granted Critical
Publication of JP4784556B2 publication Critical patent/JP4784556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波を用いて被検査物の欠陥を検査する際に、測定環境に応じて超音波の受信感度を補正する方法に関するものである。   The present invention relates to a method of correcting ultrasonic reception sensitivity according to a measurement environment when inspecting a defect of an inspection object using ultrasonic waves.

従来、超音波を用いた腐食検査に関し、『ラック上の薄肉鋼管外表面に発生する腐食を、ラック外から良好に検査する。』ことを目的とした技術として、『ラック3の近傍で、薄肉鋼管の露出外表面から、SH波探触子5より、ラック隠蔽部位にSH波を伝播させ、この部位から反射して来るSH波を、そのSH波探触子5により受信し、反射信号に基づいて腐食を検査する。』というものが提案されている(特許文献1)。   Conventionally, regarding the corrosion inspection using ultrasonic waves, “corrosion generated on the outer surface of the thin steel pipe on the rack is well inspected from outside the rack. As a technology for the purpose of this, “SH waves propagated from the exposed outer surface of the thin-walled steel pipe from the SH wave probe 5 to the rack concealed part in the vicinity of the rack 3 and reflected from this part. The waves are received by the SH wave probe 5 and inspected for corrosion based on the reflected signal. Is proposed (Patent Document 1).

また、『管体が橋脚や橋台等を貫通することにより、目視等の検査が不可能な部位に発生することがある腐食や傷を高精度に検出するとともに、腐食や傷の深さの評価精度を向上させる。』ことを目的とした技術として、『橋梁の橋桁下部に架設された配管1が橋台2を貫通して充填材3によって隠されて目視等できない測定部位1aに対して特殊SH波探触子5から局部ねじり波を伝播させて板厚全てを振動させる。この隠されて目視等できない測定部位1aから反射してくる反射波を特殊SH波探触子5で受信し、受信した反射波の受信信号の変化により測定部位1aの腐食等を検出する。』というものが提案されている(特許文献2)。   In addition, “As the pipe penetrates the pier or abutment, corrosion and scratches that may occur in parts that cannot be visually inspected are detected with high accuracy, and the depth of corrosion and scratches is evaluated. Improve accuracy. As a technology for the purpose of the above, “a special SH wave probe 5 is used for a measurement site 1 a that cannot be visually observed because the pipe 1 installed under the bridge girder of the bridge passes through the abutment 2 and is hidden by the filler 3. The local torsional wave is propagated from and the entire plate thickness is vibrated. The reflected wave reflected from the measurement site 1a which is hidden and cannot be visually observed is received by the special SH wave probe 5, and corrosion of the measurement site 1a is detected by a change in the received signal of the received reflected wave. Is proposed (Patent Document 2).

特開2002−243704号公報(要約)JP 2002-243704 A (summary) 特開2005−83907号公報(要約)Japanese Patent Laying-Open No. 2005-83907 (Abstract)

一般に、超音波を用いた欠陥検査では、被検査物と同種の材質等からなり、基準とする反射源が施された試験片を用い、感度の較正や欠陥の評価基準の作成をあらかじめ行う。
この場合、被検査物の欠陥を検査する際には、検査時の計測結果と、評価基準を作成した試験片上での計測結果とを対比して、欠陥の判定を行うことになる。
Generally, in defect inspection using ultrasonic waves, sensitivity calibration and creation of defect evaluation criteria are performed in advance using a test piece made of the same kind of material as the object to be inspected and provided with a reference reflection source.
In this case, when inspecting the defect of the inspection object, the determination of the defect is performed by comparing the measurement result at the time of inspection with the measurement result on the test piece for which the evaluation reference is created.

ここで、上記特許文献1や特許文献2に記載の技術で用いられているSH(Shear Horizontal)波は進行方向に対して水平方向に振動する超音波であり、被検査物に伝達させるには、このせん断方向の振動を被検査物との接触面から伝える必要がある。そのため、探触子と被検査物の接触面に用いる接触媒質は、一般的なものより粘性が高い専用のものを用いる必要がある。これは、試験片上でSH波を発生させる際と、検査時にSH波を発生させる際とで共通である。   Here, the SH (Shear Horizontal) wave used in the techniques described in Patent Document 1 and Patent Document 2 is an ultrasonic wave that oscillates in the horizontal direction with respect to the traveling direction, and is transmitted to the inspection object. The vibration in the shear direction must be transmitted from the contact surface with the object to be inspected. Therefore, the contact medium used for the contact surface between the probe and the object to be inspected needs to use a dedicated medium having a higher viscosity than a general medium. This is common when the SH wave is generated on the test piece and when the SH wave is generated during the inspection.

上記のようなSH波の発生手法の特性により、発生させるSH波、およびその受信感度は、接触媒質の粘性の変化、被検査物の表面状態、探触子の取付状態、などの測定環境によって大きく異なる可能性がある。また、同一の被検査物であっても、計測点を変更する際に感度が変化してしまう可能性がある。
したがって、試験片を用いて受信波形を測定した際の受信感度と、検査時の受信感度とでは、前提となる測定環境が異なるため、較正処理が必要となる。
Due to the characteristics of the generation method of the SH wave as described above, the generated SH wave and its reception sensitivity depend on the measurement environment such as the change in the viscosity of the contact medium, the surface state of the inspection object, the mounting state of the probe, and the like. It can be very different. Moreover, even if it is the same to-be-inspected object, a sensitivity may change when changing a measurement point.
Therefore, since the measurement environment which is a premise differs between the reception sensitivity when the received waveform is measured using the test piece and the reception sensitivity at the time of inspection, calibration processing is necessary.

この点に関し、上記特許文献1では、検査範囲を挟むようにして送信探触子5aと受信探触子5bを配置し(図1)、検査範囲を透過して伝搬した超音波を受信し、検査や較正用信号として用いている。
しかし、この手法では、検査範囲の両側に探触子を設置するスペースを確保する必要があるため、検査設備のサイズがその分大きくなる等の観点から課題がある。また、検査範囲を透過する過程で、信号値を変化させる他の要素の影響が入り込むため、測定環境の較正用信号として用いるには必ずしも適切でない。
In this regard, in Patent Document 1, the transmission probe 5a and the reception probe 5b are arranged so as to sandwich the inspection range (FIG. 1), and ultrasonic waves transmitted through the inspection range are received, Used as a calibration signal.
However, this method has a problem from the viewpoint of increasing the size of the inspection equipment, because it is necessary to secure a space for installing the probe on both sides of the inspection range. In addition, in the process of passing through the inspection range, the influence of other elements that change the signal value is introduced, so that it is not necessarily suitable for use as a calibration signal for the measurement environment.

なお、上記特許文献2に関しては、感度補正に関して特段の記載はなく、従来手法と同様の課題がある。   Regarding the above-mentioned Patent Document 2, there is no particular description regarding sensitivity correction, and there is a problem similar to that of the conventional method.

本発明は、上記のような課題を解決するためになされたもので、超音波を用いて被検査物の欠陥を検査する際の、測定環境に起因する受信感度の差異を補正することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to correct a difference in reception sensitivity caused by a measurement environment when inspecting a defect of an inspection object using ultrasonic waves. And

本発明に係る超音波検査の感度補正方法は、超音波を用いて被検査物の欠陥を検査する際の受信感度を補正する方法であって、評価基準を定めることを目的とした評価基準用試験片の計測において、基準反射源と探触子の間に較正用探触子を配置し、基準反射源の計測と併せて較正用探触子での受信波形も計測しておき、被検査物の欠陥を検査する際には、被検査物の検査部位と探触子の間に較正用探触子を配置し、かつ、探触子と較正用探触子の位置が、前記評価基準用試験片上における探触子と較正用探触子の位置が一致するように配置位置を調整するとともに、前記評価基準用試験片上における取付状態と同じ取付状態で較正用探触子を取り付け、前記評価基準用試験片を用いて測定した較正用探触子の受信波形と、被検査物の欠陥を検査する際に測定した較正用探触子の受信波形とを比較し、その比較結果により探触子の受信感度を補正するものである。   A sensitivity correction method for ultrasonic inspection according to the present invention is a method for correcting reception sensitivity when inspecting a defect of an inspection object using ultrasonic waves, and is used for an evaluation standard for the purpose of defining an evaluation standard. When measuring the test piece, place a calibration probe between the reference reflector and the probe, and measure the received waveform at the calibration probe together with the measurement of the reference reflector. When inspecting a defect of an object, a calibration probe is disposed between the inspection site of the object to be inspected and the probe, and the position of the probe and the calibration probe is determined based on the evaluation criteria. Adjusting the arrangement position so that the position of the probe on the test specimen matches the position of the calibration probe, and attaching the calibration probe in the same mounting state as the mounting state on the evaluation reference test piece, The received waveform of the calibration probe measured using the test specimen for evaluation standard and the defect of the inspection object Comparing the received waveform of the calibration probe measured during the 査, and corrects the reception sensitivity of the probe by the comparison result.

また、本発明に係る超音波検査の感度補正方法は、前記評価基準用試験片を用いて測定した較正用探触子の受信波形のピーク値と、被検査物の欠陥を検査する際に測定した較正用探触子の受信波形のピーク値との比に基づき、被検査物の欠陥を検査する際の探触子の受信感度を補正するものである。   Also, the sensitivity correction method for ultrasonic inspection according to the present invention is measured when inspecting the peak value of the received waveform of the calibration probe measured using the test piece for evaluation reference and the defect of the inspection object. The reception sensitivity of the probe when inspecting a defect of the inspection object is corrected based on the ratio with the peak value of the reception waveform of the calibration probe.

また、本発明に係る超音波検査の感度補正方法において、前記探触子が用いる超音波は、伝搬方向に対して水平方向に振動する横波である。   In the ultrasonic inspection sensitivity correction method according to the present invention, the ultrasonic wave used by the probe is a transverse wave that vibrates in a horizontal direction with respect to a propagation direction.

本発明に係る超音波検査の感度補正方法によれば、測定環境に起因して受信感度が変動しても、較正用探触子の受信波形に基づき受信感度を補正することができるので、測定環境によらず一定の受信感度で検査を実施することができる。   According to the sensitivity correction method for ultrasonic inspection according to the present invention, even if the reception sensitivity varies due to the measurement environment, the reception sensitivity can be corrected based on the reception waveform of the calibration probe. Inspection can be performed with a constant reception sensitivity regardless of the environment.

実施の形態1.
図1は、本発明の実施の形態1に係る超音波検査の感度補正方法を実施する様子を説明するものである。ここでは腐食検査を例に取り説明する。
Embodiment 1 FIG.
FIG. 1 explains how the sensitivity correction method for ultrasonic inspection according to Embodiment 1 of the present invention is implemented. Here, the corrosion inspection will be described as an example.

図1(a)において、10は腐食の評価基準を作成するための試験片、20aは計測用探触子、30aは較正用探触子、40は評価基準用反射源である。
計測用探触子20aは、図1(a)の矢印で示す方向に超音波を送信し、評価基準用反射源40で反射した超音波を受信して、その波形を計測することができる。
また、計測用探触子20aで送信した超音波は、直接較正用探触子30aでも受信する。
In FIG. 1A, 10 is a test piece for creating a corrosion evaluation standard, 20a is a measurement probe, 30a is a calibration probe, and 40 is a reflection source for evaluation standard.
The measurement probe 20a can transmit an ultrasonic wave in the direction indicated by the arrow in FIG. 1A, receive the ultrasonic wave reflected by the evaluation reference reflection source 40, and measure the waveform.
The ultrasonic wave transmitted by the measurement probe 20a is also received directly by the calibration probe 30a.

図1(b)において、50は腐食を検査する対象である被検査物、60は検査範囲に存在する腐食である。計測用探触子20b、較正用探触子30bの役割は、図1(a)の計測用探触子20a、較正用探触子30aと同様である。   In FIG. 1B, reference numeral 50 denotes an object to be inspected for corrosion, and reference numeral 60 denotes corrosion existing in the inspection range. The roles of the measurement probe 20b and the calibration probe 30b are the same as those of the measurement probe 20a and the calibration probe 30a in FIG.

図1の各探触子等を用いた感度補正の手順の詳細は、後述する。   Details of the sensitivity correction procedure using each probe of FIG. 1 will be described later.

図2は、横波の種類について説明するものである。
超音波を用いた検査では、一般的に伝搬媒質の形状を考慮しない縦波または横波が用いられる。縦波は振動が波の進行方向に対して平行、横波は振動が波の進行方向に対して垂直である。
FIG. 2 explains the types of transverse waves.
In the inspection using ultrasonic waves, longitudinal waves or transverse waves that do not consider the shape of the propagation medium are generally used. The longitudinal wave has a vibration parallel to the traveling direction of the wave, and the transverse wave has a vibration perpendicular to the traveling direction of the wave.

横波は、図2(a)(b)に示すように、さらに(a)SV波(SV:Shear Vertical)、(b)SH波(SH:Shear Horizontal)の2種類に分けられる。
SV波は、振動が波の進行方向に対して垂直で、かつ上下方向に振動する波である。
SH波は、振動が波の進行方向に対して垂直で、かつ水平方向に振動する波である。
As shown in FIGS. 2A and 2B, the transverse waves are further classified into two types: (a) SV waves (SV: Shear Vertical) and (b) SH waves (SH: Shear Horizontal).
The SV wave is a wave whose vibration is perpendicular to the wave traveling direction and oscillates in the vertical direction.
The SH wave is a wave whose vibration is perpendicular to the traveling direction of the wave and oscillates in the horizontal direction.

SV波は、縦波をモード変換させて発生させる。即ち、伝搬媒質を叩くようにして発生させるのに対し、SH波は、伝搬媒質を擦るようにして発生させる。
即ち、SH波を発生させる際には、伝搬媒質(通常は被検査物と同一、以後同様)に接触媒質(常温ゲル状の物質が一般的)を塗布して探触子を密着させ、振動子で探触子を振動させて、被検査物と探触子を擦り合わせるようにする。
The SV wave is generated by mode conversion of the longitudinal wave. That is, the SH wave is generated by rubbing the propagation medium, whereas the propagation is generated by striking the propagation medium.
That is, when the SH wave is generated, a contact medium (normally gel-like substance is generally used) is applied to a propagation medium (usually the same as the object to be inspected), and the probe is brought into close contact with vibration. The probe is vibrated by the child so that the object to be inspected and the probe are rubbed together.

このようなSH波の発生手法に起因して、SH波およびその受信感度は、接触媒質の粘性の変化、被検査物の表面状態、探触子の取付状態、などの測定環境によって大きく異なる可能性がある。また、同一の被検査物であっても、計測点を変更する際に感度が変化してしまう可能性がある。
例えば、接触媒質の粘性は、気温や湿度によって変化する。また、被検査物の表面状態は、検査の度に、また被検査物によって異なるのが通常である。さらには、探触子の取付状態は、例えば探触子を被検査物に押さえつける際の力加減などで容易に変化する。
Due to the generation method of such SH wave, the SH wave and its reception sensitivity can vary greatly depending on the measurement environment such as the change in the viscosity of the contact medium, the surface state of the object to be inspected, the mounting state of the probe, etc. There is sex. Moreover, even if it is the same to-be-inspected object, a sensitivity may change when changing a measurement point.
For example, the viscosity of the contact medium varies with temperature and humidity. Further, the surface state of the inspection object usually varies with each inspection and with the inspection object. Furthermore, the mounting state of the probe is easily changed, for example, by adjusting the force when pressing the probe against the object to be inspected.

受信感度(受信波形の波の高さ)は、欠陥の大きさ等の判定のために重要であるため、受信感度が変化することは、欠陥検査に対する影響が大きい。したがって、試験片10を用いて受信波形を測定した際の受信感度と、検査時の受信感度とでは、前提となる環境が異なるため、較正処理が必要となる。   Since the reception sensitivity (the wave height of the reception waveform) is important for determining the size of the defect or the like, the change in the reception sensitivity has a great influence on the defect inspection. Therefore, since the prerequisite environment differs between the reception sensitivity when the received waveform is measured using the test piece 10 and the reception sensitivity at the time of inspection, a calibration process is required.

次に、図1で説明した構成の下で、受信感度の補正を行う手順について、ステップ毎に説明する。   Next, the procedure for correcting the reception sensitivity under the configuration described in FIG. 1 will be described step by step.

(1)図1(a)で説明した評価基準用の試験片10を準備し、計測用探触子20aを配置する。試験片10には、欠陥による超音波の反射を模擬的に再現するための、評価基準用反射源40を設けておく。 (1) The test piece 10 for evaluation criteria described in FIG. 1A is prepared, and the measurement probe 20a is arranged. The test piece 10 is provided with an evaluation reference reflection source 40 for simulating the reflection of ultrasonic waves due to defects.

(2)計測用探触子20aと評価基準用反射源40の間に、較正用探触子30aを配置する。較正用探触子30aは、適当な固定方法で試験片10に固定する。 (2) The calibration probe 30a is arranged between the measurement probe 20a and the evaluation reference reflection source 40. The calibration probe 30a is fixed to the test piece 10 by an appropriate fixing method.

(3)計測用探触子20aから試験片10にSH波を送信し、評価基準用反射源40で反射した超音波を計測用探触子20aで受信する。この際、計測用探触子20aから送信されたSH波を較正用探触子30aでも受信しておく。 (3) The SH wave is transmitted from the measurement probe 20a to the test piece 10, and the ultrasonic wave reflected by the evaluation reference reflection source 40 is received by the measurement probe 20a. At this time, the SH wave transmitted from the measurement probe 20a is also received by the calibration probe 30a.

(4)較正用探触子30aにおける透過波のピーク値を取得して、これを後の実計測時の基準として用いる。詳細は後述する。
なお、ここでいう透過波とは、計測用探触子20aから較正用探触子30aに直接入射した超音波のことである。較正用の超音波が試験片10や被検査物を伝搬する距離は短くなるが、その方が探触子の接触状況の影響のみを確認するには適していると考えられるため、このような手法を用いている。
(4) The peak value of the transmitted wave in the calibration probe 30a is acquired and used as a reference for subsequent actual measurement. Details will be described later.
Here, the transmitted wave is an ultrasonic wave that is directly incident on the calibration probe 30a from the measurement probe 20a. Although the distance that the ultrasonic wave for calibration propagates through the test piece 10 and the inspection object becomes short, it is considered that this is suitable for confirming only the influence of the contact state of the probe. The method is used.

(5)腐食検査を行う際(実計測時)は、計測用探触子20bと較正用探触子30bの距離が試験片10における計測と同一になるように配置する。 (5) When performing a corrosion inspection (during actual measurement), the distance between the measurement probe 20b and the calibration probe 30b is set to be the same as the measurement on the test piece 10.

(6)なお、較正用探触子30bを被検査物に固定する際の取付状態は、試験片10上における較正用探触子30aの取付状態と同一にする。 (6) The mounting state when the calibration probe 30b is fixed to the object to be inspected is the same as the mounting state of the calibration probe 30a on the test piece 10.

(7)計測用探触子20bから検査範囲に向けてSH波を入射する。腐食60で反射した超音波を、計測用探触子20bで受信する。併せて、計測用探触子20bから送信されたSH波を較正用探触子30bで受信する。
(8)較正用探触子30bにおける透過波の受信レベルを測定し、ピーク値を取得する。
(7) An SH wave is incident from the measurement probe 20b toward the inspection range. The ultrasonic wave reflected by the corrosion 60 is received by the measurement probe 20b. In addition, the SH wave transmitted from the measurement probe 20b is received by the calibration probe 30b.
(8) The reception level of the transmitted wave in the calibration probe 30b is measured, and the peak value is acquired.

(9)試験片10上で測定した際の較正用探触子30aにおける受信ピーク値と、実計測時の較正用探触子30bにおける受信ピーク値とを比較する。その比較結果に基づき、計測用探触子20bにおける受信レベルを補正することができる。
補正方法は、例えば試験片10上での受信ピーク値と実計測時の受信ピーク値の比に基づく方法、差分に基づく方法、などが考えられる。例えば比に基づき補正する場合は、その比の値を計測用探触子20bにおける受信レベルに乗算して、受信レベルを補正する。
(9) The reception peak value in the calibration probe 30a when measured on the test piece 10 is compared with the reception peak value in the calibration probe 30b during actual measurement. Based on the comparison result, the reception level in the measurement probe 20b can be corrected.
As a correction method, for example, a method based on a ratio between a reception peak value on the test piece 10 and a reception peak value at the time of actual measurement, a method based on a difference, and the like can be considered. For example, when correcting based on the ratio, the value of the ratio is multiplied by the reception level in the measurement probe 20b to correct the reception level.

以上の(1)〜(9)で述べたような手順によれば、計測用探触子20bの取付状態等の測定環境が、試験片10上における計測用探触子20aの取付状態等の測定環境と異なっていても、較正用探触子30aの受信ピーク値と較正用探触子30bの受信ピーク値を比較することにより、計測用探触子20bの受信レベルを補正することができる。
したがって、計測用探触子20bにおいて、測定環境によらず正確な受信レベルが得られるので、その受信レベルに基づき、腐食60の大きさ等の状態を正確に把握することができる。
According to the procedure as described in the above (1) to (9), the measurement environment such as the mounting state of the measurement probe 20b is the same as the mounting state of the measurement probe 20a on the test piece 10. Even if it is different from the measurement environment, the reception level of the measurement probe 20b can be corrected by comparing the reception peak value of the calibration probe 30a with the reception peak value of the calibration probe 30b. .
Therefore, since the measurement probe 20b can obtain an accurate reception level regardless of the measurement environment, the state such as the size of the corrosion 60 can be accurately grasped based on the reception level.

また、試験片10上における較正用探触子30aの測定値は、値のみ取得しておけば後の感度補正処理を実行可能であるので、実計測を行う場所に試験片10を都度持っていく必要がなく、携帯する測定機器等を軽量化することができ、検査員の便宜に資する。   Further, if the measured value of the calibration probe 30a on the test piece 10 is obtained only, the sensitivity correction process can be executed later. Therefore, the test piece 10 is brought to the place where the actual measurement is performed each time. There is no need to go, and it is possible to reduce the weight of the measuring instrument to be carried, which contributes to the convenience of the inspector.

実施の形態2.
実施の形態1では、SH波を用いて検査を行う例について説明した。
本発明の実施の形態2では、ガイド波を用いて検査を行う例について説明する。
ガイド波とは、伝搬媒質の形状による影響を利用して特性を持たせた超音波の種類の総称である。ガイド波は、物理的な境界により形成された導波路に沿って伝搬する。
Embodiment 2. FIG.
In the first embodiment, the example in which the inspection is performed using the SH wave has been described.
In the second embodiment of the present invention, an example in which an inspection is performed using a guide wave will be described.
A guide wave is a general term for the types of ultrasonic waves that have characteristics using the influence of the shape of the propagation medium. The guide wave propagates along the waveguide formed by the physical boundary.

図3は、固体中を伝搬する超音波の種類を示すものである。
縦波と横波、および横波の分類については、実施の形態1で説明した通りである。
一方、ガイド波は、エネルギーの散逸が少なく遠方まで伝搬可能なことから、配管等の欠陥検査手法に用いるものとして、近年注目されている。そこで、伝搬媒質の形状に沿って伝搬するSH波(SHガイド波)を用いて欠陥検査を行うことを考える。
FIG. 3 shows the types of ultrasonic waves propagating in the solid.
The classification of the longitudinal wave, the transverse wave, and the transverse wave is as described in the first embodiment.
On the other hand, guide waves have attracted attention in recent years as being used for defect inspection methods for pipes and the like because they dissipate energy and can travel far. Therefore, consider performing defect inspection using SH waves (SH guide waves) propagating along the shape of the propagation medium.

SHガイド波は、伝搬媒質の形状に沿って、板厚全体にわたり水平方向に振動しながら、伝搬していく。
SHガイド波は、遠方まで伝搬可能な特性を有する。例えば1m程度の先にある検査範囲に対してSHガイド波を入射してその反射波を受信することで、欠陥検査を行うことが可能である。
The SH guide wave propagates along the shape of the propagation medium while vibrating in the horizontal direction over the entire plate thickness.
The SH guide wave has a characteristic capable of propagating far. For example, it is possible to inspect a defect by making an SH guide wave incident on an inspection range ahead of about 1 m and receiving the reflected wave.

SH波を発生させる際には、実施の形態1で説明したように、測定環境に起因する受信感度の変化が生ずる。そこで、実施の形態1と同様の受信感度補正処理を行うことにより、正確な欠陥検査を行うことができる。   When the SH wave is generated, as described in the first embodiment, a change in reception sensitivity due to the measurement environment occurs. Therefore, an accurate defect inspection can be performed by performing a reception sensitivity correction process similar to that of the first embodiment.

なお、パイプのような円筒状の形状を持つ伝搬媒質に関しても、探触子を接触させた部分を局部的に板とみなし、板材にSHガイド波を入射する際と同様の手法で、SHガイド波を伝搬させることができる。
例えば、特許文献2に記載の技術のように、T(0,1)モード以外のモードが発生しない周波数を選択し、板材にSH0モードのガイド波を伝搬させる際と同じ要領で、パイプにSHガイド波を伝搬させる。
この場合も、SH波を発生させる際に、実施の形態1で説明したような測定環境に起因する受信感度の変化が生ずるので、同様に受信感度補正処理を行うことにより、正確な欠陥検査を行うことができる。
For the propagation medium having a cylindrical shape such as a pipe, the portion where the probe is in contact is regarded as a plate locally, and the SH guide is used in the same manner as when the SH guide wave is incident on the plate material. Waves can be propagated.
For example, as in the technique described in Patent Document 2, a frequency that does not generate a mode other than the T (0,1) mode is selected, and the SH0 mode guide wave is propagated to the plate in the same manner as when the SH0 mode guide wave is propagated to the plate. A guide wave is propagated.
Also in this case, when the SH wave is generated, the change in the reception sensitivity due to the measurement environment as described in the first embodiment occurs, so that the accurate defect inspection is performed by performing the reception sensitivity correction process in the same manner. It can be carried out.

以上の実施の形態1〜2では、腐食60を超音波で検査する際の感度補正処理について説明したが、検査対象の欠陥は、腐食に限られるものではなく、任意の欠陥について適用が可能である。   In the above first and second embodiments, the sensitivity correction process when inspecting the corrosion 60 with ultrasonic waves has been described. However, the defect to be inspected is not limited to corrosion, and can be applied to any defect. is there.

また、SH波を発生させる際に、探触子と被検査物を擦り合わせるため、測定環境に起因する受信感度の変化が生ずることを説明したが、本発明の適用対象は、SH波に限られるものではなく、同様の原因により測定環境に起因する受信感度の変化が生じ得る他の測定形態についても適用可能である。   In addition, it has been described that when the SH wave is generated, the probe and the inspection object are rubbed together to cause a change in the reception sensitivity due to the measurement environment. However, the application target of the present invention is limited to the SH wave. However, the present invention can be applied to other measurement forms in which a change in reception sensitivity due to the measurement environment can occur due to the same cause.

実施の形態1に係る超音波検査の感度補正方法を実施する様子を説明するものである。The manner in which the sensitivity correction method for ultrasonic inspection according to the first embodiment is performed will be described. 横波の種類について説明するものである。This is a description of the types of shear waves. 固体中を伝搬する超音波の種類を示すものである。It shows the type of ultrasonic wave propagating in the solid.

符号の説明Explanation of symbols

10 試験片、20a 計測用探触子、30a 較正用探触子、40 評価基準用反射源、20b 計測用探触子、30b 較正用探触子、50 被検査物、60 腐食。   10 Test piece, 20a Measurement probe, 30a Calibration probe, 40 Reflection source for evaluation standard, 20b Measurement probe, 30b Calibration probe, 50 Inspected object, 60 Corrosion.

Claims (3)

超音波を用いて被検査物の欠陥を検査する際の受信感度を補正する方法であって、
評価基準を定めることを目的とした評価基準用試験片の計測において、
基準反射源と探触子の間に較正用探触子を配置し、
基準反射源の計測と併せて較正用探触子での受信波形も計測しておき、
被検査物の欠陥を検査する際には、
被検査物の検査部位と探触子の間に較正用探触子を配置し、
かつ、
探触子と較正用探触子の位置が、
前記評価基準用試験片上における探触子と較正用探触子の位置が一致するように配置位置を調整するとともに、
前記評価基準用試験片上における取付状態と同じ取付状態で較正用探触子を取り付け、
前記評価基準用試験片を用いて測定した較正用探触子の受信波形と、
被検査物の欠陥を検査する際に測定した較正用探触子の受信波形とを比較し、
その比較結果により探触子の受信感度を補正する
ことを特徴とする超音波検査の感度補正方法。
A method of correcting reception sensitivity when inspecting a defect of an inspection object using ultrasonic waves,
In the measurement of test specimens for evaluation criteria for the purpose of setting evaluation criteria,
Place a calibration probe between the reference source and the probe,
In addition to measuring the reference reflection source, measure the received waveform with the calibration probe,
When inspecting the inspection object for defects,
Place a calibration probe between the inspection part of the inspection object and the probe,
And,
The position of the probe and the calibration probe
While adjusting the arrangement position so that the position of the probe on the evaluation reference specimen and the position of the calibration probe match,
Attach the calibration probe in the same mounting state as the mounting state on the test piece for evaluation criteria,
The received waveform of the calibration probe measured using the test piece for evaluation criteria,
Compare the received waveform of the calibration probe measured when inspecting the inspection object for defects,
A sensitivity correction method for ultrasonic inspection, wherein the sensitivity of the probe is corrected based on the comparison result.
前記評価基準用試験片を用いて測定した較正用探触子の受信波形のピーク値と、
被検査物の欠陥を検査する際に測定した較正用探触子の受信波形のピーク値との比に基づき、
被検査物の欠陥を検査する際の探触子の受信感度を補正する
ことを特徴とする請求項1に記載の超音波検査の感度補正方法。
The peak value of the received waveform of the calibration probe measured using the test piece for evaluation criteria,
Based on the ratio to the peak value of the received waveform of the calibration probe measured when inspecting the defect of the inspection object,
The sensitivity correction method for ultrasonic inspection according to claim 1, wherein the reception sensitivity of the probe when inspecting a defect of the inspection object is corrected.
前記探触子が用いる超音波は、
伝搬方向に対して水平方向に振動する横波である
ことを特徴とする請求項1または請求項2に記載の超音波検査の感度補正方法。
The ultrasound used by the probe is
The ultrasonic wave sensitivity correction method according to claim 1, wherein the method is a transverse wave that vibrates in a horizontal direction with respect to a propagation direction.
JP2007140038A 2007-05-28 2007-05-28 Sensitivity correction method for ultrasonic inspection Active JP4784556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007140038A JP4784556B2 (en) 2007-05-28 2007-05-28 Sensitivity correction method for ultrasonic inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007140038A JP4784556B2 (en) 2007-05-28 2007-05-28 Sensitivity correction method for ultrasonic inspection

Publications (2)

Publication Number Publication Date
JP2008292385A JP2008292385A (en) 2008-12-04
JP4784556B2 true JP4784556B2 (en) 2011-10-05

Family

ID=40167250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007140038A Active JP4784556B2 (en) 2007-05-28 2007-05-28 Sensitivity correction method for ultrasonic inspection

Country Status (1)

Country Link
JP (1) JP4784556B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4526046B1 (en) * 2010-01-21 2010-08-18 株式会社Ihi検査計測 Inspection method using guide waves
JP4475477B1 (en) 2010-01-22 2010-06-09 株式会社Ihi検査計測 Inspection method using guide waves
CN102590356A (en) * 2012-01-16 2012-07-18 北京理工大学 Device for measuring sensitivity of acoustic emission sensor
JP2016027321A (en) * 2014-07-03 2016-02-18 Jfeエンジニアリング株式会社 Ultrasonic inspection method and probe installation fixture

Also Published As

Publication number Publication date
JP2008292385A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
US7900516B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
EP2029966B1 (en) Acoustic method and system of measuring material loss from a solid structure
JPH0352908B2 (en)
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
JP2017078699A (en) Residual stress evaluation method
JP4784556B2 (en) Sensitivity correction method for ultrasonic inspection
JP5112942B2 (en) Ultrasonic flaw detection method and apparatus
CN109724727B (en) Method and device for measuring residual stress of curved surface blade of gas turbine
JP2010043989A (en) Defect height estimation method by ultrasonic flaw detection
JP4673686B2 (en) Surface inspection method and surface inspection apparatus
JP2009236620A (en) Ultrasonic flaw detection method
Moss et al. Investigation of ultrasonic transducers using optical techniques
KR101191364B1 (en) System and apparatus for measuring non-linearity of ultrasonic wave
JP2018194358A (en) Ultrasonic inspection method and ultrasonic inspection device
JP5061891B2 (en) Crack depth measurement method
JP4761147B2 (en) Ultrasonic flaw detection method and apparatus
US4253337A (en) Ultrasonic nondestructive testing method
JP2006138672A (en) Method of and device for ultrasonic inspection
KR101452442B1 (en) Elasticity Test method
Jin et al. Corrected Mode-Converted Wave Method for Detecting Defects in TOFD Dead Zone
Vien et al. Scattering of the fundamental symmetrical lamb wave mode by a small edge crack in an isotropic plate
JP6529853B2 (en) Residual stress evaluation method
Imano Detection of Unbonded Defect under Surface of Material Using Phase Information of Rayleigh and A0 Mode Lamb Waves.
Cawley Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects
JP2006038608A (en) Ultrasonic inspection device and method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090518

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Ref document number: 4784556

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350