JPS60207363A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60207363A
JPS60207363A JP59063567A JP6356784A JPS60207363A JP S60207363 A JPS60207363 A JP S60207363A JP 59063567 A JP59063567 A JP 59063567A JP 6356784 A JP6356784 A JP 6356784A JP S60207363 A JPS60207363 A JP S60207363A
Authority
JP
Japan
Prior art keywords
substrate
dielectric
semiconductor
manufacturing process
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59063567A
Other languages
Japanese (ja)
Other versions
JPH0147019B2 (en
Inventor
Toshiro Usami
俊郎 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59063567A priority Critical patent/JPS60207363A/en
Publication of JPS60207363A publication Critical patent/JPS60207363A/en
Priority to US07/206,903 priority patent/US4879585A/en
Publication of JPH0147019B2 publication Critical patent/JPH0147019B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76264SOI together with lateral isolation, e.g. using local oxidation of silicon, or dielectric or polycristalline material refilled trench or air gap isolation regions, e.g. completely isolated semiconductor islands
    • H01L21/76272Vertical isolation by lateral overgrowth techniques, i.e. ELO techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To reduce warpage generated during an element manufacturing process by minimizing the occupying rate, in which the area of a semiconductor layer electrically isolated by a dielectric from semiconductor substrate occupies in total chip area, in a semiconductor device containing dielectric isolating structure. CONSTITUTION:One parts of the surface of a P type silicon substrate 1 are oxidized selectively to form SiO2 films 2, 2 as dielectric isolating regions, and one parts of the SiO2 films 2, 2 are removed selectively through etching to shape insular single crystl silicon 5, 5 isolated by dielectrics. Active elements containing CMOSs are formed in single crystal silicon isolated by dielectrics by the SiO2 films 2, 2 and an active element such as a MOS transistor on other surface of the substrate 1 respectively according to a normal manufacturing process. Consequently, when the areas of single crystal silicon isolated nt dielectrics occupy 30% or less of total chip area, warpage generated during the manufacturing process is reduced, and yield is improved remarkably.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は誘電体分離構造を含む半導体装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a semiconductor device including a dielectric isolation structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般的に半導体集積回路においては、1つのチップ内に
多数の各種集積回路素子(トランジスタ、ダイオード、
抵抗、容量等)が形成され、これら各素子間は互いに分
離される。この素子分離の一方式として誘電体分離方式
が行なわれている。この誘電体分離方式は能動素子が形
成される半導体層の周囲を完全に誘電体で分離してしま
うものである。
Generally, in a semiconductor integrated circuit, a single chip includes many various integrated circuit elements (transistors, diodes, etc.).
(resistance, capacitance, etc.) are formed, and these elements are isolated from each other. A dielectric isolation method is used as one method of element isolation. This dielectric isolation method completely isolates the periphery of a semiconductor layer in which active elements are formed using a dielectric.

この方式では0MO8構造でのラッチアップが抑制され
、またα線によるソフトエラーの発生を減少できること
から、素子の誤動作率を非常に低くできるという利点を
有する。更に、絶縁物の存在により対地容量が小さくな
り、素子の動作速度が速くなる傾向がある。
This method has the advantage that the latch-up in the 0MO8 structure is suppressed and the occurrence of soft errors due to α rays can be reduced, so that the malfunction rate of the element can be extremely reduced. Furthermore, the presence of the insulator tends to reduce the ground capacitance and increase the operating speed of the device.

この誘電体分離を達成する方法としては、(I>シリコ
ン基板上に非晶質絶縁層を形成し、更にその上に非晶質
シリコンを堆積した後、溶融又は同相成長により単結晶
シリコンを形成する方法(いわゆる5ol)。 ゛ (II)絶縁基板(例えばサファイア基板)上に気相成
長により直接単結晶シリコン層を形成する方法(いわゆ
る5O8)。
The method for achieving this dielectric separation is as follows: (I> Form an amorphous insulating layer on a silicon substrate, deposit amorphous silicon on top of it, and then form single crystal silicon by melting or in-phase growth. (so-called 5ol). ゛(II) A method of directly forming a single crystal silicon layer by vapor phase growth on an insulating substrate (for example, a sapphire substrate) (so-called 5O8).

(I[[)単結晶シリコン基板の所定部分の周囲に絶縁
物を形成し、所定部分にのみ単結晶シリコンを形成する
方法。
(I [[) A method in which an insulator is formed around a predetermined portion of a single crystal silicon substrate, and single crystal silicon is formed only in the predetermined portion.

などが知られている。etc. are known.

上記(1)の方法としては既に多数の報告があり(例え
ば応用物理vo1.53、ρp、27〜32)、例えば
絶縁物を埋込む方法、酸素イオンを高濃度にイオン注入
する方法、陽極化成したポーラスシリコンを酸化する方
法などが知られている。また、試験的に集積回路を形成
している例もある。
There have already been many reports regarding the method (1) above (for example, Applied Physics vol. 1.53, ρp, 27-32), such as burying an insulator, implanting oxygen ions in high concentration, and anodizing. A method of oxidizing porous silicon is known. There are also examples of experimentally forming integrated circuits.

ところで、近年経済的な見地などから素子の微細化、大
規模集積化が進むに伴い、パターン露光時のウェハ平坦
度に対する要求はまずまず厳しくなっている。理想レン
ズを用いた露光装置の場合を例にとると、波長5000
IIlの光を照射し、線幅1.5〜1unのパターンを
形成するためには焦平面に対するウェハ表面のズレは1
.4〜0.7p以内でなければならないとされている(
日経エレクトロニクス、増刊号゛マイクロデバイセズ″
ρ、91゜(1983))。
Incidentally, in recent years, as the miniaturization and large-scale integration of elements have progressed from an economic standpoint, requirements for wafer flatness during pattern exposure have become considerably stricter. For example, in the case of an exposure device using an ideal lens, the wavelength is 5000.
In order to irradiate IIl light and form a pattern with a line width of 1.5 to 1 um, the wafer surface must be misaligned with the focal plane by 1
.. It is said that it must be within 4-0.7p (
Nikkei Electronics, special issue “Micro Devices”
ρ, 91° (1983)).

ところが、誘電体分離構造においては、素子構造形成以
前には反りが2−以下であるものをスクリーニングして
使用しても、実際の素子製造工程においては1〇−以上
反るものが多く、微細なパターンを形成するのに大きな
障害となっている。
However, in dielectric isolation structures, even if we screen and use those with warpage of 2 or less before forming the element structure, many of them warp more than 10 or more in the actual device manufacturing process. This is a major obstacle to forming a pattern.

これは、通常集積回路の製造には900〜1000℃に
も達する高温工程が用いられているが、単結晶シリコン
と分離に用いられている絶縁物との熱膨張係数を素子製
造工程の全ての温度で完全に一致させることが困難であ
ることによる。特に、従来の誘電体分離方式では誘電体
により分離され、能動素子が形成される半導体層の面積
が全チップ面積の大部分を占めているため、上記熱膨張
率の不一致は大きな影響を及ぼす。したがって、高温工
程のくり返しにより誘電体分離構造のウェハは製造工程
中に大きく反ってしまい、歩留りが低下する原因となっ
ていた。
This is because high-temperature processes reaching temperatures of 900 to 1000 degrees Celsius are normally used to manufacture integrated circuits, but the coefficient of thermal expansion of the single crystal silicon and the insulator used for separation is This is because it is difficult to perfectly match the temperature. In particular, in the conventional dielectric isolation method, the area of the semiconductor layer separated by the dielectric and in which the active elements are formed occupies most of the total chip area, so the mismatch in the thermal expansion coefficients has a large effect. Therefore, due to repeated high-temperature processes, wafers with a dielectric isolation structure are significantly warped during the manufacturing process, causing a decrease in yield.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであり
、誘電体分離構造を有するが、素子製造工程中に生じる
反りが少なく歩留りが高いうえに、高速・高信頼性の半
導体装置を提供しようとするものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and aims to provide a semiconductor device that has a dielectric isolation structure, has less warpage during the device manufacturing process, has a high yield, and is high-speed and highly reliable. That is.

〔発明の概要〕[Summary of the invention]

本発明の半導体装置は、半導体基板表面で該基板と誘電
体により電気的に絶縁された半導体層内に形成された能
動素子と、半導体基板表面に該基板と電気的に導通して
形成された能動素子とを有する半導体装置において、前
記半導体基板と誘電体により電気的に絶縁された半導体
層の面積が全チップ面積の30%以下であることを特徴
とするものである。
The semiconductor device of the present invention includes an active element formed on the surface of a semiconductor substrate in a semiconductor layer electrically insulated from the substrate by a dielectric, and an active element formed on the surface of the semiconductor substrate in electrical continuity with the substrate. The semiconductor device having an active element is characterized in that the area of the semiconductor layer electrically insulated from the semiconductor substrate by a dielectric is 30% or less of the total chip area.

このような半導体装置によれば、半導体基板と5− 誘電体により電気的に絶縁された半導体層の面積が全チ
ップ面積中に占める割合いが小さいので、半導体層と誘
電体との熱膨張率の差がそれほど影響することがなく、
製造工程中の反りが減少して歩留りが従来よりも大幅に
向上する。また、半導体基板と誘電体により電気的に絶
縁された半導体層に例えば0MO8構造を有する能動素
子を形成すれば、ラッチアップを防止することができ、
信頼性を向上することができる。また、論理演算部と、
その他の記憶部等を有するいわゆるワンチップマイクロ
コンピュータに本発明の誘電体分離構造を適用し、半導
体基板と誘電体により電気的に絶縁された半導体層に論
理演算部を構成する能動素子を形成すれば、α線による
ソフトエラーに起因する誤動作率を大幅に減少すること
ができる。
According to such a semiconductor device, since the area of the semiconductor layer electrically insulated from the semiconductor substrate by the dielectric occupies a small proportion of the total chip area, the coefficient of thermal expansion between the semiconductor layer and the dielectric is small. The difference does not have much influence,
Warpage during the manufacturing process is reduced and yields are significantly improved compared to conventional methods. Furthermore, if an active element having, for example, an 0MO8 structure is formed in a semiconductor layer that is electrically insulated from the semiconductor substrate by a dielectric, latch-up can be prevented.
Reliability can be improved. In addition, a logical operation section,
The dielectric isolation structure of the present invention can be applied to a so-called one-chip microcomputer having other storage parts, etc., and active elements constituting a logic operation part can be formed in a semiconductor layer electrically insulated from a semiconductor substrate by a dielectric. For example, the malfunction rate caused by soft errors caused by alpha rays can be significantly reduced.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図(a)〜(d)に示す製
造方法を併記して説明する。
Examples of the present invention will be described below along with the manufacturing method shown in FIGS. 1(a) to (d).

まず、直径3インチのP型シリコン基板1の表面の一部
を選択的に酸化して誘電体分離領域とな6− る5i02膜2.2を形成した。次に、SiO2膜2.
2の一部を選択的にエツチング除去して満3.3を形成
した(第1図(a)図示)。次いで、基板1表面に図示
しないマスク材を形成した後、全面に多結晶シリコン膜
を堆積した。つづいて、全面エッチバックを行ない、前
記溝3.3内にのみ多結晶シリコン4.4を埋設した後
、前記マスク材を除去した(同図(b)図示)。次いで
、全面に図示しない酸化膜及び窒化膜を順次堆積した後
、レーザーを用いて前記多結晶シリコン4.4が溶融し
かかるまでアニールした。このレーザーアニールの際、
s + 02膜2.2が形成されていないバルクの基板
1表面では変化が起こらない。
First, a portion of the surface of a P-type silicon substrate 1 having a diameter of 3 inches was selectively oxidized to form a 5i02 film 2.2 that would serve as a dielectric isolation region. Next, SiO2 film 2.
A portion of 2 was selectively etched away to form 3.3 (as shown in FIG. 1(a)). Next, a mask material (not shown) was formed on the surface of the substrate 1, and then a polycrystalline silicon film was deposited on the entire surface. Subsequently, the entire surface was etched back, and after burying polycrystalline silicon 4.4 only in the groove 3.3, the mask material was removed (as shown in FIG. 3B). Next, an oxide film and a nitride film (not shown) were sequentially deposited on the entire surface, and then annealing was performed using a laser until the polycrystalline silicon 4.4 began to melt. During this laser annealing,
No change occurs on the surface of the bulk substrate 1 on which the s + 02 film 2.2 is not formed.

これは多結晶シリコン4.4を囲んでいるs + 02
膜2.2は熱伝導率が低いため、多結晶シリコン4.4
の温度が上昇するが、シリコン基板1は熱伝導率が高い
ため、温度がそれほど上昇しないことによると推定され
る。つづいて、窒化膜及び酸化膜を除去すると、基板1
表面の一部に誘電体分離がなされた島状の単結晶シリコ
ン5.5が形成される(同図(C)図示)。なお、以上
の工程で形成したチップの大きさは8IIlll+角、
島状の単結晶シリコン5.5の大きさは15−角とした
。また、島状の単結晶シリコン5の面積Sのチップ面積
S中で占める割合いが、それぞれ50.40.30及び
20%のウェハを形成した。
This is s + 02 surrounding polycrystalline silicon 4.4
Film 2.2 has low thermal conductivity, so polycrystalline silicon 4.4
Although the temperature of the silicon substrate 1 increases, it is presumed that because the silicon substrate 1 has high thermal conductivity, the temperature does not increase much. Next, after removing the nitride film and the oxide film, the substrate 1
Island-shaped single crystal silicon 5.5 with dielectric separation is formed on a part of the surface (as shown in FIG. 2C). In addition, the size of the chip formed in the above process is 8IIllll + square,
The size of the island-shaped single crystal silicon 5.5 was set to 15-square. Further, wafers were formed in which the ratio of the area S of the island-shaped single crystal silicon 5 to the chip area S was 50%, 40%, and 20%, respectively.

次いで、上記各ウェハのうち真空チャック使用時におい
て反りが5−以下のウェハをそれぞれ25枚選択し、以
下に示すような通常の製造工程に従い、n型素子領域6
の形成、n型素子領域7の形成、ゲート酸化PIA8の
形成、不純物ドープ多結晶シリコン堆積後のパターニン
グによるゲート電極9・・・の形成、ゲート電極9・・
・及びレジスi・をマスクとするイオン注入によるn+
型ソース、ドレイン領域10.11.12.13及びバ
イアス用のn+拡散層14の形成、グー1−電極9・・
・及びレジストをマスクとするイオン注入によるp+型
ソース、ドレイン領域15.16及びバイアス用のp+
拡散層17の形成、層間絶縁膜18堆積後のコンタクト
ホール形成、配線金属蒸着後のバターニングによる配線
19・・・の形成を行なった。以上の工程により、5i
02112.2によって誘電体分離された単結晶シリコ
ン中に0MO8を含む能動素子を、その他の基板1表面
にM OS l−ランジスタなどの能動素子をそれぞれ
形成した(同図(d)図示)。なお、本実施例における
典型的なパターン幅は3岬とした。
Next, 25 wafers with a warpage of 5 or less when using a vacuum chuck are selected from each of the above wafers, and the n-type element region 6 is formed according to the normal manufacturing process as shown below.
Formation of n-type element region 7, formation of gate oxidation PIA 8, formation of gate electrode 9 by patterning after depositing impurity-doped polycrystalline silicon, formation of gate electrode 9...
・n+ by ion implantation using resist i・ as a mask
Formation of type source and drain regions 10.11.12.13 and n+ diffusion layer 14 for bias, goo 1-electrode 9...
・And p+ type source and drain regions 15 and 16 and p+ for bias by ion implantation using resist as a mask
A diffusion layer 17 was formed, a contact hole was formed after the interlayer insulating film 18 was deposited, and a wiring 19 was formed by patterning after the wiring metal was deposited. Through the above steps, 5i
An active element including 0MO8 in single crystal silicon dielectrically isolated by 02112.2, and an active element such as a MOS l-transistor were formed on the surface of the other substrate 1 (as shown in FIG. 3(d)). Note that the typical pattern width in this example was 3 capes.

この際、上記集積回路製造工程の写真蝕刻工程(PEP
工程)において、反りが10IIJn以上あるものはパ
ターン合わせが困難であるため、工程から順次除外して
いった。この結果、各条件25枚のウェハのうち、最終
工程まで残ったウェハの枚数Nを下記表に示す。
At this time, the photo-etching process (PEP) of the above-mentioned integrated circuit manufacturing process is used.
In the process), those with warpage of 10IIJn or more were difficult to pattern match, so they were successively excluded from the process. As a result, the number N of wafers remaining until the final process among the 25 wafers for each condition is shown in the table below.

上記表から明らかなように誘電体分離されている単結晶
シリコンの面積が全チップ面積の30%以下である場合
には製造工程中に生じる反りが少9− なく、次のPEP工程を行なうことのできるウェハが多
くなり、歩留りが大幅に向上した。また、誘電体分離を
行なっていない基板1の表面にも素子を形成して共存さ
せることにより、集積回路の集積度を減少させることな
く集積回路を製造することができた。また、基板1と誘
電体分離された単結晶シリコン中に形成された0MO8
については、ラッチアップ現象は全く観察されなかった
As is clear from the above table, if the area of single crystal silicon that is dielectrically isolated is less than 30% of the total chip area, there will be less warping during the manufacturing process, and the next PEP process can be performed. The number of wafers that can be processed has increased significantly, and the yield has significantly improved. Moreover, by forming elements on the surface of the substrate 1 which is not dielectrically separated and making them coexist, it was possible to manufacture an integrated circuit without reducing the degree of integration of the integrated circuit. In addition, 0MO8 formed in single crystal silicon dielectrically separated from the substrate 1
No latch-up phenomenon was observed.

更に、第2図に示す如く、1つのチップ21内にCPU
22、メモリ・コントローラ23、メモリ24、外部の
周辺装置31と接続される入・出力ポート(IOP)2
5及びこれらにクロック信号を送るクロック26、・・
・が形成されるワンチップマイクロコンピュータに本発
明を適用し、CPU21の部分を誘電体(Si02)2
7で分離し、他の部分はシリコン基板表面に形成した。
Furthermore, as shown in FIG. 2, one chip 21 includes a CPU.
22, memory controller 23, memory 24, input/output port (IOP) 2 connected to external peripheral device 31
5 and a clock 26 that sends clock signals to these.
The present invention is applied to a one-chip microcomputer in which .
7, and the other parts were formed on the silicon substrate surface.

この集積回路を放射線源下で動作させたところ、CPU
21におけるソフトエラーに起因する誤動作率は、CP
LIをシリコン表面に形成した場合と比較して5%以下
に低減した。マイクロコンピュータの場10− 合、CPUの誤動作率がシステム全体の誤動作率と大き
な相関があることはいうまでもない。
When this integrated circuit was operated under a radiation source, the CPU
The malfunction rate due to soft errors in 21 is CP
This was reduced to 5% or less compared to the case where LI was formed on the silicon surface. In the case of microcomputers, it goes without saying that the malfunction rate of the CPU has a large correlation with the malfunction rate of the entire system.

なお、上記実施例では8102膜に多結晶シリコンを埋
込んだ後、レーザアニニルにより単結晶シリコンを形成
する誘電体分離方式を用いたが、これに限らずシリコン
基板に酸素イオンを高濃度にイオン注入する方法、シリ
コン基板の一部を陽極化成してポーラスシリコンとし、
このポーラスシリコンを酸化する方法などによって得ら
れる誘電体分離構造でも上記実施例と同様の効果を得る
ことができる。
Note that in the above example, a dielectric separation method was used in which polycrystalline silicon was embedded in the 8102 film and then single crystal silicon was formed using laser aninyl, but the method is not limited to this. The method is to anodize a part of the silicon substrate to make porous silicon,
A dielectric isolation structure obtained by a method such as oxidizing porous silicon can also provide the same effect as in the above embodiment.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、歩留りが高く、高速
・高信頼性の誘電体分離構造を有する半導体装置を提供
できるものである。
As described in detail above, according to the present invention, it is possible to provide a semiconductor device having a high yield, high speed, and high reliability dielectric isolation structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の実施例における誘電体
分離構造の半導体装置を得るための観造工程を示す断面
図、第2図は本発明の他の実施例における誘電体分離構
造を有するマイクロコンピュータの構成図である。 1・・・p型シリコン基板、2・・・SiO2膜、3・
・・溝、4・・・多結晶シリコン、5・・・単結晶シリ
コン、6・・・n型素子領域、7・・・n型素子領域、
8・・・ゲート酸化膜、9・・・ゲート電極、10.1
1.12.13・・・n++ソース、ドレイン領域、1
4・・・n+型型数散層15.16・・・p++ソース
、ドレイン領域、17・・・p+型型数散層18・・・
層間絶縁膜、19・・・配線、21・・・チップ、22
・・・CPU、23・・・メモリコントローラ、24・
・・メモリ、25・・・入・出カポ−I〜、26・・・
クロック、27・・・誘電体(Si02)、31・・・
周辺装置。 出願人代理人 弁理士 鈴江武彦
1(a) to (d) are cross-sectional views showing the observation process for obtaining a semiconductor device with a dielectric isolation structure in an embodiment of the present invention, and FIG. 2 is a sectional view showing a dielectric structure in another embodiment of the present invention. FIG. 1 is a configuration diagram of a microcomputer having a separate structure. 1...p-type silicon substrate, 2...SiO2 film, 3...
... Groove, 4... Polycrystalline silicon, 5... Single crystal silicon, 6... N-type element region, 7... N-type element region,
8... Gate oxide film, 9... Gate electrode, 10.1
1.12.13...n++ source, drain region, 1
4...n+ type scattered layer 15.16...p++ source, drain region, 17...p+ type scattered layer 18...
Interlayer insulating film, 19... Wiring, 21... Chip, 22
...CPU, 23...Memory controller, 24.
...Memory, 25...Input/output capo-I~, 26...
Clock, 27... Dielectric (Si02), 31...
Peripheral equipment. Applicant's agent Patent attorney Takehiko Suzue

Claims (3)

【特許請求の範囲】[Claims] (1) 半導体基板表面で該基板と誘電体により電気的
に絶縁された半導体層内に形成された能動素子と、半導
体基板表面に該基板と電気的に導通して形成された能動
素子とを有する半導体装置において、前記半導体基板と
誘電体により電気的に絶縁された半導体層の面積が全チ
ップ面積の30%以下であることを特徴とする半導体装
置。
(1) An active element formed on the surface of a semiconductor substrate in a semiconductor layer electrically insulated from the substrate by a dielectric, and an active element formed on the surface of the semiconductor substrate in electrical continuity with the substrate. 1. A semiconductor device comprising: a semiconductor layer electrically insulated from the semiconductor substrate by a dielectric; an area of the semiconductor layer being 30% or less of the total chip area;
(2) 半導体基板と誘電体により電気的に絶縁された
半導体層内に形成される能動素子が0MO8構造を有す
る特許請求の範囲第1項記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the active element formed in the semiconductor layer electrically insulated from the semiconductor substrate by a dielectric has an 0MO8 structure.
(3)半導体基板と誘電体により電気的に絶縁された半
導体層内に形成される能動素子が論理演算部を構成する
素子であり、基板と電気的に導通した素子が記憶部を構
成する素子を含む特許請求の範囲第1項記載の半導体装
置。
(3) An active element formed in a semiconductor layer electrically insulated from a semiconductor substrate by a dielectric material is an element that constitutes a logical operation section, and an element that is electrically connected to the substrate is an element that constitutes a storage section. A semiconductor device according to claim 1.
JP59063567A 1984-03-31 1984-03-31 Semiconductor device Granted JPS60207363A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59063567A JPS60207363A (en) 1984-03-31 1984-03-31 Semiconductor device
US07/206,903 US4879585A (en) 1984-03-31 1988-06-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59063567A JPS60207363A (en) 1984-03-31 1984-03-31 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS60207363A true JPS60207363A (en) 1985-10-18
JPH0147019B2 JPH0147019B2 (en) 1989-10-12

Family

ID=13232945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59063567A Granted JPS60207363A (en) 1984-03-31 1984-03-31 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60207363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155655A (en) * 1987-12-14 1989-06-19 Hitachi Ltd Semiconductor integrated circuit
JPH0338857A (en) * 1989-06-30 1991-02-19 Honeywell Inc Method of manufacturing semiconductor device and semiconductor isolating structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155655A (en) * 1987-12-14 1989-06-19 Hitachi Ltd Semiconductor integrated circuit
JPH0338857A (en) * 1989-06-30 1991-02-19 Honeywell Inc Method of manufacturing semiconductor device and semiconductor isolating structure

Also Published As

Publication number Publication date
JPH0147019B2 (en) 1989-10-12

Similar Documents

Publication Publication Date Title
US3849216A (en) Method of manufacturing a semiconductor device and semiconductor device manufactured by using the method
US4110125A (en) Method for fabricating semiconductor devices
KR910009783B1 (en) Fabrication of semiconductor device
JPH02256267A (en) Film soi c-mos element and its manufacture
JPS6038866A (en) Method of producing metal-oxidized film-semiconductor integrated circuit
EP0031367A1 (en) Method for forming voltage-invariant capacitors for mos type integrated circuit device.
US4081896A (en) Method of making a substrate contact for an integrated circuit
EP0076147B1 (en) Method of producing a semiconductor device comprising an isolation region
JPS60207363A (en) Semiconductor device
US4512076A (en) Semiconductor device fabrication process
JPH0210730A (en) Forming method and construction of field isolation for field effect transistor on integrated circuit chip
US3776786A (en) Method of producing high speed transistors and resistors simultaneously
JPH0465528B2 (en)
US3910804A (en) Manufacturing method for self-aligned mos transistor
JPS5923476B2 (en) Manufacturing method of semiconductor device
US3783048A (en) High frequency transistor fabrication
JPS60117658A (en) Manufacture of mos dynamic memory
JPS6115372A (en) Semiconductor device and manufacture thereof
JPS6047437A (en) Semiconductor device and manufacture thereof
JPH0744231B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH05190658A (en) Manufacture of dielectric-isolation type wafer
JPH06196553A (en) Semiconductor device
JPH0258367A (en) Semiconductor device
JPS628029B2 (en)
JPS61129824A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term