JPS6020692B2 - Semiconductor pressure detection device - Google Patents

Semiconductor pressure detection device

Info

Publication number
JPS6020692B2
JPS6020692B2 JP54053843A JP5384379A JPS6020692B2 JP S6020692 B2 JPS6020692 B2 JP S6020692B2 JP 54053843 A JP54053843 A JP 54053843A JP 5384379 A JP5384379 A JP 5384379A JP S6020692 B2 JPS6020692 B2 JP S6020692B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
substrate
bridge
sensitive resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54053843A
Other languages
Japanese (ja)
Other versions
JPS55146019A (en
Inventor
俊次 白水
龍三 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP54053843A priority Critical patent/JPS6020692B2/en
Priority to US06/087,938 priority patent/US4300395A/en
Priority to DE2945185A priority patent/DE2945185C2/en
Publication of JPS55146019A publication Critical patent/JPS55146019A/en
Publication of JPS6020692B2 publication Critical patent/JPS6020692B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • G01L9/0052Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements
    • G01L9/0054Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance of piezoresistive elements integral with a semiconducting diaphragm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/06Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices
    • G01L9/065Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of piezo-resistive devices with temperature compensating means

Description

【発明の詳細な説明】 この発明は半導体単結晶基板に形成した拡散層のピェゾ
抵抗効果を利用する半導体圧力検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure detection device that utilizes the piezoresistance effect of a diffusion layer formed in a semiconductor single crystal substrate.

来、この種の圧力検出拡散層として第1図の等価回路で
表わされるものが知られている。
Heretofore, as this type of pressure detection diffusion layer, one represented by the equivalent circuit shown in FIG. 1 has been known.

図において、R,,R2が半導体単結晶基板に形成され
た拡散層からなる感圧抵抗素子である。これらの抵抗素
子R,,R2は圧力により互いに異なる方向に抵抗変化
を示すものとし、これと圧力に不感な固定抵抗R3,R
4を粗合せてハーフブリッジ1を構成している。L,r
2は零点調整用抵抗である。このハーフブリッジ1には
基準電源VEから駆動電圧補償用増幅器2を介して駆動
電圧VBが印加されるようになっている。この際、外部
温度の変動に対して圧力感度が変化するのを防ぐため、
ブリッジ駆動電圧を外部温度に対応させて変化させる必
要がある。このため、サーミスタ等の感温抵抗素子RT
を用い、これによって増幅器2の利得制御を行なうよう
にしている。例えば、25ooの圧力感度を1とした相
対圧力感度△VP/△VP(2500)の温度特性が第
2図の実線のように得られるとき、これを補償するため
には同図の破線のような駆動電圧VBをブリッジに印加
しなければならない。
In the figure, R, , R2 are pressure sensitive resistance elements made of diffusion layers formed on a semiconductor single crystal substrate. These resistance elements R, R2 exhibit resistance changes in different directions due to pressure, and fixed resistances R3 and R2 that are insensitive to pressure are used.
The half bridge 1 is constructed by roughly putting together the 4 parts. L,r
2 is a zero point adjustment resistor. A drive voltage VB is applied to this half bridge 1 from a reference power supply VE via a drive voltage compensation amplifier 2. At this time, in order to prevent pressure sensitivity from changing due to external temperature fluctuations,
It is necessary to change the bridge drive voltage in response to the external temperature. For this reason, temperature-sensitive resistance elements such as thermistors RT
is used to control the gain of the amplifier 2. For example, when the temperature characteristic of the relative pressure sensitivity △VP/△VP (2500) with the pressure sensitivity of 25oo as 1 is obtained as shown by the solid line in Figure 2, in order to compensate for this, it is necessary to A driving voltage VB must be applied to the bridge.

第2図の実線は、不純物濃度1び5/地のn型シリコン
単結晶基板にボロンを5×lび8/め拡散したp型拡散
層からなる感圧抵抗素子を用いて第1図のようなハーフ
ブリッジを構成し、VE=4Vの定電圧でこれを駆動し
た場合の温度特性であり、破線は外界温度を変えた場合
にも常に、圧力出力が2500、VE=4Vで圧力出力
に一致するように補償するためのブリッジ駆動電圧を示
している。第2図の圧力感度変動曲線(実線)に対して
、いかに合致したブリッジ駆動電圧曲線(破線)を得る
かによって温度補償精度が決まることになる。ところが
、従来の構成では、感圧抵抗素子R,,R2と感溢抵抗
素子R丁を別々に用意しているため〜次のような欠点が
あった。
The solid line in Fig. 2 indicates that the pressure-sensitive resistance element in Fig. This is the temperature characteristic when a half-bridge is configured and driven with a constant voltage of VE = 4V.The dashed line shows that the pressure output is 2500 and the pressure output changes to VE = 4V even when the outside temperature is changed. Bridge drive voltages are shown for compensation to match. The temperature compensation accuracy is determined by how well the bridge drive voltage curve (broken line) is obtained to match the pressure sensitivity fluctuation curve (solid line) in FIG. 2. However, in the conventional configuration, the pressure-sensitive resistive elements R, , R2 and the overflow-sensitive resistive elements R-d are prepared separately, which has the following drawbacks.

第1に、第2図で示したような補償に必要な曲線を描く
特性をもつ感温抵抗素子がなく、温度補償の誤差が大き
い。第2に、感温抵抗素子として理想的な温度特性を示
すものが得られたとしても、感温抵抗素子と感圧抵抗素
子が別々に用意されるため「両者の温度を一致させるこ
とが困難であり「特に外部温度の変動が遠い場合に補償
誤差が大きくなる。この発明は上記した点に鑑み、極め
て正確な圧力感度の温度補償を行なうようにした半導体
圧力検出装置を提供するものである。この発明において
は「感圧抵抗素子を設けた同じ半導体単結晶基板内に感
圧抵抗素子とは別に拡散層を設けたpn接合ダイオード
を構成し、このダイオードを圧力検出回路の温度補償用
感溢素子として用いることを骨子としている。
First, there is no temperature-sensitive resistance element with characteristics that draw a curve necessary for compensation as shown in FIG. 2, and the error in temperature compensation is large. Second, even if a temperature-sensitive resistance element with ideal temperature characteristics is obtained, the temperature-sensitive resistance element and pressure-sensitive resistance element are prepared separately, making it difficult to match the temperatures of the two. "Compensation errors become large especially when external temperature fluctuations are far away. In view of the above points, the present invention provides a semiconductor pressure detection device that performs extremely accurate temperature compensation for pressure sensitivity. In this invention, ``a pn junction diode is constructed in which a diffusion layer is provided separately from the pressure-sensitive resistance element in the same semiconductor single crystal substrate on which the pressure-sensitive resistance element is provided, and this diode is used as a temperature compensation sensor for the pressure detection circuit. The main idea is to use it as an overflow element.

このように、感圧抵抗素子と感温素子を同一基板内に一
体的に形成すれば「両者の温度は正確に一致し、従って
正確な圧力感度の温度補償を行なうことが可能となる。
以下にこの発明の実施例を説明する。
In this way, if the pressure-sensitive resistance element and the temperature-sensitive element are integrally formed on the same substrate, the temperatures of the two accurately match, and therefore it becomes possible to perform accurate temperature compensation for pressure sensitivity.
Examples of the present invention will be described below.

第3図は一実施例の圧力センサ部の構造を示し、第4図
はこのセンサを用いて構成した圧力検出装置の等価回路
を示している。第3図において、11はn型シリコン単
結晶基板で、中央部を薄形に加工して圧力に感応するダ
イヤフラムに仕上げてあり、周辺部の肉厚部をガラスあ
るいはAu−Si合金等の接着剤により圧力導入用シリ
コン土台亀2に接着している。ダイヤフラムの反対側面
からはボロンを拡散してp型拡散層亀3,,132,蔓
33を設けている。これらの拡散層はそれぞれ異なる役
割をもっている。即ち、拡散層13,,132はそれぞ
れ圧力によって正、負に抵抗変化を示す感圧抵抗素子R
,,R2として用いられる。また拡散層133と基板1
首との間に形成されるpn接合ダイオード○が感塩素子
として用いられる。このように、同一基板上に一回の拡
散のみで感圧抵抗素子とpn接合ダイオードを利用した
感温素子を作りつけた場合、これらを総合せて圧力断面
図を構成するに当ってバイアス関係に十分考慮を払うこ
とが必要である。この点を含めて第4図の回路構成を次
に説明する。まず、第3図に示した感圧抵抗素子R,?
R2と圧力に不感な固定抵抗R3,R4とにより、圧
力検出回路としてのハーフブリッジ21を構成している
。r,,【2は零点調整用抵抗である。ここで、第4図
の各端子a〜fは第3図の各端子a〜fに対応する。ハ
ーフブリッジ2“ま、第3図のn型基板11から取出し
た端子aを接地電位としてこれに一方の電源端子を接続
し、トランジスタTにより制御される負の駆動電圧−V
Bを他方の電源端子に印加するようになっている。これ
により、感圧抵抗素子R,,R2として用いられる拡散
層13,?132と基板11との間のpn接合は常に逆
バイアスされ、感圧抵抗素子R,?R2は基板竃1から
電気的に分離される。即ち、拡散層133と基板11と
の間のpn接合ダイオードDを順バィアスして感温素子
として用いても、この感温素子と感圧抵抗素子R,,R
2との間の相互影響が防止されることになる。ダイオー
ドDは、第4図のように定電流源CIからの正電圧によ
り順バイアスされる。このダイオードDは1℃当り約3
hVの電位変化を示すが、この電位変化が増幅器22,
23を介してトランジスタTのベースに与えられ、これ
によりブリッジ駆動電圧−V8が制御されるようになっ
ている。なお第4図において、V十,V‐は外部電源、
E,,E2はこれら外部電源を用いて作られる増幅器2
2,23用の駆動電源、VRはダイオードDの露出力調
整用可変抵抗であり、24はセンス増幅器である。この
ような構成により、圧力感度の温度補償が行なわれるこ
とを第5図、第6図を用いて次に説明する。
FIG. 3 shows the structure of a pressure sensor section of one embodiment, and FIG. 4 shows an equivalent circuit of a pressure detection device constructed using this sensor. In Fig. 3, reference numeral 11 is an n-type silicon single crystal substrate, the central part of which is processed into a thin shape to form a pressure-sensitive diaphragm, and the thick peripheral part is bonded with glass or Au-Si alloy. It is adhered to the silicon base turtle 2 for pressure introduction using an agent. From the opposite side of the diaphragm, boron is diffused to form a p-type diffusion layer 3, 132 and a ridge 33. Each of these diffusion layers has a different role. That is, each of the diffusion layers 13, 132 is a pressure sensitive resistance element R whose resistance changes positively and negatively depending on the pressure.
,, used as R2. In addition, the diffusion layer 133 and the substrate 1
A pn junction diode ○ formed between the neck and the neck is used as a chlorine sensitive element. In this way, when a temperature sensing element using a pressure sensitive resistor element and a pn junction diode is fabricated on the same substrate by only one diffusion, the bias relationship is It is necessary to give sufficient consideration to The circuit configuration of FIG. 4 will be explained below, including this point. First, the pressure sensitive resistance element R, ? shown in FIG.
R2 and pressure-insensitive fixed resistors R3 and R4 constitute a half bridge 21 as a pressure detection circuit. r,, [2 is a zero point adjustment resistor. Here, each terminal a to f in FIG. 4 corresponds to each terminal a to f in FIG. 3. Half-bridge 2 "Well, one power supply terminal is connected to the terminal a taken out from the n-type substrate 11 in FIG.
B is applied to the other power supply terminal. Thereby, the diffusion layers 13, ?, used as the pressure sensitive resistance elements R, ? 132 and the substrate 11 is always reverse biased, and the pressure sensitive resistive element R,? R2 is electrically isolated from the substrate box 1. That is, even if the pn junction diode D between the diffusion layer 133 and the substrate 11 is forward biased and used as a temperature sensing element, the temperature sensing element and the pressure sensitive resistance elements R, , R
This will prevent mutual influence between the two. Diode D is forward biased by a positive voltage from constant current source CI as shown in FIG. This diode D is about 3
It shows a potential change of hV, and this potential change is caused by the amplifier 22,
23 to the base of the transistor T, thereby controlling the bridge drive voltage -V8. In Fig. 4, V0 and V- are external power supplies,
E,,E2 are amplifiers 2 made using these external power supplies.
2 and 23, VR is a variable resistor for adjusting the exposure force of diode D, and 24 is a sense amplifier. The fact that pressure sensitivity is compensated for temperature by such a configuration will be explained below with reference to FIGS. 5 and 6.

第5図は第3図、第4図の横成で温度補償回路部分を動
作させず、ブリッジ21を−VB−4Vの定電圧で駆動
した場合の相対感度の温度変動特性を示している。これ
は、圧力センサとして、ダイヤフラム径4肋ぐ、ダイヤ
フラム厚70仏肌の2kgf/のセンサを用い、フルス
ケール圧力2X9f/めでのブリッジ出力を−△VP=
9瓜hVとした場合のデータである。これに対し、第卑
図の回路を正常に動作させて温度補償を行なった結果が
第6図である。具体的な補償の手順を説明すると、まず
25o0において、一VB=−4Vでスルスケール圧力
出力−△VP=−91.25mVを得たとする。次に8
000において同じフルスケール圧力出力を得るための
ブリッジ駆動竜圧を、第5図に基づいて求め「例えば一
VB=−4.4494Vか得られる。そこで、25qo
で−VB=−4V、80ご0で−V8=−4.4494
Vとなるように、増幅器22,23の利得や可変抵抗V
R等を調整する。この2点温度の調整だけで、第6図に
示したように、一20℃〜8000の間でフルスケール
圧力出力に対する誤差が実に±0.1%以内に収まる。
以上のようにこの発明においては、圧力センサを構成す
る半導体基板上に温度補償用の感温素子を一体的に作っ
ている。
FIG. 5 shows the temperature fluctuation characteristics of the relative sensitivity when the bridge 21 is driven at a constant voltage of -VB-4V without operating the temperature compensation circuit portion in the configuration shown in FIGS. 3 and 4. This uses a 2 kgf/sensor with a diaphragm diameter of 4 and a diaphragm thickness of 70 cm as a pressure sensor, and the bridge output at a full scale pressure of 2 x 9 f/ is calculated as -△VP=
This is data when the voltage is 9 melon hV. On the other hand, FIG. 6 shows the result of temperature compensation performed by operating the circuit shown in FIG. 6 normally. To explain the specific compensation procedure, first, assume that at 25o0, a full scale pressure output -ΔVP=-91.25 mV was obtained at 1VB=-4V. Next 8
The bridge drive dragon pressure to obtain the same full-scale pressure output at 000 is calculated based on Figure 5.
-VB=-4V, 80g0 -V8=-4.4494
The gains of the amplifiers 22 and 23 and the variable resistance V
Adjust R etc. By just adjusting the temperature at these two points, as shown in FIG. 6, the error with respect to the full-scale pressure output can be kept within ±0.1% between -20°C and 8000°C.
As described above, in the present invention, the temperature sensing element for temperature compensation is integrally formed on the semiconductor substrate constituting the pressure sensor.

従って感圧抵抗素子と感温素子の温度および温度変動は
ほゞ完全に一致し、圧力感度の温度補償を精度よく行な
うことができる。特に外部温度の変動が遠い場合にも、
その変動速度の影響を受けることなく、正確な温度補償
を行ない得る点で優れている。また、感圧抵抗素子と感
温素子は材料、製造プロセス等の経歴が等しく、両者の
温度特性を合致させることが容易で、正確な圧力感度の
温度補償を容易に行なうことができる。更に、感圧抵抗
素子と感温素子が単結晶基板に一回の不純物拡散により
簡単に作られるという利点もある。これは回路を正電源
V+と負電源V‐の二電源方式とすることで可能となっ
たことである。即ち、単一電源を用いて同一基板上に設
けた感圧抵抗素子と感溢素子としてのダイオード‘こそ
れぞれ所要のバイアスを与えるためには、これらの素子
間を電気的に分離するために二重拡散等の複雑なプロセ
スが必要となり、当然構造も複雑となるが、、実施例で
説明したように二電源方式を用いることで、圧力センサ
部の製造プロセスの簡略化、構造の単純化が可能となる
。なお、実施例ではn型半導体基板を用い、p型拡散層
により感圧抵抗素子と感温素子を形成したが、この導電
型は逆にしてもよい。その場合、勿論バィ‐ァス関係は
実施例と逆になる。また、実施例ではハ−フブリツジに
よる圧力検出回路を説明したが、この発明はフルブリッ
ジ構成は勿論、ブリッジを利用しない圧力検出回路構成
の場合にも適用できる。
Therefore, the temperatures and temperature fluctuations of the pressure-sensitive resistive element and the temperature-sensitive element almost completely match, and temperature compensation for pressure sensitivity can be performed with high accuracy. Especially when external temperature fluctuations are far away.
It is excellent in that accurate temperature compensation can be performed without being affected by the rate of fluctuation. Furthermore, the pressure-sensitive resistance element and the temperature-sensitive element have the same material, manufacturing process, and other backgrounds, so it is easy to match their temperature characteristics, and accurate temperature compensation of pressure sensitivity can be easily performed. Another advantage is that the pressure-sensitive resistance element and the temperature-sensitive element can be easily fabricated by one-time impurity diffusion into a single crystal substrate. This has been made possible by making the circuit a dual power supply system with a positive power supply V+ and a negative power supply V-. In other words, in order to apply the required bias to a pressure-sensitive resistance element and a diode as a sensitive element provided on the same substrate using a single power supply, two Although complex processes such as heavy diffusion are required and the structure is naturally complicated, by using the dual power supply system as explained in the example, the manufacturing process and structure of the pressure sensor section can be simplified. It becomes possible. In the embodiment, an n-type semiconductor substrate is used and a pressure-sensitive resistance element and a temperature-sensitive element are formed by a p-type diffusion layer, but the conductivity types may be reversed. In that case, of course, the bias relationship will be opposite to that of the embodiment. Further, in the embodiment, a pressure detection circuit using a half bridge has been described, but the present invention can be applied not only to a full bridge configuration but also to a pressure detection circuit configuration that does not utilize a bridge.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体圧力検出装置の等価回路図、第2
図はその圧力感度の温度補償動作を説明するための図、
第3図はこの発明の一実施例の圧力センサ部の構造を示
す図、第4図は同実施例の圧力検出装置の等価回路図、
第5図および第6図はその温度補償動作を説明するため
の図である。 11・・・・・・n型シリコン単結晶基板、13,〜1
33……p型拡散層、R,,R2……感圧抵抗素子、D
・・・・・・pn接合ダイオード(感温素子)、21・
・・・・・ハーフブリッジ(圧力検出回路)。 第1図第3図 第2図 第4図 第5図 第6図
Figure 1 is an equivalent circuit diagram of a conventional semiconductor pressure detection device, Figure 2 is an equivalent circuit diagram of a conventional semiconductor pressure detection device.
The figure is a diagram to explain the temperature compensation operation of pressure sensitivity.
FIG. 3 is a diagram showing the structure of a pressure sensor section according to an embodiment of the present invention, and FIG. 4 is an equivalent circuit diagram of a pressure detection device according to the embodiment.
FIGS. 5 and 6 are diagrams for explaining the temperature compensation operation. 11...N-type silicon single crystal substrate, 13,~1
33... p-type diffusion layer, R,, R2... pressure sensitive resistance element, D
・・・・・・PN junction diode (temperature sensing element), 21.
...Half bridge (pressure detection circuit). Figure 1 Figure 3 Figure 2 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 1 半導体単結晶基板と、この基板に一回の不純物拡散
により形成された拡散層からなる感圧抵抗素子と同一工
程で形成された別の拡散層と基板の間に構成されるpn
接合ダイオードと、前記感圧抵抗素子を用いて構成され
た圧力検出用ブリツジ回路と、このブリツジ回路に前記
感圧抵抗素子の拡散層と基板の間が逆バイアスされる電
位関係で駆動電圧を与えるブリツジ駆動回路と、このブ
リツジ駆動回路の出力駆動電圧を前記pn接合ダイオー
ドの順方向電圧降下の変化に応じて制御して圧力感度の
温度補償を行う温度補償回路とを備えたことを特徴とす
る半導体圧力検出装置。
1 A pressure-sensitive resistance element consisting of a semiconductor single crystal substrate and a diffusion layer formed by one-time impurity diffusion into this substrate, and a PN constructed between the substrate and another diffusion layer formed in the same process.
A bridge circuit for pressure detection configured using a junction diode and the pressure-sensitive resistance element, and a driving voltage is applied to the bridge circuit in a potential relationship that reverse biases between the diffusion layer of the pressure-sensitive resistance element and the substrate. The present invention is characterized by comprising a bridge drive circuit and a temperature compensation circuit that controls the output drive voltage of the bridge drive circuit in accordance with a change in the forward voltage drop of the pn junction diode to compensate for the temperature of pressure sensitivity. Semiconductor pressure detection device.
JP54053843A 1978-11-08 1979-05-01 Semiconductor pressure detection device Expired JPS6020692B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP54053843A JPS6020692B2 (en) 1979-05-01 1979-05-01 Semiconductor pressure detection device
US06/087,938 US4300395A (en) 1978-11-08 1979-10-25 Semiconductor pressure detection device
DE2945185A DE2945185C2 (en) 1978-11-08 1979-11-08 Semiconductor pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54053843A JPS6020692B2 (en) 1979-05-01 1979-05-01 Semiconductor pressure detection device

Publications (2)

Publication Number Publication Date
JPS55146019A JPS55146019A (en) 1980-11-14
JPS6020692B2 true JPS6020692B2 (en) 1985-05-23

Family

ID=12954051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54053843A Expired JPS6020692B2 (en) 1978-11-08 1979-05-01 Semiconductor pressure detection device

Country Status (1)

Country Link
JP (1) JPS6020692B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454032A (en) * 2013-08-16 2013-12-18 中国电子科技集团公司第四十八研究所 Pressure sensitive core with thermistor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172776A (en) * 1981-04-15 1982-10-23 Toshiba Corp Semiconductor pressure transducer
JPS60239644A (en) * 1984-05-15 1985-11-28 Shindengen Electric Mfg Co Ltd Semiconductor pressure sensor
JPS61243337A (en) * 1985-04-19 1986-10-29 Yokogawa Electric Corp Semiconductor pressure sensor
JPS6225228A (en) * 1985-07-25 1987-02-03 Ngk Spark Plug Co Ltd Pressure sensor of internal combustion engine
JPS62174247U (en) * 1986-04-25 1987-11-05
JPS6336059U (en) * 1986-08-26 1988-03-08
JPS63283073A (en) * 1987-05-15 1988-11-18 Toshiba Corp Semiconductor pressure sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119675A (en) * 1973-03-15 1974-11-15
JPS5024088A (en) * 1973-07-05 1975-03-14

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119675A (en) * 1973-03-15 1974-11-15
JPS5024088A (en) * 1973-07-05 1975-03-14

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103454032A (en) * 2013-08-16 2013-12-18 中国电子科技集团公司第四十八研究所 Pressure sensitive core with thermistor

Also Published As

Publication number Publication date
JPS55146019A (en) 1980-11-14

Similar Documents

Publication Publication Date Title
US4556807A (en) Pressure transducer with temperature compensation circuit
US5686826A (en) Ambient temperature compensation for semiconductor transducer structures
US5795069A (en) Temperature sensor and method
US7451655B2 (en) High temperature pressure sensing system
JP2002148131A (en) Physical quantity detector
US5419199A (en) Semiconductor device having a stress transducer driven by a temperature compensating reference voltage source
US4300395A (en) Semiconductor pressure detection device
JPH0322065B2 (en)
JPH0691265B2 (en) Semiconductor pressure sensor
US3956927A (en) Strain gauge transducer apparatus
JP4568982B2 (en) Physical quantity detection device
JPH0425487B2 (en)
JPH0664080B2 (en) Temperature compensation circuit for flow sensor
JPS6020692B2 (en) Semiconductor pressure detection device
US5408885A (en) Pressure detecting circuit for semiconductor pressure sensor
JP2532149B2 (en) Semiconductor sensor
JPH0972805A (en) Semiconductor sensor
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
JPH09218118A (en) Semiconductor force sensor
JPS6255629B2 (en)
US20030184327A1 (en) Temperature dependent sensitivity compensation structure of sensor
EP0709660A1 (en) Sensor and a method for temperature compensating for span variation in the sensor
JP2639101B2 (en) Pressure detector
JPH05281254A (en) Semiconductor acceleration sensor
RU2165602C2 (en) Semiconductor pressure transducer