JPS60239644A - Semiconductor pressure sensor - Google Patents

Semiconductor pressure sensor

Info

Publication number
JPS60239644A
JPS60239644A JP59097321A JP9732184A JPS60239644A JP S60239644 A JPS60239644 A JP S60239644A JP 59097321 A JP59097321 A JP 59097321A JP 9732184 A JP9732184 A JP 9732184A JP S60239644 A JPS60239644 A JP S60239644A
Authority
JP
Japan
Prior art keywords
diode
voltage
temperature
amplifier
opm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097321A
Other languages
Japanese (ja)
Inventor
Haruo Watanabe
晴夫 渡辺
Akimitsu Kawaguchi
川口 晃充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP59097321A priority Critical patent/JPS60239644A/en
Publication of JPS60239644A publication Critical patent/JPS60239644A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2268Arrangements for correcting or for compensating unwanted effects
    • G01L1/2281Arrangements for correcting or for compensating unwanted effects for temperature variations

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Measuring Fluid Pressure (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enable the elimination of measuring errors due to temperature changes while permitting a smaller size and a lighter weight of a sensor by arranging a sensor section and a moisture-sensitive section integral on a common substrate. CONSTITUTION:A constant voltage DC power source E0, voltage dividing resistances r1 and r2, an operation amplifier OPM4 and a diode D are so arranged as to be a bridge circuit 4 formed integral and a thermosensitive diode. Then, the diode D is connected between power sources E0 through a resistance r3 and the connection point thereof is connected to the amplifier OPM on the detection side. On the other hand, the bridge circuit 4 is connected between an output terminal of the amplifier OPM and the earth. According to this circuit, when temperature is sensed with a P-N junction series section D, the voltage rises, changes therein are inputted into the amplifier OPM and with the inversion of the input, the output is amplified at R2/R1 causing a change in the voltage applied to the bridge circuit 4. Or the voltage of the P-N diode D decreases linearly and the amplifier OPM increases linearly to compensate for the drop in the sensitivity of the bridge due to temperature.

Description

【発明の詳細な説明】 本発明は半導体のピエゾ効果薔こより、被検出圧力を電
気量に変換して測定する半導体圧力センサ特にダイヤフ
ラム部の温度変化にもとづく計測誤差の排除に関するも
のである。半導体圧力センサは第1図(a)(b)に示
す平面図およびその人−に部矢視断面図のように、半導
体(1)例えばNa3 i単結晶ウェハ舊こ、エツチン
グにより凹部(1a)例えば角形溝を設けて形成された
ダイヤフラム部(起歪部)(2)と、その−両番ζ間隔
をおいて十字状かつ長手方向が結晶方向と同一番ζ位置
するよう番ζP型拡激して設けた同一抵抗値の4箇のピ
エゾ抵抗素子(3m)(3m)(3m)(3,)とから
形成される。そして各抵抗素子(3)をその電極を用い
て(図示せず)第2図に示すように、ブリッジ回路(4
)を形成するように接続して、ダイヤフラム部(2)に
被検測圧力Pを加え。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor pressure sensor that uses the piezoelectric effect of a semiconductor to measure a detected pressure by converting it into an electrical quantity, particularly to eliminate measurement errors due to temperature changes in a diaphragm portion. As shown in the plan view and cross-sectional view shown in FIGS. 1(a) and 1(b), the semiconductor pressure sensor is made of a semiconductor (1), for example, a Na3i single crystal wafer, and is etched into a recess (1a). For example, a diaphragm part (strain part) (2) formed with a square groove, and a cross-shaped diaphragm part (strain part) (2) formed with a square groove, and a ζP type expansion so that the longitudinal direction is at the same first ζ position as the crystal direction. It is formed from four piezoresistive elements (3m) (3m) (3m) (3,) having the same resistance value and provided as follows. Then, each resistive element (3) is connected to a bridge circuit (4) using its electrode (not shown) as shown in FIG.
) and apply the measured pressure P to the diaphragm part (2).

これにもとづく抵抗素子(31)(3,)と(3,)(
3s)の抵抗の変化の相異により、ブリッジ回路に不平
衡状態を生じ−させて、出力端子(5a)(s−b)か
ら圧力Pに比例した電圧ΔVを得るようにしたものであ
る。なお、(6a )(6b)は電源端子である。とこ
ろでこのような圧力センサーでは、第3図番ζ示すよう
に各抵抗素子(38〜3.)の温度依存性が大きく因み
に特性(イ)に示す如く0℃の時の感度を1.0とする
と100℃では0.8に低下する。従って出力端子(5
a、5b)からの電圧(ΔV)は温度により変化し、測
定誤差の原因となる。そこで一般1i前記感度変化を除
去(特性口)すべくサーミス〃或はポジスタ等の感温素
子を設けて温度補グを行い前記電源端子(6a)(6b
)間の印加電圧を上昇せしめて前記各抵抗素子(31〜
3、)の抵抗変化(ΔR)を補償している。しかし乍ら
上記感温素子はセンサ(ブリッジ抵抗と個別に形成され
、しかも離れた所に配置されるため温度補償精度の向上
をはかることが困難であった。本発明は係る点を鑑み、
センサ素子と感温素子を共通半導体基板に一体に形成す
ると共に前記感温素子として複数個のダイオード群を用
いて上記の問題を解消した安価なセンサを提供するもの
である。第4図は本発明の一実施例構造を示す断面図で
従来例と同一符号は同等部分を示す。図中7はP型領域
(部)、8はN型領域(部)でこれによりPNN接合を
有する1つのダイオードを構成している。(図ではダイ
オード3個の例を示ス、)この製法はN型シリコン基板
(1)にP型拡散抵抗素子(38、at)をダイヤフラ
ムの起歪部(2)上に形成してブリッジ化すると共に上
記P型抵抗形成時ζこ同時にP型領域(71%形成する
。(不純物濃度は略10.11/−)次いで該P型領域
(7)に更にN型不純物(濃度略101’/j)を拡散
し、N型領域(8)を形成する。次に該基板全面に、酸
化膜を形成し写真処理で所要部の窓開及びアルミ蒸着し
、該ダイオードをPN−PNとなる如く接続しシリーズ
化する。因み番とPN接合(ダイオード)の順方向特性
は一2mV/’Cとよく知られた直線的温度特性を持っ
ている。本発明は係るダイオード(DJの測温特性を利
用しブリッジの印加電圧を直線的に補償するようにした
ものである。オペアンプの入力ζこ温度補償ダイオード
を入れることはダイオードの順方向電圧は0.6v位な
のでブリッジの印加電圧を5v位とすると(sV/Q、
6a=qsJ98佃位をシリーズにして電圧を稼ぐ必要
がある。
Resistance elements based on this (31) (3,) and (3,) (
3s) causes an unbalanced state in the bridge circuit to obtain a voltage ΔV proportional to the pressure P from the output terminals (5a) (sb). Note that (6a) and (6b) are power supply terminals. By the way, in such a pressure sensor, as shown in Figure 3, the temperature dependence of each resistance element (38 to 3.) is large.Incidentally, as shown in characteristic (a), the sensitivity at 0°C is 1.0. Then, at 100°C, it decreases to 0.8. Therefore, the output terminal (5
The voltage (ΔV) from a, 5b) varies with temperature, causing measurement errors. Therefore, in general 1i, in order to eliminate the sensitivity change (characteristic port), a temperature sensing element such as a thermistor or posistor is provided to compensate for the temperature, and the power terminals (6a) (6b)
) by increasing the applied voltage between each of the resistive elements (31 to 31).
3.) The resistance change (ΔR) is compensated for. However, since the above-mentioned temperature sensing element is formed separately from the sensor (bridge resistor) and placed in a remote location, it has been difficult to improve the temperature compensation accuracy.
The present invention provides an inexpensive sensor in which a sensor element and a temperature sensing element are integrally formed on a common semiconductor substrate, and a plurality of diode groups are used as the temperature sensing element to solve the above problems. FIG. 4 is a sectional view showing the structure of an embodiment of the present invention, and the same reference numerals as in the conventional example indicate the same parts. In the figure, 7 is a P-type region (part) and 8 is an N-type region (part), which constitute one diode having a PNN junction. (The figure shows an example of three diodes.) This manufacturing method forms a bridge by forming a P-type diffused resistance element (38, at) on the strain-generating part (2) of the diaphragm on an N-type silicon substrate (1). At the same time, when forming the P-type resistor ζ, a P-type region (71%) is formed at the same time (the impurity concentration is approximately 10.11/-). Then, an N-type impurity (concentration approximately 101'/-) is further added to the P-type region (7). j) to form an N-type region (8).Next, an oxide film is formed on the entire surface of the substrate, windows are opened in the required parts by photo processing, and aluminum is deposited, so that the diode becomes PN-PN. The forward characteristics of the diode and the PN junction (diode) have a well-known linear temperature characteristic of -2 mV/'C. The voltage applied to the bridge is linearly compensated by using the input voltage of the operational amplifier.Inserting a temperature compensation diode means that the forward voltage of the diode is about 0.6V, so the voltage applied to the bridge is reduced to about 5V. Then (sV/Q,
It is necessary to connect 6a=qsJ98 in series to generate voltage.

第5図は本発明の圧力センサを用いた電気回路図でE、
は定電圧直流電源、r+qrtは分圧抵抗、OPMはオ
ペアンプ(差動増巾器)4及メDは上述の如く一体に形
成されたブリ、ジ回路及び感温用ダイオードで前記ダイ
オードp)は抵抗r、を介して電源′B、間に接続され
、その接続点(a)をオペアンプOPMの検出側(ハ)
に入力される。一方ブリッジ肌路4は前記オペアンプO
PMの出力−b)とアース間(mW(ハ)端月こ接続さ
れる。この回路によればPN接合のシリーズ部勧)で感
温すると一2mVX8コ/’Cの率で電圧が上がるがこ
の変化がオペアンプ(OPM)に入力し反転入力のため
出力はR* /R+で増1】シ、ブリッジの印加電圧を
変化させる。PNダイオードDの電圧は直線的に減少し
オペアンプOPMは直線的に増加するのでブリッジの感
度が温度で低下する分を補償できる。因みに従来例にお
いて3%の誤差を0,5%以下にできることが確認され
た。なお、抵抗R1、R*はトリミングとし一度調整す
ることによって精度が補償される。又PNダイオード(
0,1m A 70゜3 m A )は必要に応じて複
数個シリーズ化すればよくオペアンプOPMの入力に対
し高精度の電圧設定が可能である。以上の実施例では半
導体基板にダイオードを一体に形成した例について説明
したがこの他該基板にセンサ部及びダイオードと区画さ
れた領域を設は該領域内にトランジスタ等よりなるオペ
アンプ(OPM)を同時に形成して集積(IC)化する
ようにしてもよい。以上の説明から明らかなように本発
明によれば共通基板にセンナ部及び感温部を一体に形成
したのでセンサの小型(集積)軽量化が可能であると共
化温度変化による測定誤差を容易に除去し得る高精度の
センサが提供できるので実用上の効果は大きい。
FIG. 5 is an electric circuit diagram using the pressure sensor of the present invention.
is a constant voltage DC power supply, r+qrt is a voltage dividing resistor, OPM is an operational amplifier (differential amplifier), 4 and D are integrated circuits, diode circuits, and temperature sensing diodes as described above, and the diode p) is The connection point (a) is connected to the detection side (c) of the operational amplifier OPM.
is input. On the other hand, the bridge surface path 4 is connected to the operational amplifier O.
When temperature is sensed between the PM output - b) and the ground (mW (c) terminal is connected. According to this circuit, the series part of the PN junction is recommended), the voltage increases at a rate of -2 mV x 8 cm/'C. This change is input to the operational amplifier (OPM), and since it is an inverted input, the output is increased by R*/R+.1] The voltage applied to the bridge is changed. Since the voltage of the PN diode D decreases linearly and the voltage of the operational amplifier OPM increases linearly, it is possible to compensate for the decrease in sensitivity of the bridge due to temperature. Incidentally, it has been confirmed that the error of 3% in the conventional example can be reduced to 0.5% or less. Note that the accuracy is compensated by trimming the resistors R1 and R* and adjusting them once. Also, PN diode (
0.1 mA 70°3 mA) can be made into a series of multiple units as necessary, and highly accurate voltage setting for the input of the operational amplifier OPM is possible. In the above embodiment, an example was explained in which a diode was integrally formed on a semiconductor substrate, but it is also possible to provide an area separated from a sensor section and a diode on the substrate, and simultaneously install an operational amplifier (OPM) consisting of a transistor or the like within the area. It may be formed and integrated (IC). As is clear from the above description, according to the present invention, since the sensor part and the temperature sensing part are integrally formed on a common substrate, the sensor can be made smaller (integrated) and lighter, and measurement errors due to temperature changes can be easily reduced. This has a great practical effect because it can provide a highly accurate sensor that can be removed easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は従来センサの説明図であって
、このうち沈1図(a)(blは圧力検出部の構成を示
す平面図およびそのA−A部における矢視断面図、第2
図は電気回路図、第3図は感度と温度との関係を示す特
性図、第4図は本発明の一実施例構造を示す断面図、第
5図は電気回路図である。図において1は半導体基板、
1aは溝、2はダイヤフラム、3はピエゾ抵抗素子群、
4はブリッジ回路、5a、5bは出力端子、6a、6b
は電源端子、7はP型領域、8はN型領域、JはPN接
合、Dはダイオード群、OPMはオペアンプ(差動増巾
器)、E。 は定電圧直流電源である。 特許出願人 新電元工業株式会社 劇(1c) 第2図 第、3゜
Figures 1, 2, and 3 are explanatory diagrams of conventional sensors, in which Figures 1(a) (bl) are plan views showing the configuration of the pressure detection section, and arrows in the A-A section thereof. Cross section, 2nd
3 is a characteristic diagram showing the relationship between sensitivity and temperature, FIG. 4 is a sectional view showing the structure of an embodiment of the present invention, and FIG. 5 is an electric circuit diagram. In the figure, 1 is a semiconductor substrate,
1a is a groove, 2 is a diaphragm, 3 is a piezoresistive element group,
4 is a bridge circuit, 5a, 5b are output terminals, 6a, 6b
is a power supply terminal, 7 is a P-type region, 8 is an N-type region, J is a PN junction, D is a diode group, OPM is an operational amplifier (differential amplifier), and E. is a constant voltage DC power supply. Patent applicant Shindengen Kogyo Co., Ltd. Geki (1c) Figure 2, 3゜

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板にダイヤフラム部とピエゾ抵抗素子
群よりなる圧力検出部を設けると共に前記半導体基板に
PN接合を有する複数佃のダイオード群を設け、前記ピ
エゾ抵抗素子群により形成したブリッジ回路の温度変化
による出力の誤差を前記ダイオード群により除去するよ
うに構成したことを特徴とする半導体圧力センサ。
A pressure detection section consisting of a diaphragm part and a group of piezoresistive elements is provided on a semiconductor substrate of one conductivity type, and a group of diodes having a PN junction is provided on the semiconductor substrate, and a temperature change in a bridge circuit formed by the group of piezoresistive elements is provided. 1. A semiconductor pressure sensor, characterized in that the semiconductor pressure sensor is configured such that the error in output caused by the diodes is removed by the group of diodes.
JP59097321A 1984-05-15 1984-05-15 Semiconductor pressure sensor Pending JPS60239644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097321A JPS60239644A (en) 1984-05-15 1984-05-15 Semiconductor pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097321A JPS60239644A (en) 1984-05-15 1984-05-15 Semiconductor pressure sensor

Publications (1)

Publication Number Publication Date
JPS60239644A true JPS60239644A (en) 1985-11-28

Family

ID=14189214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097321A Pending JPS60239644A (en) 1984-05-15 1984-05-15 Semiconductor pressure sensor

Country Status (1)

Country Link
JP (1) JPS60239644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392746A2 (en) * 1989-04-14 1990-10-17 LUCAS INDUSTRIES public limited company Transducer temperature compensation circuit
CN111256858A (en) * 2020-04-01 2020-06-09 北京工业大学 High-precision contact type temperature measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322385A (en) * 1976-08-13 1978-03-01 Hitachi Ltd Diffusion type semiconductor pr essure receiving element
JPS55146019A (en) * 1979-05-01 1980-11-14 Toshiba Corp Pressure detector of semiconductor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322385A (en) * 1976-08-13 1978-03-01 Hitachi Ltd Diffusion type semiconductor pr essure receiving element
JPS55146019A (en) * 1979-05-01 1980-11-14 Toshiba Corp Pressure detector of semiconductor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0392746A2 (en) * 1989-04-14 1990-10-17 LUCAS INDUSTRIES public limited company Transducer temperature compensation circuit
CN111256858A (en) * 2020-04-01 2020-06-09 北京工业大学 High-precision contact type temperature measuring method

Similar Documents

Publication Publication Date Title
US7278319B2 (en) Pressure and temperature sensing element
EP0106050B1 (en) Pressure transducer with temperature compensation circuit
US4333349A (en) Binary balancing apparatus for semiconductor transducer structures
EP0053486B1 (en) Stress sensing apparatus
US5600174A (en) Suspended single crystal silicon structures and method of making same
US4911016A (en) Semiconductor strain gauge bridge circuit
Ishihara et al. CMOS integrated silicon pressure sensor
US4813272A (en) Semiconductor pressure sensor
US5419199A (en) Semiconductor device having a stress transducer driven by a temperature compensating reference voltage source
US20020086460A1 (en) Pressure transducer employing on-chip resistor compensation
EP0006740A1 (en) Improvements in strain gauges
JPH0425764A (en) Semiconductor acceleration sensor
JP4045979B2 (en) Pressure detection device
JPS60239644A (en) Semiconductor pressure sensor
US4654621A (en) Semiconductor strain measuring apparatus
JPS6020692B2 (en) Semiconductor pressure detection device
JP3520652B2 (en) Semiconductor force sensor
JPS6255629B2 (en)
JPH041472Y2 (en)
JPS6328615Y2 (en)
Lee et al. A bipolar integrated silicon pressure sensor
JPS5844303A (en) Semiconductor strain gauge
RU2165602C2 (en) Semiconductor pressure transducer
JP2001272203A (en) Distortion measuring apparatus
JPH0823482B2 (en) Temperature compensation circuit for semiconductor strain gauge