JPS60206177A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60206177A
JPS60206177A JP6394784A JP6394784A JPS60206177A JP S60206177 A JPS60206177 A JP S60206177A JP 6394784 A JP6394784 A JP 6394784A JP 6394784 A JP6394784 A JP 6394784A JP S60206177 A JPS60206177 A JP S60206177A
Authority
JP
Japan
Prior art keywords
doped
impurity
gaas
layer
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6394784A
Other languages
Japanese (ja)
Other versions
JPH033934B2 (en
Inventor
Tomonori Ishikawa
石川 知則
Tsuguo Inada
稲田 嗣夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6394784A priority Critical patent/JPS60206177A/en
Publication of JPS60206177A publication Critical patent/JPS60206177A/en
Publication of JPH033934B2 publication Critical patent/JPH033934B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET

Abstract

PURPOSE:To reduce ohmic contact resistance without damaging the effect of modulation doping, and to improve the characteristics of a semiconductor by heating the whole by the projection of energy rays and diffusing a second impurity having diffusion length larger than a first impurity while crossing over said first semiconductor layer. CONSTITUTION:A non-doped GaAs layer 12, in which Si is not doped to a hetero-junction interface with the GaAs layer 12 and Si is doped to other regions, and N type GaAs 14 to which Sn is doped are formed on a semi-insulating GaAs substrate 11 in succession. 12A represents a two-element electron gas. The whole is thermally treated through infrared flash. Tin doped to a GaAs/AlGaAs group semiconducltor base body is diffused excellent through infrared flash annealing, and N type regions 15 are shaped in depth in which the regions 15 cross an N type region in an AlGaAs layer 13, to which silicon is doped, and reach to the two-element electron gas 12A. A source electrode 16, a drain electrode 17 and a gate electrode 18 are disposed.

Description

【発明の詳細な説明】 (IL) 発明の技術分野 不発[JJに半導体装置の製造方法、特に変調ドーピン
グの特性全損う仁となく高誤度で印い不純物導入領域を
形成する半導体装置の製造方法に関する。
[Detailed Description of the Invention] (IL) Technical Field of the Invention [JJ describes a method for manufacturing a semiconductor device, particularly a method for manufacturing a semiconductor device in which an impurity-introduced region is formed with a high degree of error without completely impairing the characteristics of modulation doping. Regarding the manufacturing method.

(b〕 技術の背景 現在はシリコン(Si)牛得体装置が主力とされている
が、81半導体装置の高速化はキャリアの移動度などの
Siの物性により制約うれろt:めに、キャリア移動度
がStよj)遥かに大きい砒化ガリウム(GaAs)な
どの化合物半尋体會用いて、尚連化、低消費電力化全実
現する努力が重ねられている。
(b) Technical Background Currently, silicon (Si) semiconductor devices are the mainstay, but the speeding up of 81 semiconductor devices is limited by the physical properties of Si such as carrier mobility. Efforts are being made to achieve greater efficiency and lower power consumption by using compounds such as gallium arsenide (GaAs), which has a much larger degree of St.

従来の構造のStもしくはGaAs等の化合物音用いた
半導体装置においては、キャリアは不純物イオンが存在
している正間金移動する。仁の移動に際してキャリアは
格子振動および不純物イオンによって散乱を受けるが、
格子振wJvcよる散乱の確率ケ小さくするために温度
を低下させると、イオン化不純物散乱の確率が大きくな
って、キャリアの移動度がこれによって制限される。・
この不純物散乱効果全排除するために不純物が添加され
る領域と、キャリアが移動する領域とを空間的に分離し
て、特に低温におけるキャリアの移動度を増大せしめた
ヘテロ接合形電界効果トランジスタ(以下へテロ接合F
ITと略称する)によって一層の高速化が実現されてい
る0Cc) 従来技術と問題点 従米知られているヘテロ接合FETの一例を第1図(a
)に示す。半絶縁性GaAs基板1上にGaAs層2と
これより°電子親和力の小さい砒化アルミニウム・ガリ
ウム(AtGaAs )層3とが設けられて、両層の界
@はヘテロ接合全形成している。AtGaAs層3にド
ナー不純物としてシリコン(81)が導入されてn型と
なっており、GaAs層2にノンドープのL型である。
In a semiconductor device using a conventional structure of a compound such as St or GaAs, carriers move between the layers where impurity ions are present. When the carriers move, they are scattered by lattice vibrations and impurity ions,
When the temperature is lowered to reduce the probability of scattering due to lattice vibration wJvc, the probability of ionized impurity scattering increases, thereby limiting carrier mobility.・
In order to completely eliminate this impurity scattering effect, the region where impurities are added and the region where carriers move are spatially separated to increase the mobility of carriers, especially at low temperatures. heterozygous F
Conventional technology and problems An example of a known heterojunction FET is shown in Figure 1 (a).
). A GaAs layer 2 and an aluminum gallium arsenide (AtGaAs) layer 3 having a lower electron affinity than the GaAs layer 2 are provided on a semi-insulating GaAs substrate 1, and the interface between the two layers completely forms a heterojunction. Silicon (81) is introduced into the AtGaAs layer 3 as a donor impurity and becomes n-type, and the GaAs layer 2 is non-doped and is L-type.

n型AtGaAa I曽3(電子供給層という)からl
型GaAs層2(チャネル層という)へ遷移した電子に
よって2次元電子ガス2人かへテロ接合界面近傍に生成
され、七〇電子一度をゲート電極4に印加される電圧で
制御することによって、ソース電極5と士壬ヰ11鷺4
祐れる。この様にヘテロ摺合ITのチャネルである2次
元電子ガス2人がノンドープの半導体19ンに形成され
、更にAtGaAs l@3の^1J記ヘデロ接合近傍
ににノンドープのスベー+)−領域が追常設けられて、
高い電子移動度が得られている。、このヘテロ接合FE
Tのソース電極5及びドレイン電極6と2次元電子ガス
2八〇)領」或との同は、低い抵抗飢で専通しているこ
とが8豐である。このために本特許出願人に先に特願昭
56−77657号によって、第1図Φンに例示する如
く、ゲート′電極4が設けられる領fi以外のAtQa
Asl曽3上に出力電極接続層としてGaAs層7を形
成し、このGaAs ItW 7上にソース電極5及び
ドレイン電極6を設けた半導体装置を提供している。こ
のGaAs層7は通常シリコンがドープされたn血とさ
れているが、その濃度は1〜2 X l O” (cm
−” 〕程度に止まる。このn W GaAs += 
7にAuGe /Au %によってオーミック電極全配
設し、450℃、5分程フズ“〆?1 度の合金化工程を施し、オーミック$珍ヲ形成するが、
n型GaAs層7のキャリア一度が充分に高くなく、か
つ合金層の深さのばらつき等も必りて、2次元市1子ガ
スとソース及びドレイン’5mとの間のみ通が往往(・
Cして不充分となる。
n-type AtGaAa I so 3 (referred to as electron supply layer) to l
A two-dimensional electron gas is generated near the heterojunction interface by the electrons transferred to the type GaAs layer 2 (referred to as the channel layer), and 70 electrons are generated at the source by controlling the voltage applied to the gate electrode 4. Electrode 5 and Shimiwi 11 Sagi 4
I can't wait. In this way, two two-dimensional electron gases, which are the channels of the hetero-sliding IT, are formed in the non-doped semiconductor 19, and furthermore, a non-doped sub+)- region is formed near the AtGaAs l@3 hedero junction. established,
High electron mobility has been obtained. , this heterojunction FE
The connection between the source electrode 5 and drain electrode 6 of T and the two-dimensional electron gas region 280) is characterized by a low resistance starvation. For this purpose, the applicant of the present patent previously proposed in Japanese Patent Application No. 56-77657 that AtQ
A semiconductor device is provided in which a GaAs layer 7 is formed as an output electrode connection layer on the Asl layer 3, and a source electrode 5 and a drain electrode 6 are provided on the GaAs ItW layer 7. This GaAs layer 7 is usually made of n-type silicon doped, and its concentration is 1 to 2 X l O" (cm
−”].This n W GaAs +=
All the ohmic electrodes were arranged using AuGe/Au% in 7, and an alloying process was performed at 450°C for about 5 minutes to form an ohmic electrode.
Because the carrier density in the n-type GaAs layer 7 is not high enough and there are variations in the depth of the alloy layer, there is only communication between the two-dimensional gas and the source and drain.
C and become insufficient.

他のオーミック堀住形成の従来例としては、第1図(C
)にV+1示−支る如く、ソース電極5及びドレイン1
を位6下の領域8に2次元電子カス2人に達する深さに
予めセレンC3e)*?にイオン注入法によって尋人づ
°る方法が必る。しかしlがらn型GaAs電子供組層
3にドープされているシリコンが拡散して2次元電子カ
ス2人の移動度が低下する手を防止J′るために(・ユ
、注入したイオンの活性化熱処理ガムが最大900〔℃
〕、10秒間程度の赤外線順JA等に限定される。この
ためにこの方法によって実状される領域8のi型GaA
s I曽2のヘテロ」χ合界面近傍のキャリア両度はl
 X 10 ” 〔ttn−’)程度に止1す、充分に
低いオーミックa抗1直が得られ・よいという欠点かわ
る。
Another conventional example of ohmic horisumi formation is shown in Figure 1 (C
), the source electrode 5 and the drain 1
Selenium C3e) *? For this reason, a method using ion implantation is needed. However, in order to prevent the silicon doped into the n-type GaAs electron assembly layer 3 from diffusing and reducing the mobility of the two two-dimensional electron particles (the activation of the implanted ions Heat-treated gum can reach up to 900°C
], is limited to infrared order JA etc. for about 10 seconds. For this purpose, the i-type GaA in region 8 obtained by this method is
s I so 2 hetero''
The drawback is that it is possible to obtain a sufficiently low ohmic a resistance of only about X 10 ''[ttn-').

(d) 発明の目的 4・−発明にr3fJ if夕、)へフロ接合F E 
Tの如く変調ドーピングされた牛尋体恭体V仁、該袈駅
ドービンダの効果乏・損19ことlく、メーミック払)
す、等に適する高キャリアOり擾j疋す;域奮形u4す
る半力体装丘14のM遣方法を提供づ−ること全目的と
するっ(e)発明の栴ノぷζ 不発明の前記目的に、第1の不純物を含む第1の半熟体
1把上に第2の不純′#Jを含む第2の半41体層t−
選択的に設けた半蔓付基体をエネルギー線の照射によっ
て力1」熱し、該第1の不純物より人きい拡散長音Mす
る該第2の不純物を■興1の生碑3体層を越えて拡散さ
せる半み体叡1fq: a)製造方法によV達成されろ
(d) Purpose of the invention 4 - To the invention r3fJ if evening,) to flow junction F E
As in T, the modified doping of Ushijin body Kyoto body V-jin, the lack of effect and loss of the said dobinda, 19%, Memick payment)
The entire purpose of this invention is to provide a method of using a half-strength body 14 suitable for high carrier O exercise; For the purpose of the invention, a layer t- of the second half-boiled body containing the second impurity '#J is formed on one batch of the first half-boiled body containing the first impurity.
The selectively provided semi-attached substrate is heated by a force of 1'' by irradiation with energy rays, and the second impurity, which is more diffused than the first impurity, is spread over the three layers of the living monument of Kou 1. Diffusion half body 1fq: a) Achieve V by manufacturing method.

前記工ろ(ルギー線としては例えは赤外線が適しており
、また、前記第1及び第2の半導体層が■−■族化合物
牛尋体によって構広されていっとき、例えば前記第1の
不純物音シリコン、前記第2の不純物を錫とする組合わ
せがある〇 (f〕 発明の実施例 以下不発明を実施例により図mk診照して具体的に説明
する0 第2図(aJ乃至(山はヘテロ接合FETVC不兄明分
、適用したqU組′/I」を示す工程j−B’ft曲図
である。
For example, infrared light is suitable as the Lugie wire, and when the first and second semiconductor layers are made up of the ■-■ group compound body, for example, the first impurity sound There is a combination in which silicon and the second impurity are tin. is a process j-B'ft diagram showing the applied qU set'/I' for the heterojunction FETVC.

p72は1(a)参照 半絶縁性G a A s基板ll上に下記の各牛尋体ヒ
′ : 層企分子綜工11 ’<2キシヤル成長方法などにより
て、暦I次連11元して成長させる。212は置糾反の
ノンドーグGaAs層であり例えは厚さ0.5〔μm〕
程度とし、13 i′、LALo、3 GaO,7As
層でちり、厚さはめえは50〔旧η〕程度で、GaAs
 I鰭12とのへテロ夢合界面から6(nm]呈1表−
までをノンドープ、・七の他の餐(域はI X I Q
” 〔tyn−” )程度にシリコン全ドープしている
。丁た14に錫全I X 1019(grn−”〕程既
にドープしたn捜GaAs肋で、厚さは例えば50 [
: nm〕GfJ’eとする なお12ArJ:2次元
’c子ガスを示す。
p72 is a semi-insulating GaAs substrate ll referred to in 1(a). and grow it. 212 is a non-doped GaAs layer with a thickness of 0.5 [μm].
degree, 13 i′, LALo, 3 GaO, 7 As
The layer is dusty, the thickness is about 50 [old η], and the GaAs
6 (nm) from the heterozygotic interface with I fin 12 Table 1 -
Up to non-dope, 7 other meals (area I X I Q
The silicon is fully doped to the extent of "[tyn-"]. The thickness is, for example, 50[gr.
: nm]GfJ'e. Note that 12ArJ: indicates a two-dimensional 'c gas.

紀2図(切参照 その池の部分全選択的に除去′fろOこのスζ択的除去
に一111米枝街(先より、例えば二塩化二弗化炭素(
CCL2Ft ) ’eエッチヤントスるドライエツチ
ングによって容易に実施することができる。
Figure 2 (See Figure 2) Selectively remove parts of the pond.
CCL2Ft) 'e etchant can be easily carried out by dry etching.

第2図(e)参照 前記半導体基体の上面から赤外線フラッシュによって、
温度900(℃)=時間10秒間程度の加熱処理を行な
う、)GaAs/AtGaAs系半導体基体にドープさ
れた錫に第3図に例示する如く赤外線フラッジ−アニー
ルによって良く拡散してn型する深さに形成されて、G
aAs層12とのへテロ接合界面近傍における濃度は3
 X 10”(cTn−’33程が得られている0 蔽 なお第3図に4度900〔℃〕2時間10秒間の赤外線
フラッシュアニール後の錫の再分布プロファイル(曲線
B)を、アニール前のプロファイル(曲線A)と比較す
る図表である。
See FIG. 2(e), by an infrared flash from the top surface of the semiconductor substrate.
A heat treatment is performed at a temperature of 900 (°C) for a time of about 10 seconds.As shown in FIG. formed into G
The concentration near the heterojunction interface with the aAs layer 12 is 3
Figure 3 shows the tin redistribution profile (curve B) after infrared flash annealing at 4 degrees 900 [℃] for 2 hours and 10 seconds, and the tin redistribution profile (curve B) before annealing. This is a chart for comparison with the profile (curve A) of

また不実施例について、前記アニール俊の也子移動展は
アニール前の値と同等であって、シリコンの拡散に、l
:ろ低下に認められなかった0第2図(d)参照 ソースta16.ドレイン電&17及びゲート電極18
を配設する。これらの電極は従来技術によって形成する
ことが可能であり、不実施例においてに、例えばソース
及びドレイン電極については、AuGe層全厚さ50 
(nml1 r Au層全全厚300(nm3程度とし
て温度約450[C]、時間約5分間の合金化工程を実
施し、ゲート電極にアルミニウム(A/!、)e用いて
形成している。
Regarding non-experimental examples, the above-mentioned annealing value is equivalent to the value before annealing, and l
:No decrease in filtration was observed in Figure 2(d) Reference source ta16. Drain electrode &17 and gate electrode 18
to be placed. These electrodes can be formed by conventional techniques, and in some cases, for example, for source and drain electrodes, a total AuGe layer thickness of 50
(The total thickness of the Au layer is about 300 nm3, and an alloying process is performed at a temperature of about 450 [C] for about 5 minutes, and the gate electrode is formed using aluminum (A/!) e.

以上説明した製造方法によって完成したヘテロ接合FE
ATについて、2次元電子ガスの移m展は先に第1図Φ
ノに示した従来構造のへテロ接合FETと同等であり、
トランスコンダクタンスgmが第1図(c)に示した従
来例より増大しかつばらつきが減少するなどの特性の同
上が確認された【・(ロ)ノ 発明の詳細 な説明した如く不発明によれば、ヘテロ接合FET7z
どの変調ドーピングを含む半導体基体に高餞度で深い不
純物導入領域を、変調ドーピングの効果全損なうことな
く容易に形成することが可能となり、オーミック接触抵
抗の低減など半導体装置の特性を改善することができる
Heterojunction FE completed by the manufacturing method explained above
Regarding AT, the transition of two-dimensional electron gas is first shown in Figure 1 Φ
It is equivalent to the conventional structure heterojunction FET shown in Fig.
It was confirmed that the transconductance gm increased and the variation decreased compared to the conventional example shown in FIG. 1(c). , heterojunction FET7z
It is now possible to easily form a deep impurity-introduced region with high density in a semiconductor substrate containing any modulation doping without completely losing the effect of modulation doping, and it is possible to improve the characteristics of semiconductor devices such as reducing ohmic contact resistance. Can do 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)乃至(c)はへテロ接合FETの従来例を
示す断面図、第2図(a)乃至(d)Uヘテロ接合FE
Tにかかる不発明の実施例金示す工程順断面図、第3図
は赤外線フラッシュアニールによる錫の13−分布の例
を示す図表である。 図において、11は半絶縁性GaAs基板、12はノン
ドープのGaAs His 13はSi金ドープしたA
tGaAa II、l 4USnkドープしY、=Ga
As層、15はSn拡散領域、16はソース−i、17
はドレイン電極、18はゲート電極を示j0蓼I図 第2 図
Figures 1 (a) to (c) are cross-sectional views showing conventional examples of heterojunction FETs, Figures 2 (a) to (d) U heterojunction FE
FIG. 3 is a diagram showing an example of the 13-distribution of tin by infrared flash annealing. In the figure, 11 is a semi-insulating GaAs substrate, 12 is undoped GaAs His, and 13 is Si gold-doped A.
tGaAa II, l 4USnk doped Y, = Ga
As layer, 15 Sn diffusion region, 16 source-i, 17
18 indicates the drain electrode, and 18 indicates the gate electrode.

Claims (3)

【特許請求の範囲】[Claims] (1) 第1の不fjif物を含む第1の半導体層上に
第2の不純物を含む第2の半導体層全選択的に設けた半
導体基体をエネルギー線の照射によって加熱し、該第1
の不純物より大きい拡散長′jtVする該第2の不縄物
金該第1の半導体層會越えて拡散させることを特徴とす
る半導体装置の製造方法。
(1) A semiconductor substrate in which a second semiconductor layer containing a second impurity is selectively provided on a first semiconductor layer containing a first impurity is heated by irradiation with an energy beam,
A method of manufacturing a semiconductor device, characterized in that the second impurity metal is diffused over the first semiconductor layer with a diffusion length 'jtV greater than that of the impurity.
(2)hlJ記エネルギー線が赤外線であること全特徴
とする特許請求の範囲第1項記載の半導体装置の製造方
法。
(2) The method for manufacturing a semiconductor device according to claim 1, characterized in that the hlJ energy rays are infrared rays.
(3)11i]記第1及び第2の半導体層が■−■族化
合物牛専体によって溝底され、かつ前記第1の不純物が
シリコン、前記第2の不純物が錫であること奮゛特徴と
する特許請求の範囲iff!1項又は@2項記載の半導
体装置の製造方法。
(3) 11i] The first and second semiconductor layers are grooved with a ■-■ group compound, and the first impurity is silicon and the second impurity is tin. Claims IF! A method for manufacturing a semiconductor device according to Item 1 or @ Item 2.
JP6394784A 1984-03-30 1984-03-30 Manufacture of semiconductor device Granted JPS60206177A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6394784A JPS60206177A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6394784A JPS60206177A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60206177A true JPS60206177A (en) 1985-10-17
JPH033934B2 JPH033934B2 (en) 1991-01-21

Family

ID=13244045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6394784A Granted JPS60206177A (en) 1984-03-30 1984-03-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60206177A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195287A (en) * 2009-12-23 2016-11-17 インテル コーポレイション Improvement in conductivity of group iii-v semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536913A (en) * 1978-09-04 1980-03-14 Hitachi Ltd Semiconductor device
JPS57176775A (en) * 1981-04-23 1982-10-30 Sumitomo Electric Ind Ltd Manufacture of field effect transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536913A (en) * 1978-09-04 1980-03-14 Hitachi Ltd Semiconductor device
JPS57176775A (en) * 1981-04-23 1982-10-30 Sumitomo Electric Ind Ltd Manufacture of field effect transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016195287A (en) * 2009-12-23 2016-11-17 インテル コーポレイション Improvement in conductivity of group iii-v semiconductor device

Also Published As

Publication number Publication date
JPH033934B2 (en) 1991-01-21

Similar Documents

Publication Publication Date Title
JPH03501670A (en) Silicon carbide MOSFET
JPS60206177A (en) Manufacture of semiconductor device
JPS61147577A (en) Complementary semiconductor device
JP2005175254A (en) Doping method and semiconductor element using the same
JPS5851573A (en) Semiconductor device
JP2833500B2 (en) Method for manufacturing surface tunnel transistor
JPH02194626A (en) Manufacture of thin film transistor
JPH04167531A (en) Iii-v compound semiconductor device and manufacture thereof
JPH11251582A (en) Tunnel element
JPS6273675A (en) Semiconductor device
JP2000252466A (en) Power semiconductor device and manufacture thereof
JPS60160664A (en) Manufacture of semiconductor device
JPH0467338B2 (en)
JPS63288071A (en) Manufacture of semiconductor device
JPH0246773A (en) Compound semiconductor device and formation of its electrode
JPS63226920A (en) Manufacture of semiconductor device
JPH0380542A (en) Semiconductor integrated circuit device
JPS62213131A (en) Manufacture of iii-v semiconductor device
JPS59197176A (en) Manufacture of junction gate field-effect transistor
JPH0758715B2 (en) Method for manufacturing field effect transistor
JPH07283402A (en) Semiconductor device and its manufacture
JPS60140875A (en) Semiconductor device
JPH0442937A (en) Manufacture of semiconductor device
JPS6074684A (en) Manufacture of fet
JPS61191075A (en) Field effect type compound semiconductor device