JPS60204860A - Manufacture of sintered high-speed steel containing dispersed titanium compound - Google Patents

Manufacture of sintered high-speed steel containing dispersed titanium compound

Info

Publication number
JPS60204860A
JPS60204860A JP6194584A JP6194584A JPS60204860A JP S60204860 A JPS60204860 A JP S60204860A JP 6194584 A JP6194584 A JP 6194584A JP 6194584 A JP6194584 A JP 6194584A JP S60204860 A JPS60204860 A JP S60204860A
Authority
JP
Japan
Prior art keywords
powder
speed steel
titanium compound
titanium
reduced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6194584A
Other languages
Japanese (ja)
Other versions
JPH0114984B2 (en
Inventor
Masayuki Kanouzawa
叶澤 正之
Keiichi Wakashima
若島 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP6194584A priority Critical patent/JPS60204860A/en
Publication of JPS60204860A publication Critical patent/JPS60204860A/en
Publication of JPH0114984B2 publication Critical patent/JPH0114984B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To disperse more uniformly a titanium compound in a sintered body and to simplify the manufacture by combining a stage for mixing the titanium compound with a stage for blending it so as to finish mixing at a time. CONSTITUTION:Iron oxide powder, metallic oxide powder, metallic powder, alloy powder, carbon powder, titanium nitride powder and titanium carbonitride powder are prepd. as powdery starting materials. Among the materials the necessary materials including the iron oxide powder are reduced, and the materials are blended and mixed so as to provide the composition of high-speed contg. a prescribed titanium compound. The powdery mixture is reduced under heating in vacuum or an inert or reducing atmosphere to form reduced powder having the composition of high-speed steel contg. titanium nitride and/or titanium carbonitride. The reduced powder is press-molded to form a green compact, and sintered high-speed steel contg. a dispersed titanium compound is obtd. by sintering the green compact.

Description

【発明の詳細な説明】 この発明は、切削用およびその他各植の耐摩耗工具用と
して使用した場合に、すぐれた切削性能および工具性能
を示すチタン化合物分散型焼結高速度鋼の製造法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a titanium compound dispersed sintered high-speed steel that exhibits excellent cutting performance and tool performance when used as a wear-resistant tool for cutting and other types of plants. It is something.

先に、同一出願人は、特願昭58−140731号(特
開昭 −号)として、切削用 およびその他各種工具用として使用した場合にすぐれた
切削性能および工具性能を示す焼結高速度鋼の製造法を
提案した。
Previously, the same applicant filed Japanese Patent Application No. 58-140731 (Japanese Unexamined Patent Publication No. 140731) on a sintered high-speed steel that exhibits excellent cutting performance and tool performance when used for cutting and various other tools. proposed a manufacturing method.

この先行の焼結高速度鋼の製造法は、焼結高速度鋼の切
削性能と工具性能を向上させるために、従来の焼結高速
度鋼の製造法にチタン化合物の添加混合工程を付加した
ところを特徴とし、かつ、(a)主原料としての酸化鉄
微粉末に、皐蕎養与−→◆44.金縞醗化物微粉末と炭
素微粉末とを還元後所定の高速度鋼組成をもつように配
合する、配合工程、(b)この配合粉末に、真空中ある
いは水素雰囲気中で加熱還元処理を施して還元粉末とし
た後粉砕して高速度鋼微粉末とする、還元工程、(e)
この高速度鋼微粉末に、チタンの炭化物、窒化物および
炭窒化物のうちの1種または2種以上からなる微粉末を
配合して混合する、混合工程、(d)この混合粉末な圧
粉体にプレスする、成形工程、(e)この圧粉体を真空
中あるいは還元性ガス雰囲気中で焼結する、焼結工程、
の(a)〜(e)の一連の工程を骨子とするものである
。したがって、この製造法は(al 、 (cl 2回
の混合工程を必要とし、全体として製造工程が複雑とな
る上に、2度にわたる別々の混合工程は、焼結高速度鋼
中にチタン化合物を完全に均一に分散させる上で不利と
なる。
This advanced sintered high-speed steel manufacturing method added a titanium compound addition and mixing process to the conventional sintered high-speed steel manufacturing method in order to improve the cutting performance and tool performance of sintered high-speed steel. However, it has the following characteristics: (a) Iron oxide fine powder as the main raw material is supplemented with soba-→◆44. (b) A blending step of blending gold-stripe fluoride fine powder and carbon fine powder to have a predetermined high-speed steel composition after reduction; (b) subjecting this blended powder to a heating reduction treatment in a vacuum or a hydrogen atmosphere; (e) a reduction step of making a reduced powder and then pulverizing it to make a high-speed steel fine powder;
a mixing step of blending fine powder consisting of one or more of titanium carbides, nitrides, and carbonitrides with this high-speed steel fine powder; (d) a compacted powder of this mixed powder; (e) a sintering step of sintering this green compact in a vacuum or a reducing gas atmosphere;
The main point is a series of steps (a) to (e). Therefore, this manufacturing method requires two mixing steps (al, (cl), which complicates the manufacturing process as a whole, and two separate mixing steps add titanium compounds into the sintered high-speed steel. This is disadvantageous for completely uniform dispersion.

すなわち、上記(b)の還元工程においては、合金成分
が相互に充分拡散して完全に合金化した状態になってお
らず、それぞれの粉末粒子が弱く結合して2次粒子を形
成した状態で還元粉末が得られるから、これは容易に粉
砕されて平均粒径10μm以下の極めて微細な粉末にす
ることができ、したかって各成分が均一に混ざり合った
微粉末相を形成することができるけれども、上記製造法
においては、(C)工程で551J途アタン化合物を物
理的に混合するので、上記還元粉末の各構成成分と同程
度に均一にチタン化合物が分散した高速度鋼原料粉末を
得ることは困難となり、その結果得られた焼結高速度鋼
の組織は不均質になりやすいという欠点が生ずる、 この発明は、上記製造法の改良方法を提供するもので、
上記製造法において、(c)のチタン化合物の混合工程
を(a)の配合工程と合体して、(a)と(e)の2回
にわたる混合を1回ですませると、焼結体はチタン化合
物が一層均一に分散した状態で得られると同時に、製造
法自体も簡単になるという知見にもとづいてなされたも
のである。
In other words, in the reduction step (b) above, the alloy components are not sufficiently diffused into each other to form a complete alloy, and the individual powder particles are weakly bonded to form secondary particles. Since a reduced powder is obtained, it can be easily ground into a very fine powder with an average particle size of less than 10 μm, thus forming a fine powder phase in which each component is homogeneously mixed. In the above manufacturing method, since the 551J atane compound is physically mixed in the step (C), it is possible to obtain a high speed steel raw material powder in which the titanium compound is uniformly dispersed to the same degree as each component of the reduced powder. As a result, the structure of the resulting sintered high-speed steel tends to be non-uniform. This invention provides an improved method for the above manufacturing method.
In the above manufacturing method, if the mixing step of the titanium compound in (c) is combined with the blending step in (a), and the two mixing steps of (a) and (e) are completed once, the sintered body is made of titanium This was done based on the knowledge that the compound can be obtained in a more uniformly dispersed state, and at the same time, the manufacturing method itself can be simplified.

したがって、この発明は、チタン化合物分散型焼結高速
度鋼の製造法において、 原料粉末として、酸化鉄粉末、金属酸化物粉末。
Therefore, this invention provides a method for producing titanium compound dispersed sintered high-speed steel, which uses iron oxide powder and metal oxide powder as raw material powder.

金属粉末9合金粉末、および炭素粉末、さらvcg1化
チタフチタン粉末炭窒化チタン粉末を用意し、これら原
料粉末のうちの所要の原料粉末を、酸化鉄粉末を主原料
として還元後所定のチタン化合物含有の高速度鋼組成を
もつように配合し、混合した後、 この混合粉末に、真空中、不活性雰囲気中、あるいは還
元性雰囲気中で加熱還元処理を施して、窒化チタンおよ
び炭窒化チタンのうちの1種以上を含有した高速度鋼組
成の還元粉末とし、ついで、上記の粉砕後の還元粉末よ
り圧粉体をプレス成形し、焼結することを特徴とするも
のである。
Metal powder 9 alloy powder, carbon powder, VCG titanium titanium oxide powder, titanium carbonitride powder are prepared, and after reducing the required raw material powders with iron oxide powder as the main raw material, a predetermined titanium compound-containing powder is prepared. After blending and mixing to have a high-speed steel composition, this mixed powder is subjected to a heat reduction treatment in a vacuum, an inert atmosphere, or a reducing atmosphere to reduce the amount of titanium nitride and titanium carbonitride. A reduced powder having a composition of high-speed steel containing one or more of the above-mentioned pulverized powder is then press-molded into a green compact and sintered.

次に、この発明の焼結高速度鋼の製造法を詳述すれば、
次の(al〜(clの工程からなる。すなわち、(at
 まず、主原料として酸化鉄粉末、Co、V、Cr。
Next, the method for manufacturing sintered high-speed steel of this invention will be described in detail.
It consists of the following steps (al to (cl). That is, (at
First, the main raw materials are iron oxide powder, Co, V, and Cr.

W、Moなどの酸化物粉末のうちの1種または211以
上、必要に応じて前記の成分の金属粉末のうちの1種ま
たは2種以上、さらに必要に応じて前記の成分のうちの
2種以上で構成された合金粉末のうちの1種または2種
以上、および炭素粉末、さらに窒化チタン粉末および炭
窒化チタンのうちの1種以上を用意し、これら原料粉末
を、還元後、Co : ] 55重量%以下Veer、
Mo、Wの合計量=10〜40重量%、TiNおよび/
またはT1CN:1〜15重量%、C:0.5〜2.5
TiN、Feおよび不可避不純物:残部、の成分組成を
有する焼結高速度鋼が得られるように上記も粉末を配合
し、湿式混合し、乾燥後、その混合粉末に水素雰囲気ま
たはその他の還元性雰囲気中、不活性雰囲気中あるいは
真空中で加熱還元処理を施すことによって、チタン化合
物を含有した高速度鋼組成の還元粉末を製造する。
One or more of oxide powders such as W and Mo, one or more of the metal powders of the above components as necessary, and further two of the above components as necessary One or more of the alloy powders configured above, carbon powder, and one or more of titanium nitride powder and titanium carbonitride are prepared, and these raw material powders are reduced to Co:] 55% by weight or less Veer,
Total amount of Mo, W = 10 to 40% by weight, TiN and /
or T1CN: 1 to 15% by weight, C: 0.5 to 2.5
The above powders are blended and wet-mixed to obtain a sintered high-speed steel having a composition of TiN, Fe, and the remainder: unavoidable impurities. After drying, the mixed powder is placed in a hydrogen atmosphere or other reducing atmosphere. A reduced powder having a high speed steel composition containing a titanium compound is produced by performing a heating reduction treatment in an inert atmosphere or in a vacuum.

fbl 上記fatにおいて製造された還元粉末を粉砕
して得た平均粒径:10μm以下の極めて微細な粉末を
圧粉体に成形する。この場合、前記粉砕後の還元粉末は
極めて微細であるにもかかわらず、圧縮成形性が極めて
良好なので、容易にプレス成形することができる。
fbl A very fine powder with an average particle size of 10 μm or less obtained by pulverizing the reduced powder produced in the above fat is molded into a green compact. In this case, although the reduced powder after pulverization is extremely fine, it has extremely good compression moldability and can be easily press-molded.

(cl 上記圧粉体を、真空中、不活性雰囲気中、ある
いは還元性雰囲気中、温度1100〜1300℃に加熱
して焼結する 上記圧粉体を享[−f″る還元粉末は上
述のように極めて微細であるために焼結性は良好であり
、また、この結果得られた焼結体は、理論密度比95チ
以上を有し、しかも合金元素が完全に拡散した均質な微
細組織となっているから、前記焼結体を大気中で加熱し
ても空孔な介して焼結体内部が酸化されたり、脱炭され
たりすることがない。このことは、前記焼結体に直接大
気中で圧延および鍛造などの熱間塑性加工を施すことを
可能とする。また、特にこの発明においては、チタン化
合物を他の高速度鋼原料粉末と混合した上で、これらを
同時加熱還元処理しているから、チタン化合物が他の合
金成分と共に一層均一に分散゛した組織を有する焼結体
が得られ、したがって上記熱間塑性加工に際して、チタ
ン化合物を均一微細に分散させるための大きな加工率を
とる必要がない、 このよ5K、この発明は以上(at〜(clの工程を基
本としており、既に提案された上記高速度鋼の製造法と
較べて、製造工程が簡略化されるという利点を有すると
共に、この発明の加熱還元処理においては、炭化・還元
の難易度が異なる種々の金属酸化物、すなわち最も還元
されやすいFeやGoなど、中程度に還元・炭化しゃす
いWやMoなど、最も還元され難いCrやVなど、の粉
末が共存しているために、還元処理の間中、常に金属酸
化物粉末または金属炭化物粉末またはこの両者、さらに
チタン化合物粉末が金属粉末の間に介在して金属粉末同
志の融着が阻止され、その結果金属粉末と金属炭化物粉
末、さらにチタン化合物粉末とが互に緩く結合したもの
から構成された還元粉末が生成される。したがって、上
記の還元粉末は、小さな外力で容易に10μm以下の極
めて微細な粉末に粉砕されて各構成成分がそれぞれ均一
に分散した均質な粉末相を形成するので、その還元粉末
の原料粉末中に予め混合されていたチタン化合物も他の
成分と同様に均一に分散され、上記還元粉末を製造した
後、それに後からチタン化合物粉末を添加混合する、2
段階の混合工程を採用するIII記製造法に較べて、こ
の発明は一層均質な高速度鋼原料粉末を形成できるから
、結局一段と均質な焼結高速度鋼を製造できると(・5
効果を奏する。
(cl) The above green compact is sintered by heating to a temperature of 1100 to 1300°C in a vacuum, an inert atmosphere, or a reducing atmosphere. The resulting sintered body has a theoretical density ratio of 95 cm or more, and has a homogeneous microstructure in which the alloying elements are completely diffused. Therefore, even if the sintered body is heated in the atmosphere, the inside of the sintered body will not be oxidized or decarburized through the pores. It is possible to perform hot plastic working such as rolling and forging directly in the atmosphere.In addition, in this invention in particular, titanium compounds are mixed with other high-speed steel raw material powders and then they are simultaneously heated and reduced. Because of this treatment, a sintered body with a structure in which the titanium compound is more uniformly dispersed together with other alloy components can be obtained. Therefore, during the hot plastic working described above, large-scale machining is required to uniformly and finely disperse the titanium compound. There is no need to take a high speed steel.This invention is based on the above (at~(cl) process, and the manufacturing process is simplified compared to the above-mentioned high-speed steel manufacturing method that has already been proposed. In addition to having advantages, the thermal reduction treatment of the present invention can be applied to various metal oxides with different degrees of difficulty in carbonization and reduction, such as Fe and Go, which are most easily reduced, and W and Mo, which are moderately easy to reduce and carbonize. Because powders such as Cr and V, which are the most difficult to reduce, coexist, metal oxide powder, metal carbide powder, or both, and titanium compound powder are always present between the metal powders during the reduction process. As a result, a reduced powder composed of loosely bonded metal powder, metal carbide powder, and titanium compound powder is produced.Therefore, the above-mentioned reduced powder Titanium is easily ground into extremely fine powder of 10 μm or less by a small external force, forming a homogeneous powder phase in which each component is evenly dispersed. The compound is also uniformly dispersed like other components, and after producing the above-mentioned reduced powder, the titanium compound powder is added and mixed later.2.
Compared to the manufacturing method described in III which adopts a step-by-step mixing process, this invention can form a more homogeneous high-speed steel raw material powder, and as a result, a more homogeneous sintered high-speed steel can be manufactured (・5
be effective.

更に、既に提案された2段階の混合工程を含む前記製造
法によると、焼結体、特にロールのような大型焼結体の
芯の密度が低くなるという問題が生ずるが、この発明で
は大型品においても中心部まで密度が低下しない焼結体
が得られるという付加的な効果も賽するのであって、こ
のような差異が生ずる1つの理由として、前者の場合で
は2回目の混合工程に際して混合粉末中に多量の酸素が
混入し、その酸素が焼結処理の間にCOガスヶ発生させ
て組織内に空孔な形成させるのに対し、後者、すなわち
本発明の場合には、還元粉末中に酸素が僅かしか混入し
ないためと考えられる。
Furthermore, according to the previously proposed manufacturing method including the two-step mixing process, a problem arises in that the density of the core of a sintered body, especially a large sintered body such as a roll, becomes low. In the former case, the additional effect of obtaining a sintered body whose density does not decrease all the way to the center is one of the reasons for this difference. In contrast, in the case of the present invention, a large amount of oxygen is mixed in the reduced powder, and the oxygen generates CO gas during the sintering process, forming pores in the structure. This is thought to be because only a small amount of is mixed in.

また、焼結後さらに焼結体の密度と結合強度を高めるた
めに、すなわち靭性を高めるために、HIP処理を施す
ことも前記の熱間塑性加工と同様に有効である。
Further, in order to further increase the density and bonding strength of the sintered body after sintering, that is, to increase the toughness, it is also effective to perform HIP treatment in the same manner as the above-mentioned hot plastic working.

上述のように、構成成分の分布においても、また密度の
分布においても一層均質な焼結体を製造できるという、
この発明の効果は、結局−]#すぐれた切削性能を工具
性能を備えた焼結高速度鋼を製造できるという効果と密
接に結び付いており、このような効果は以下の実施例に
よって例証される。
As mentioned above, it is possible to produce a sintered body that is more homogeneous in both the distribution of constituent components and the distribution of density.
The effects of this invention are ultimately closely linked to the ability to produce a sintered high-speed steel with excellent cutting performance and tool performance, and such effects are illustrated by the following examples. .

実施例 1 原料粉末として、平均粒径: 0.15μmの酸化鉄(
Fe203)粉末、同0.1 p mのCr@化物粉末
、同0.2μmのW酸化物粉末、同0.2μmの■酸化
物粉末、同0.2μmのM。酸化物粉末、同0.4μm
のco粉末、同0.1μmの炭素粉末、同0.7μmの
TiN粉末および同0.7μmのTi C(L5 NO
,s粉末を用意し、これら原料粉末を還元後第1表に示
される組成の還元粉末が得られるように配合し、ボール
ミル中で72時間混合し、その混合粉末に、水素中、温
度1100℃に3時間保持の加熱還元処理を施すことに
よって、高速度鋼yA料粉末(a元粉末)を製造した2
この高速度鋼原料粉末な粉砕したところ、平均粒径:0
.5μmを肩する極めて微細な粉末とすることができた
。この粉末を5 ton/C−の圧力で圧縮して圧粉体
を成形し、さらに圧粉体を加工して所定の切削試験片の
形状に成形した。引続いて前記圧粉体を真空中、温度:
 1230℃に1時間保持することによって焼結し、理
論密度比:99.81をもった殆ど空孔のない本発明焼
結高速度鋼1〜5を製造した、 ついで、この結果得られた本発明焼結高速度鋼1〜5V
C対して、温度:1200℃、圧力ニ 1000気圧の
HIP処理を施し、更に温度: 1220℃に2分間保
持後焼入れ、ついで温度:540℃に1時間保持を2回
繰り返しの焼戻しの熱処理を施し、ロックウェル硬さく
HRC)を測定した後、被削材: JIS−8NCM8
 (硬さHB:240)、切込み:5箇、 送り=0.4■/刃、 切削速度:50m/”、 の条件で連続切削試験を行ない、切刃の逃げ面摩耗中が
0.1−に至るまでの切削耐久時間を測定した。これら
の試験結果を第1表に示した。
Example 1 Iron oxide (with an average particle size of 0.15 μm) was used as a raw material powder.
Fe203) powder, 0.1 pm of Cr@ oxide powder, 0.2 μm of W oxide powder, 0.2 μm of ■ oxide powder, 0.2 μm of M. Oxide powder, 0.4μm
co powder, 0.1 μm carbon powder, 0.7 μm TiN powder, and 0.7 μm TiC (L5 NO
, s powders were prepared, and these raw material powders were blended so as to obtain a reduced powder having the composition shown in Table 1 after reduction, mixed in a ball mill for 72 hours, and the mixed powder was heated in hydrogen at a temperature of 1100°C. High speed steel yA raw powder (a source powder) was produced by subjecting it to heat reduction treatment for 3 hours.
When this high-speed steel raw material powder was pulverized, the average particle size was 0.
.. It was possible to obtain extremely fine powder with a diameter of 5 μm. This powder was compressed at a pressure of 5 tons/C- to form a green compact, and the green compact was further processed to form a predetermined shape of a cutting test piece. Subsequently, the green compact is placed in a vacuum at a temperature of:
The sintered high-speed steels 1 to 5 of the present invention having almost no pores and having a theoretical density ratio of 99.81 were sintered by holding at 1230° C. for 1 hour. Invention sintered high speed steel 1~5V
C was subjected to HIP treatment at a temperature of 1,200°C and a pressure of 1,000 atm, followed by a tempering heat treatment of holding at a temperature of 1,220°C for 2 minutes, quenching, and then holding at a temperature of 540°C for 1 hour, repeated twice. After measuring the Rockwell hardness (HRC), work material: JIS-8NCM8
(Hardness HB: 240), depth of cut: 5 points, feed = 0.4 ■/tooth, cutting speed: 50 m/'', Continuous cutting test was conducted under the following conditions, and the flank wear of the cutting edge was 0.1- The cutting durability time until reaching the point was measured.The test results are shown in Table 1.

実施例 2 実施例1において本発明焼結高速度鋼1を製造するのに
用いたと同じ極めて微細な粉末に粉砕された還元粉末を
用い、2ton/cdの圧力で圧縮して、直径:360
m、厚さ:120+w+の圧粉体を成形し、さらに圧粉
体を加工して外径:320m。
Example 2 Using the same reduced powder that was ground into extremely fine powder as used in Example 1 to produce the sintered high-speed steel 1 of the present invention, it was compressed at a pressure of 2 tons/cd to a diameter of 360 mm.
A green compact with a thickness of 120+w+ was formed, and the green compact was further processed to have an outer diameter of 320m.

内径:200mm、厚さ:100m+のロール形状に成
形した。引続いて前記圧粉体を真空中、温度=1235
℃に2時間保持することによって焼結し、理論密度比:
99.7%をもった殆ど空孔のない本発明焼結高速度鋼
製ロールを製造した。
It was molded into a roll shape with an inner diameter of 200 mm and a thickness of 100 m+. Subsequently, the green compact was heated in vacuum at a temperature of 1235
Sintered by holding at ℃ for 2 hours, theoretical density ratio:
A sintered high speed steel roll of the present invention was produced which was virtually void free and had a porosity of 99.7%.

ついでこの本発明焼7結高速度鋼製ロールに対して、実
施例1で賽施したのと同一の条件でHIP処理と熱処理
を施したところ、ロックウェル硬さくCスケール)=6
7を示した。引続いて、この本発明焼結高速度鋼製ロー
ルを通常の条件で鋼線材の圧延に用いたところ、鋳造ロ
ールの10倍の寿命を示した。
Next, this sintered high-speed steel roll of the present invention was subjected to HIP treatment and heat treatment under the same conditions as those used in Example 1. As a result, the Rockwell hardness (C scale) = 6
7 was shown. Subsequently, when this sintered high-speed steel roll of the present invention was used for rolling steel wire under normal conditions, it exhibited a lifespan 10 times longer than that of a cast roll.

以上の結果は、この発明の方法によって!!!造された
焼結高速度鋼が、高硬度を有し、すぐれた耐摩耗性を示
すと共に、高靭性を有するので特に大型工具に成形した
場合でも、著しい耐久性を発揮できることを示しており
、このようなすぐれた性能は、この発明の製造法が空孔
を殆んど含まない極めて均質な組織を有する焼結高速度
鋼を製造できることを裏付けている。
The above results were obtained by the method of this invention! ! ! The results show that the produced sintered high-speed steel has high hardness, excellent wear resistance, and high toughness, so it can exhibit remarkable durability even when formed into large tools. Such excellent performance confirms that the production method of the present invention can produce sintered high-speed steel having an extremely homogeneous structure containing almost no pores.

上述のように、この発明の方法によれば、高硬度および
高靭性な有し、かつすぐれた耐摩耗性を示す焼結高速度
鋼を製造することができ、したがって、これを、これら
の特性が特に要求される切削用工具およびその他各種の
耐摩耗工具の製造に用いた場合には著しく長期に亘って
すぐれた性能を発揮するようになるのである。
As mentioned above, according to the method of the present invention, it is possible to produce a sintered high-speed steel having high hardness and high toughness and exhibiting excellent wear resistance. When used in the production of cutting tools and other various types of wear-resistant tools, which are particularly required, they exhibit excellent performance over an extremely long period of time.

出願人 三菱金属株式会社 代理人 富 1)和 夫 外1名 昭和59年4月20日 特願昭59−61945 号 2、発明の名称 チタン化合物分散型焼結高速度鋼の製造法3、補正をす
る者 事件との関係 特許出願人 代表者 永 野 健 4、代 理 人 住所 東京都千代H」区神田錦町−丁目23番地宗保第
二ビル8階
Applicant Mitsubishi Metals Co., Ltd. Agent: Tomi 1) Kazuo and 1 other person Patent Application No. 1981-61945, April 20, 1980, Title of Invention: Process for producing titanium compound dispersed sintered high-speed steel 3, Amendment Relationship with the case involving a person who does

Claims (1)

【特許請求の範囲】 原料粉末として、酸化鉄粉末、金属酸化物粉末。 金属粉末1合金粉末、および炭素粉末、さらVCN化チ
タン粉末および炭窒化チタン粉末を用意し、これら原料
粉末のうちの所要の原料粉末を、酸化鉄粉末を主原料と
して還元後所定のチタン化合物含有の高速度鋼組成をも
つように配合し、混合した後、 この混合粉末に、真空中、不活性雰囲気中、あるいは還
元性雰囲気中で加熱還元処理を施して、窒化チタンおよ
び炭窒化チタンのうちの181以上を含有した高速度鋼
組成の還元粉末とし、ついで、上記の粉砕後の還元粉末
より圧粉体をプレス成形し、焼結することを特徴とする
チタン化合物分散型焼結高速度鋼の製造法、
[Claims] Iron oxide powder and metal oxide powder are used as raw material powder. Metal powder 1 Alloy powder, carbon powder, VCN titanium powder, and titanium carbonitride powder are prepared, and required raw material powders from these raw powders are reduced using iron oxide powder as the main raw material, and then reduced to contain a predetermined titanium compound. After blending and mixing to have a high-speed steel composition of A titanium compound-dispersed sintered high-speed steel, characterized in that the reduced powder has a high-speed steel composition containing 181 or more of manufacturing method,
JP6194584A 1984-03-29 1984-03-29 Manufacture of sintered high-speed steel containing dispersed titanium compound Granted JPS60204860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194584A JPS60204860A (en) 1984-03-29 1984-03-29 Manufacture of sintered high-speed steel containing dispersed titanium compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194584A JPS60204860A (en) 1984-03-29 1984-03-29 Manufacture of sintered high-speed steel containing dispersed titanium compound

Publications (2)

Publication Number Publication Date
JPS60204860A true JPS60204860A (en) 1985-10-16
JPH0114984B2 JPH0114984B2 (en) 1989-03-15

Family

ID=13185831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194584A Granted JPS60204860A (en) 1984-03-29 1984-03-29 Manufacture of sintered high-speed steel containing dispersed titanium compound

Country Status (1)

Country Link
JP (1) JPS60204860A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164958A (en) * 1981-03-13 1982-10-09 Furukawa Electric Co Ltd:The Manufacture of sintered high-alloy steel
JPS58181848A (en) * 1982-04-20 1983-10-24 Furukawa Electric Co Ltd:The Nitride containing sintered high vanadium tool steel and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164958A (en) * 1981-03-13 1982-10-09 Furukawa Electric Co Ltd:The Manufacture of sintered high-alloy steel
JPS58181848A (en) * 1982-04-20 1983-10-24 Furukawa Electric Co Ltd:The Nitride containing sintered high vanadium tool steel and preparation thereof

Also Published As

Publication number Publication date
JPH0114984B2 (en) 1989-03-15

Similar Documents

Publication Publication Date Title
CN110387496B (en) WC-TiC-Co based gradient hard alloy without TiC phase on surface layer and preparation method thereof
JPH01261270A (en) Metal-containing titanium carbonitride-chromium carbide ceramic
CN102159743A (en) Carbide body and method for production thereof
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JPS60204860A (en) Manufacture of sintered high-speed steel containing dispersed titanium compound
CN110512132B (en) Gradient hard alloy with long rod-shaped crystal grains as surface layer WC and no cubic phase and preparation method thereof
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
JPH025811B2 (en)
JP2004211185A (en) Iron based sintered alloy excellent in dimensional precision, strength and sliding property, and its production method
JP2013541633A5 (en)
JPS58213842A (en) Manufacture of high strength cermet
JP6805454B2 (en) Cemented carbide and its manufacturing method, and cemented carbide tools
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JPH0321621B2 (en)
JPH0530881B2 (en)
JPS613861A (en) Sintered heat-and wear-resistant hard alloy for hot working tool
USRE17624E (en) Hard-metal alloy and the process of making same
JPH0256419B2 (en)
JPH0114985B2 (en)
JP3366696B2 (en) Manufacturing method of high strength cermet
JPH03290356A (en) Aluminum oxide based ceramics having high toughness and strength and production thereof
JPS647141B2 (en)
JPS6150909B2 (en)
JP2629941B2 (en) Co-reduced composite Mo alloy powder and Fe-based sintered alloy sliding member manufactured using the same
JPS59185702A (en) Composite raw material powder for producing sintered hard alloy and its production