JPH0256419B2 - - Google Patents

Info

Publication number
JPH0256419B2
JPH0256419B2 JP59061946A JP6194684A JPH0256419B2 JP H0256419 B2 JPH0256419 B2 JP H0256419B2 JP 59061946 A JP59061946 A JP 59061946A JP 6194684 A JP6194684 A JP 6194684A JP H0256419 B2 JPH0256419 B2 JP H0256419B2
Authority
JP
Japan
Prior art keywords
tin
steel
particle size
average particle
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59061946A
Other languages
Japanese (ja)
Other versions
JPS60204868A (en
Inventor
Masayuki Kanosawa
Keiichi Wakashima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP6194684A priority Critical patent/JPS60204868A/en
Publication of JPS60204868A publication Critical patent/JPS60204868A/en
Publication of JPH0256419B2 publication Critical patent/JPH0256419B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた高温耐摩耗性を有する、
鋼線材の熱間圧延ロールや、そのガイドローラな
どの焼結合金鋼製熱間加工工具に関するものであ
る。 従来、例えば特公昭57−55782号公報に記載さ
れる通り、重量%で(以下%は重量%を示す)、 C:0.2〜1.7%、 Cr:3.75〜4.5%、 V:0.8〜5.5%、 を含有し、 W:1.5〜22%、 Mo:0.5〜8%、 のうちの1種または2種、 を含有し、さらに必要に応じて、 Co:4.2〜17%、 を含有し、残りがFeと不可避不純物からなる組
成を有する高速度鋼の素地に、 平均粒径:1.5μm以下のTiの炭化物、窒化物、
および炭窒化物(以下、それぞれTiC,TiN,お
よびTiCNで示す)のうちの1種または2種以
上:1〜10%、 を分散含有させてなる焼結合金鋼で構成された熱
間加工工具が知られている。 この従来熱間加工工具を、例えばロール内側面
が走行する約1000〜1100℃の鋼線材により圧力を
付加された状態で高温加熱され、一方その外側面
が水冷されるような加熱と冷却の繰り返し条件下
で使用される鋼線材の熱間圧延ロールとして用い
た場合、すぐれた耐熱衝撃性を示し、熱亀裂の発
生がない反面、鋼線材との間にしばしば溶着現象
が発生し、これが原因で十分な耐摩耗性を示さな
いばかりでなく、ロール表面に肌荒れが発生し、
鋼線材の仕上り面も劣るものであつた。 そこで、本発明者等は、上述のような観点か
ら、上記の従来焼結合金鋼製熱間加工工具のもつ
高硬度および高靭性、さらにすぐれた耐熱衝撃性
を損うことなく、これに耐溶着性を付与して、高
温耐摩耗性の向上をはかるべく研究を行なつた結
果、上記従来熱間加工工具を構成する焼結合金鋼
の素地に分散含有させたTiC,TiN、および
TiCNは、上記の通り平均粒径:1.5μm以下と細
粒であるが、これを炭化バナジウム(以下VCで
示す)とTiNに代えると共に、その粒度を粗く
して、いずれも平均粒径で、VC:3〜15μm、
TiN:1.5〜5μmとし、かつその含有割合を、全
体に占める割合で、 VC:1.5〜21%、 TiN:1.1〜19.51%、 とすると、高硬度および高靭性、並びにすぐれた
耐熱衝撃性を保持した状態で、熱間加工材との溶
着性が著しく低減するようになり、この結果すぐ
れた高温耐摩耗性が得られるようになつて、長期
に亘つて肌荒れなどの発生なく、すぐれた性能を
発揮するようになるという研究結果を得たのであ
る。 この発明は、上記研究結果にもとづいてなされ
たものであつて、 C:0.2〜1.7%、 Cr:3.75〜4.5%、 Mo:0.5〜8%、 W:1.5〜22%、 Co:4.2〜17%、 V:0.8〜5.5%、 を含有し、残りがFeと不可避的不純物からなる
組成を有する高速度鋼の素地に、全体に占める割
合で、 平均粒径:3〜15μmを有するVC:1.5〜21%、 同じく平均粒径:1.5〜5μmを有するTiN:1.1
〜19.51%、 を分散含有させてなる焼結合金鋼で構成した高温
耐摩耗性のすぐれた焼結合金鋼製熱間加工工具に
特徴を有するものである。 つぎに、この発明の熱間加工工具を構成する焼
結合金鋼の成分組成を上記の通りに限定した理由
を説明する。 A 高速度鋼素地 (a) C C成分には、高速度鋼素地のマトリツクスに固
溶して、これを強化するほか、Cr,Mo,W,お
よびVと結合して、マトリツクス中に微細に分散
する炭化物を形成し、もつて耐摩耗性を向上させ
る作用があるが、その含有量が0.2%未満では前
記作用に所望の効果が得られず、一方その含有量
が1.7%を越えると高速度鋼素地の靭性が低下す
るようになることから、その含有量を0.2〜1.7%
と定めた。 (b) Cr,Mo,W,およびV これらの成分には、いずれも上記の通りC成分
と結合して炭化物を形成し、高速度鋼素地の硬さ
を高めて耐摩耗性を向上せしめるほか、高速度鋼
素地のマトリツクスに固溶して耐酸化性を向上さ
せる作用があるが、その含有量が、それぞれ
Cr:3.75%未満、Mo:0.5%未満、W:1.5%未
満、およびV:0.8%未満では前記作用に所望の
効果が得られず、一方Cr:4.5%、Mo:8%、
W:22%、およびV:5.5%をそれぞれ越えて含
有させると、靭性が低下するようになることか
ら、その含有量をそれぞれCr:3.75〜4.5%、
Mo:0.5〜8%、W:1.5〜22%、およびV:0.8
〜5.5%と定めた。 (c) Co Co成分には、高速度鋼素地のマトリツクスに
固溶して、これの耐熱性を向上させる作用がある
が、その含有量が4.2%未満では所望の耐熱性向
上効果が得られず、一方17%を越えて含有させて
も耐熱性により一層の向上効果が得られず、経済
性を考慮して、その含有量を4.2〜17%と定めた。 B VCおよびTiN (a) 含有量 これらの成分は、高速度鋼素地に均一に分散し
た形で共存含有し、もつて熱間加工工具の耐摩耗
性を向上させる作用をもつが、その含有量が
VC:1.5%未満およびTiN:1.1%未満では所望
の耐摩耗性向上効果が得られず、一方その含有量
が、VC:21%およびTiN:19.51%を越えると、
靭性が低下するようになることから、その含有量
を、VC:1.5〜21%、TiN:1.1〜19.51%と定め
た。 (b) 平均粒径 上記の通り、従来熱間加工工具を構成する焼結
合金鋼におけるTiC,TiN,およびTiCNの平均
粒径は1.5μm以下と細粒になつており、この状態
では熱間加工材との間に溶着現象の発生が避けら
れないものであり、一方この発明の熱間加工工具
の焼結合金鋼では、高速度鋼素地にVCとTiNを
分散させ、このVCとTiNを相対的に粗粒とする
ことにより溶着現象の発生を皆無とし、もつて高
温耐摩耗性の著しい向上をはかつたものである。
したがつて、その平均粒径が、それぞれVC:3μ
m未満およびTiN:1.5μm未満では上記の粒径粗
大化効果が満足に得られず、一方その平均粒径
が、VC:15μmおよびTiN:5μmをそれぞれ越
えると、靭性が低下するほか、耐熱衝撃性も低下
して熱亀裂が発生するようになることから、その
平均粒径を、VC:3〜15μm、TiN:1.5〜5μm
と定めた。 つぎに、この発明の熱間加工工具を実施例によ
り具体的に説明する。 実施例 原料粉末として、平均粒径:1.3μmのCr酸化物
粉末、同1.5μmのMo酸化物粉末、同1.2μmのW
酸化物粉末、同1.2μmのCo酸化物粉末、同1.5μm
のV酸化物粉末、同1.3μmの酸化鉄粉末、および
同0.5μmの炭素粉末を用意し、これら原料粉末を
所定の配合組成に配合し、通常の条件で混合した
後、軽くペレツト状に成型し、この成型体に、水
素気流中、温度:1120℃に4時間保持の条件で共
還元処理を施すことによつて、それぞれ第1表に
示される成分組成をもつた各種の高速度鋼粉末を
製造し、なお、この高速度鋼粉末は、合金成分が
相互に充分拡散して完全に合金化した状態になつ
ておらず、それぞれの粉末粒子が弱く結合して2
次粒子を形成した状態になつているので、これを
粉砕したところ、平均粒径:6.3μmに容易に粉砕
でき、ついで、この結果得られた各種の高速度鋼
粉末と、別途用意した平均粒径:3.2μm、6.5μ
m、および14.8μmの3種のVC粉末、並びに同
1.0μm、1.5μm、2.7μm、および4.9μmの4種の
TiN粉末、さらに上記高速度鋼粉末中に含有す
る微量酸素の還元並びに粉末間のミクロ的還元性
雰囲気の形成のための上記炭素粉末、加えて従来
熱間圧延ロール製造のための同1.5μmのTiC粉末
と同1.5μmのTiCN粉末を用い、これらの原料粉
末を同じく第1表に示される配合組成に配合し、
通常の条件で4時間の湿式混合を行ない、乾燥し
This invention has excellent high temperature wear resistance.
The present invention relates to hot working tools made of sintered alloy steel, such as hot rolling rolls of steel wire rods and guide rollers thereof. Conventionally, as described in Japanese Patent Publication No. 57-55782, for example, in weight % (hereinafter % indicates weight %), C: 0.2 to 1.7%, Cr: 3.75 to 4.5%, V: 0.8 to 5.5%, Contains W: 1.5 to 22%, Mo: 0.5 to 8%, one or two of the following, and further contains Co: 4.2 to 17% as necessary, and the remainder is Ti carbides and nitrides with an average grain size of 1.5 μm or less are added to the base material of high-speed steel, which has a composition consisting of Fe and unavoidable impurities.
and carbonitrides (hereinafter referred to as TiC, TiN, and TiCN, respectively): 1 to 10% of one or more of the following are dispersed in a hot working tool made of a sintered alloy steel. It has been known. This conventional hot working tool is repeatedly heated and cooled, for example, the inner surface of the roll is heated to a high temperature under pressure by a running steel wire rod at approximately 1000 to 1100 degrees Celsius, while the outer surface is water-cooled. When used as a hot rolling roll for steel wire rods used under certain conditions, it exhibits excellent thermal shock resistance and no thermal cracks occur, but on the other hand, welding phenomena often occur between the wire rods and the steel wire rods. Not only does it not have sufficient abrasion resistance, but it also causes roughness on the roll surface.
The finished surface of the steel wire was also poor. Therefore, from the above-mentioned viewpoint, the inventors of the present invention have developed a method that improves the high hardness and toughness of the conventional sintered alloy steel hot working tool, as well as its excellent thermal shock resistance. As a result of research aimed at improving high-temperature wear resistance by imparting weldability, we found that TiC, TiN, and
As mentioned above, TiCN is a fine particle with an average particle size of 1.5 μm or less, but by replacing it with vanadium carbide (hereinafter referred to as VC) and TiN, and making the particle size coarser, both have an average particle size of VC: 3~15μm,
TiN: 1.5 to 5 μm, and the content ratio to the whole is VC: 1.5 to 21%, TiN: 1.1 to 19.51%, high hardness and toughness, and excellent thermal shock resistance are maintained. In this state, the weldability with hot-processed materials is significantly reduced, and as a result, excellent high-temperature wear resistance is obtained, and excellent performance is maintained over a long period of time without the occurrence of skin roughness. They obtained research results that showed that This invention was made based on the above research results, and includes: C: 0.2-1.7%, Cr: 3.75-4.5%, Mo: 0.5-8%, W: 1.5-22%, Co: 4.2-17 %, V: 0.8 to 5.5%, and the remainder is Fe and unavoidable impurities. ~21%, also TiN with average particle size: 1.5-5 μm: 1.1
This is a hot working tool made of sintered alloy steel that has excellent high-temperature wear resistance and is made of sintered alloy steel that contains ~19.51% of the following dispersedly. Next, the reason why the composition of the sintered alloy steel constituting the hot working tool of the present invention is limited as described above will be explained. A High-speed steel base (a) C The C component not only dissolves in the matrix of the high-speed steel base to strengthen it, but also combines with Cr, Mo, W, and V to form fine particles in the matrix. It has the effect of forming dispersed carbide and improving wear resistance, but if its content is less than 0.2%, the desired effect cannot be obtained, while if its content exceeds 1.7%, it has the effect of improving wear resistance. Since the toughness of the speed steel matrix decreases, its content is reduced to 0.2 to 1.7%.
It was determined that (b) Cr, Mo, W, and V These components all combine with the C component to form carbides as described above, increasing the hardness of the high-speed steel matrix and improving its wear resistance. , has the effect of solid solution in the matrix of high-speed steel base material and improves oxidation resistance, but the content of each
When Cr: less than 3.75%, Mo: less than 0.5%, W: less than 1.5%, and V: less than 0.8%, the desired effect cannot be obtained, while Cr: 4.5%, Mo: 8%,
If the content exceeds W: 22% and V: 5.5%, the toughness decreases, so the content is reduced to Cr: 3.75 to 4.5%,
Mo: 0.5-8%, W: 1.5-22%, and V: 0.8
It was set at ~5.5%. (c) Co The Co component has the effect of forming a solid solution in the matrix of high-speed steel and improving its heat resistance, but if its content is less than 4.2%, the desired effect of improving heat resistance cannot be obtained. On the other hand, even if the content exceeds 17%, no further improvement in heat resistance can be obtained, so in consideration of economic efficiency, the content was set at 4.2 to 17%. B VC and TiN (a) Content These components coexist in a uniformly dispersed form in the high-speed steel matrix and have the effect of improving the wear resistance of hot working tools, but their content but
If VC: less than 1.5% and TiN: less than 1.1%, the desired wear resistance improvement effect cannot be obtained; on the other hand, if the content exceeds VC: 21% and TiN: 19.51%,
Since the toughness decreases, the content was determined to be 1.5 to 21% for VC and 1.1 to 19.51% for TiN. (b) Average grain size As mentioned above, the average grain size of TiC, TiN, and TiCN in the sintered alloy steel that makes up conventional hot working tools is as fine as 1.5 μm or less, and in this state, hot working The occurrence of welding between the workpiece and the workpiece is unavoidable.On the other hand, in the sintered alloy steel of the hot working tool of this invention, VC and TiN are dispersed in the high-speed steel base, and the VC and TiN are By making the particles relatively coarse, there is no occurrence of welding phenomena, and the high-temperature wear resistance is significantly improved.
Therefore, the average particle size is VC: 3 μ
If the average particle size exceeds 15 μm for VC and 5 μm for TiN, the toughness will decrease and the thermal shock resistance will decrease. The average grain size is set to 3 to 15 μm for VC and 1.5 to 5 μm for TiN.
It was determined that Next, the hot working tool of the present invention will be specifically explained using examples. Example Raw material powders include Cr oxide powder with an average particle size of 1.3 μm, Mo oxide powder with an average particle size of 1.5 μm, and W with an average particle size of 1.2 μm.
Oxide powder, 1.2μm Co oxide powder, 1.5μm
V oxide powder, iron oxide powder of 1.3 μm, and carbon powder of 0.5 μm are prepared, and these raw powders are blended into a predetermined composition, mixed under normal conditions, and then lightly molded into pellets. By subjecting this molded body to co-reduction treatment under conditions of holding the temperature at 1120°C for 4 hours in a hydrogen stream, various high-speed steel powders having the compositions shown in Table 1 were obtained. However, in this high-speed steel powder, the alloy components have not sufficiently diffused into each other to form a complete alloy, and the individual powder particles are weakly bonded to each other.
When this was pulverized, it was easily pulverized to an average particle size of 6.3 μm, and then various high-speed steel powders obtained as a result were mixed with the average granules prepared separately. Diameter: 3.2μm, 6.5μm
3 types of VC powder, 14.8 μm, and
4 types: 1.0μm, 1.5μm, 2.7μm, and 4.9μm
TiN powder, the carbon powder for reducing trace amounts of oxygen contained in the high-speed steel powder and creating a micro-reducing atmosphere between the powders, and the same 1.5 μm for conventional hot rolling roll manufacturing. Using TiCN powder of the same 1.5 μm as TiC powder, these raw powders were blended into the composition shown in Table 1,
Wet mixed for 4 hours under normal conditions and dried.

【表】 後、静水圧プレスを使用し、3000Kg/cm2の圧力に
て加圧成形して直径:430mm〓×長さ:123mmの寸
法をもつた圧粉体とし、この圧粉体を真空中、温
度:1230℃に1時間保持の条件で焼結して理論密
度比:99.5%の焼結体とし、引続いてこの焼結体
に、温度:1200℃、圧力:1000気圧、保持時間:
30分の条件で熱間静水圧プレス(HIP)処理を施
し、最終的に温度:1200℃のソルトバス中に2分
間浸漬後、2段冷却し、さらに温度:560℃に1
時間保持の焼戻し処理を3回行なうことによつ
て、実質的に配合組成と同じ成分組成を有し、か
つ直径:330mm〓×長さ:95mmの寸法をもつた熱間
加工工具としての本発明焼結合金鋼製熱間圧延ロ
ール(以下本発明熱間圧延ロールという)1〜13
および従来焼結合金製熱間圧延ロール(以下従来
熱間圧延ロールという)1〜3をそれぞれ製造し
た。 つぎに、この結果得られた各種の熱間圧延ロー
ルについて、ロツクウエル硬さ(Cスケール)お
よび抗折力を測定すると共に、これを鋼線材熱間
圧延機に組込み、C:0.25%、Si:0.25%、
Mn:
[Table] After that, using a hydrostatic press, pressure molding is performed at a pressure of 3000 kg/cm 2 to form a compact with dimensions of diameter: 430 mm x length: 123 mm, and this compact is vacuum-molded. The sintered body was sintered at a temperature of 1230°C for 1 hour to obtain a sintered body with a theoretical density ratio of 99.5%, and then the sintered body was sintered at a temperature of 1200°C, a pressure of 1000 atm, and a holding time of 1000 atm. :
Hot isostatic pressing (HIP) treatment was performed for 30 minutes, and finally immersed in a salt bath at a temperature of 1200℃ for 2 minutes, cooled in two stages, and further heated to a temperature of 560℃ once.
The present invention is a hot working tool which has substantially the same composition as the compounded composition and has dimensions of diameter: 330 mm × length: 95 mm by performing time-hold tempering treatment three times. Sintered alloy steel hot rolling roll (hereinafter referred to as the hot rolling roll of the present invention) 1 to 13
And conventional sintered alloy hot rolling rolls (hereinafter referred to as conventional hot rolling rolls) 1 to 3 were manufactured, respectively. Next, the Rockwell hardness (C scale) and transverse rupture strength of the various hot rolling rolls obtained as a result were measured, and the rolls were installed in a steel wire hot rolling mill, with C: 0.25% and Si: 0.25%,
Mn:

【表】【table】

【表】 0.4%、P:0.04%以下、S:0.04%以下からな
る組成を有する鋼材:3000tonの圧延を行ない、
高温耐摩耗性を評価する目的で、圧延後のロール
カリバー面の平均摩耗深さを測定し、さらに耐熱
衝撃性を評価する目的で、その表面の熱クラツク
の有無を観察した。これらの結果を第2表に示し
た。 第1表および第2表に示される結果から、本発
明熱間圧延ロール1〜13は、いずれも高速度鋼素
地に分散含有するTiC,TiCN,およびTiNの粒
径が細粒の焼結合金鋼で構成された従来熱間圧延
ロール1〜3とほぼ同等の高硬度および高靭性、
並びにすぐれた耐熱衝撃性を保持した状態で、こ
れより一段とすぐれた高温耐衝撃性を有すること
が明らかである。 上述のように、この発明の焼結合金鋼製熱間加
工工具は、高硬度および高靭性、並びにすぐれた
耐熱衝撃性を有し、さらに一段とすぐれた高温耐
摩耗性を有しているので、例えば鋼線材などの熱
間圧延ロールや熱間圧延ガイドロールなどとして
用いた場合に著しく長期に亘つてすぐれた性能を
発揮するのである。
[Table] Steel material with a composition consisting of 0.4%, P: 0.04% or less, S: 0.04% or less: Rolled 3000 tons,
For the purpose of evaluating high-temperature wear resistance, the average wear depth of the roll caliber surface after rolling was measured, and for the purpose of further evaluating thermal shock resistance, the presence or absence of thermal cracks on the surface was observed. These results are shown in Table 2. From the results shown in Tables 1 and 2, hot rolling rolls 1 to 13 of the present invention are all made of sintered alloys with fine grain sizes of TiC, TiCN, and TiN dispersed in the high-speed steel base. High hardness and toughness almost equivalent to conventional hot rolling rolls 1 to 3 made of steel,
It is clear that this material has even better high-temperature impact resistance while maintaining excellent thermal shock resistance. As mentioned above, the sintered alloy steel hot working tool of the present invention has high hardness, high toughness, and excellent thermal shock resistance, and further has even better high temperature wear resistance. For example, when used as a hot rolling roll for steel wire or a hot rolling guide roll, it exhibits excellent performance over a long period of time.

Claims (1)

【特許請求の範囲】 1 C:0.2〜1.7%、 Cr:3.75〜4.5%、 Mo:0.5〜8%、 W:1.5〜22%、 Co:4.2〜1.7%、 V:0.8〜5.5%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有する高速度鋼の素地に、全
体に占める割合(重量%)で、 平均粒径:3〜15μmを有する炭化バナジウ
ム:1.5〜21%、 同じく平均粒径:1.5〜5μmを有する窒化チタ
ン:1.1〜19.51%、 を分散含有させてなる焼結合金鋼で構成したこと
を特徴とする熱間耐摩耗性のすぐれた焼結合金鋼
製熱間加工工具。
[Claims] 1 C: 0.2 to 1.7%, Cr: 3.75 to 4.5%, Mo: 0.5 to 8%, W: 1.5 to 22%, Co: 4.2 to 1.7%, V: 0.8 to 5.5%, Vanadium carbide having an average particle size of 3 to 15 μm: 1.5 to 15 μm in proportion to the total (weight %) of the high-speed steel substrate, with the remainder consisting of Fe and unavoidable impurities (weight %) A sintered alloy with excellent hot wear resistance characterized by being composed of a sintered alloy steel containing dispersed titanium nitride: 1.1% to 19.51%, which also has an average particle size of 1.5 to 5 μm. Steel hot working tools.
JP6194684A 1984-03-29 1984-03-29 Sintered alloy steel for hot working tool having superior hot wear resistance Granted JPS60204868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6194684A JPS60204868A (en) 1984-03-29 1984-03-29 Sintered alloy steel for hot working tool having superior hot wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6194684A JPS60204868A (en) 1984-03-29 1984-03-29 Sintered alloy steel for hot working tool having superior hot wear resistance

Publications (2)

Publication Number Publication Date
JPS60204868A JPS60204868A (en) 1985-10-16
JPH0256419B2 true JPH0256419B2 (en) 1990-11-30

Family

ID=13185864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6194684A Granted JPS60204868A (en) 1984-03-29 1984-03-29 Sintered alloy steel for hot working tool having superior hot wear resistance

Country Status (1)

Country Link
JP (1) JPS60204868A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134039A (en) * 1988-04-11 1992-07-28 Leach & Garner Company Metal articles having a plurality of ultrafine particles dispersed therein
US5238482A (en) * 1991-05-22 1993-08-24 Crucible Materials Corporation Prealloyed high-vanadium, cold work tool steel particles and methods for producing the same
SE514410C2 (en) * 1999-06-16 2001-02-19 Erasteel Kloster Ab Powder metallurgically made steel
JP6312120B2 (en) * 2013-10-03 2018-04-18 山陽特殊製鋼株式会社 Powdered high speed tool steel and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755782A (en) * 1980-09-22 1982-04-02 Meidensha Electric Mfg Co Ltd Primary frequency control system of induction motor
JPS58181848A (en) * 1982-04-20 1983-10-24 Furukawa Electric Co Ltd:The Nitride containing sintered high vanadium tool steel and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5755782A (en) * 1980-09-22 1982-04-02 Meidensha Electric Mfg Co Ltd Primary frequency control system of induction motor
JPS58181848A (en) * 1982-04-20 1983-10-24 Furukawa Electric Co Ltd:The Nitride containing sintered high vanadium tool steel and preparation thereof

Also Published As

Publication number Publication date
JPS60204868A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
US3811961A (en) Boridized steel-bonded carbides
JPH0256419B2 (en)
JP2689513B2 (en) Low oxygen powder high speed tool steel
US4859124A (en) Method of cutting using a titanium diboride body
JPS62278250A (en) Thread rolling dies made of dispersion-strengthened-type sintered alloy steel
JPH0698540B2 (en) Method for manufacturing a cutting tool made of thermite with excellent wear resistance
JPH0143017B2 (en)
JPS5937742B2 (en) High wear resistance sintered high speed steel
JPH0530881B2 (en)
JPS6056782B2 (en) Cermets for cutting tools and hot working tools
JPS6056781B2 (en) Cermets for cutting tools and hot working tools
JPH0555588B2 (en)
JPH025811B2 (en)
JPH0229736B2 (en) BUNSANKYOKAGATASHOKETSUGOKINKOSEINETSUKANTAIMAMOBUZAI
JPS6245291B2 (en)
JP2621474B2 (en) Tungsten carbide based cemented carbide tool members with excellent wear and fracture resistance
JPS6056043A (en) Cermet
JPS6117899B2 (en)
JPS60135552A (en) Hyperfine tungsten carbide-base sintered alloy
JPH11172364A (en) Production of sintered tool steel
JPS6335706B2 (en)
JPS6245293B2 (en)
JP3366696B2 (en) Manufacturing method of high strength cermet
CA1235579A (en) Method of making and using a titanium diboride comprising body
JPS5952950B2 (en) Tungsten carbide-based cemented carbide with excellent high-temperature properties