JPS60198978A - Driving method of charge transfer image pickup device - Google Patents

Driving method of charge transfer image pickup device

Info

Publication number
JPS60198978A
JPS60198978A JP59054391A JP5439184A JPS60198978A JP S60198978 A JPS60198978 A JP S60198978A JP 59054391 A JP59054391 A JP 59054391A JP 5439184 A JP5439184 A JP 5439184A JP S60198978 A JPS60198978 A JP S60198978A
Authority
JP
Japan
Prior art keywords
vertical
charge
transfer
charge transfer
charges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59054391A
Other languages
Japanese (ja)
Other versions
JPH0714199B2 (en
Inventor
Sakaki Horii
堀居 賢樹
Takao Kuroda
黒田 隆男
Yuji Matsuda
祐二 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP59054391A priority Critical patent/JPH0714199B2/en
Publication of JPS60198978A publication Critical patent/JPS60198978A/en
Publication of JPH0714199B2 publication Critical patent/JPH0714199B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To prevent the generation of flicker by transferring an electric charge of the 1st vertical transfer electrode group and an electric charge of the 2nd vertical transfer electrode group and mixing the charges so as to form them into a unit picture element signal charge. CONSTITUTION:Since the electric charge stored in a photoelectric conversion storage diode 1 is transferred to transfer electrodes phiV2, phiV4 of a vertical charge transfer register 9, the highest voltage is applied. The electrode of the highest level is applied with the phiV2 and with the phiV4 after a prescribed time. Then the phiV2 and the phiV4 are applied with a prescribed time difference so as to transfer the stored charge of the diode 1 to the register 9. The two charges are mixed after that and the result is outputted sequentially. On the other hand, the electrodes phiV1, phiV3 are closed when the stored charge of the diode 1 is transferred to the phiV2 and phiV4 to prevent flicker due to the leakage of the charge caused by capacitor coupling.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電荷転送撮像装置の駆動方法に関するものでお
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of driving a charge transfer imaging device.

(従来例の構成とその問題A) 第1図は従来の電荷転送撮像装置の構成を示すもので、
n型シリコン基板上のpウェル層上に2次元的に複数分
離配列されたn層による光電変換蓄積ダイオード(以下
ダイオードという。)1と、このダイオード1の電荷を
1水平周期毎に垂直方向に並列電荷転送する垂直電荷転
送レジスタ2と、垂直電荷転送レジスタ2の並列転送電
荷を順次読み出す水平転送電荷読出しレジスタ3を備え
ている。
(Conventional configuration and its problem A) Figure 1 shows the configuration of a conventional charge transfer imaging device.
A plurality of photoelectric conversion storage diodes (hereinafter referred to as diodes) 1 are formed by a plurality of n-layers separated and arranged two-dimensionally on a p-well layer on an n-type silicon substrate, and the charge of this diode 1 is vertically distributed every horizontal period. It includes a vertical charge transfer register 2 that transfers charges in parallel, and a horizontal transfer charge readout register 3 that sequentially reads out the parallel transfer charges of the vertical charge transfer register 2.

また、画像のちらつき防止のための2対1インタ一レー
ス動作させるl−要から、第1の垂直電極φv1と第2
の垂直転送電極φv2に対してそれぞれ1個ずつのダイ
オード1が設けられ、このダイオード1の電荷は、垂直
転送電極下にダイオード1に隣接して設けられたポテン
シャルバリア(第2図8)を形成する構成により読出き
れる。過剰電荷が発生したとき画像が潰れるプルーミン
グを抑制するため、ダイオードをnpn構造で形成する
方法がとられている。
In addition, since the 2-to-1 interlace operation is performed to prevent image flickering, the first vertical electrode φv1 and the second
One diode 1 is provided for each vertical transfer electrode φv2, and the charge of this diode 1 forms a potential barrier (FIG. 2 8) provided adjacent to the diode 1 under the vertical transfer electrode. It can be read completely by the configuration. In order to suppress pluming, which destroys images when excessive charges are generated, a method is used in which diodes are formed with an npn structure.

第2図は画素近傍の構造を示す断面図である。FIG. 2 is a cross-sectional view showing the structure near the pixel.

pウェル5とn型基板6間には電圧vsuaをバイアス
し、pn接合ダイオード1部の2層7は空乏化されてい
る。
A voltage vsua is biased between the p-well 5 and the n-type substrate 6, and the second layer 7 of the pn junction diode 1 is depleted.

なお第2図において、8はポテンシャルバリア部、9は
垂直電荷転送レジスタのチャンネル(埋め込み層)、1
0は垂直転送電極、11はチャンネルストッパー、12
は光遮蔽膜、13Fi絶縁膜である。
In FIG. 2, 8 is a potential barrier section, 9 is a channel (buried layer) of a vertical charge transfer register, and 1 is a potential barrier section.
0 is a vertical transfer electrode, 11 is a channel stopper, 12
is a light shielding film and a 13Fi insulating film.

第3図(ωにブルーミングの抑制機能を示すための説明
図でるる。
FIG. 3 (ω) is an explanatory diagram for showing the blooming suppression function.

ダイオード1の電荷は、ポテンシャルバリア部8を開い
て、垂直電荷転送レジスタのチャンネル9へ信号電荷を
移すことにより図の14で示す空の状態になる。ダイオ
ード1に入射する光により電荷が蓄積され、ポテンシャ
ルの井戸は14に示すように浅くなって−く。ダイオー
ドの2層7のポテンシャルは転送ゲート部のポテンシャ
ル]6より常に深くなるよう、ダイオードの2層7とn
型基板6間のバイアス電圧V80Bが調節されている。
The charge in the diode 1 becomes empty as shown at 14 in the figure by opening the potential barrier section 8 and transferring the signal charge to the channel 9 of the vertical charge transfer register. Charges are accumulated by the light incident on the diode 1, and the potential well becomes shallow as shown at 14. The two layers 7 and n of the diode are set so that the potential of the two layers 7 of the diode is always deeper than the potential of the transfer gate section.
The bias voltage V80B between the mold substrates 6 is adjusted.

このため、ダイオード1に愚積された電荷は、過剰電荷
となった状態において、垂直電荷転送レジスタのチャン
ネル9へ流れ込む前に15で示すようKn型基板6方向
へ流れ出し、これによりブルーミング電荷が吸収できる
ことになる。
Therefore, the charges accumulated in the diode 1, in the state of excess charge, flow toward the Kn type substrate 6 as shown by 15 before flowing into the channel 9 of the vertical charge transfer register, and as a result, the blooming charges are absorbed. It will be possible.

第3図(b)は垂直電荷転送レジスタへ印加されるクロ
ックパルスの一例で、ダイオード1から垂直電荷転送レ
ジスタ2へ信号電荷を転送するとき1水平転送電荷読出
しレジスタ3へ垂直電荷転送レジスタ2の信号電荷を転
送するクロックパルスvMより高い電圧vHが印加され
る。ポテンシャルバリア部8ri、垂直電荷転送レジス
タ2の転送電極10と共通で水平転送電荷読出しレジス
タ3へ垂直電荷転送レジスタ2の信号電荷を転送する時
は開かないで、ダイオード1から垂直電荷転送レジスタ
2へ信号電荷を移すとき開くようなバリア構造となって
いる。
FIG. 3(b) is an example of a clock pulse applied to the vertical charge transfer register. A voltage vH higher than a clock pulse vM for transferring signal charges is applied. The potential barrier section 8ri is common to the transfer electrode 10 of the vertical charge transfer register 2, and is not opened when transferring the signal charge of the vertical charge transfer register 2 to the horizontal transfer charge readout register 3, but from the diode 1 to the vertical charge transfer register 2. It has a barrier structure that opens when signal charges are transferred.

第4図はフィールド蓄積動作の印加クロ、クパルスを示
すもので、前記のような撮像装置で標準テレビジョン方
式による撮像を行なう場合に垂直電荷転送レジスタに印
加されるクロックパルスを示している。
FIG. 4 shows the clock pulses applied in the field accumulation operation, and shows the clock pulses applied to the vertical charge transfer register when the above-described image pickup apparatus performs image pickup according to the standard television system.

φvlを駆動するクロ、クパルスとφV2を駆動するク
ロックパルスが垂直電荷転送レジスタ2に加えられる。
A clock pulse that drives φvl and a clock pulse that drives φV2 are applied to the vertical charge transfer register 2.

第1フイールドでは垂直ブランキング期間t1で、高い
クロックパルスが印加されているφv1クロックパルス
により、これに対応したダイオード1の電荷を垂直電荷
転送レジスタ2に読み出し、以後順次垂直、水平転送し
て出力し、第2フイールドでは垂直ブランキング期間t
2でのφ7□りρツクパル2により、φV2 K対応し
たダイオード1の電荷を垂直電荷転送レジスタ2に読み
出し、以後第1フイー、ルドと同様転送出力するように
駆動する。このような駆動方法によれば、第1、第2フ
イールドでは垂直方向の異なるダイオードの電荷が読み
出されるため完全な2:1のインターレース動作が実現
され、高い垂直解像度が得られる。また、各ダイオード
は2フイールドで1回の読み出しとなるため、2フイー
ルド蓄積、すなわち、フレーム蓄積動作となる。このよ
うなフレーム蓄積動作による撮像でも殆んど支障のない
撮像が可能であるが、高速に移動する物体を撮像する場
合には、蓄積時間の影響による画像のt!けが発生し、
満足な画像が得られなくなる。
In the first field, during the vertical blanking period t1, the corresponding charge of the diode 1 is read out to the vertical charge transfer register 2 by the φv1 clock pulse to which a high clock pulse is applied, and thereafter it is sequentially transferred vertically and horizontally and output. However, in the second field, the vertical blanking period t
The charge of the diode 1 corresponding to φV2K is read out to the vertical charge transfer register 2 by the φ7□ ρ pulse 2 at 2, and is thereafter driven to be transferred and output in the same manner as the first field. According to such a driving method, since charges of diodes in different vertical directions are read out in the first and second fields, a perfect 2:1 interlacing operation is realized and high vertical resolution is obtained. Furthermore, each diode is read out once for two fields, resulting in two-field accumulation, that is, a frame accumulation operation. Although it is possible to capture an image with almost no problems even when capturing an image using such a frame accumulation operation, when capturing an object that moves at high speed, the t! An injury occurs;
Satisfactory images cannot be obtained.

第5図は従来例における駆動パルスを示すもので、上記
のような蓄積時間のぼけを軽減するために印加するクロ
ックパルスを示すものである。
FIG. 5 shows drive pulses in the conventional example, and shows clock pulses applied to reduce the blurring of the accumulation time as described above.

基本的には各々のダイオードをフィールド毎に読み出せ
ばよく、第1図に示した撮像素子ではダイオードでの蓄
積電荷は、垂直転送電極に印加きれるφ70.φv2を
同時に高い電圧にすれば、φVllφ、。
Basically, it is sufficient to read out each diode field by field, and in the image sensor shown in FIG. 1, the accumulated charge in the diode is φ70. If φv2 is set to a high voltage at the same time, φVllφ.

に対応したそれぞれのダイオードの電荷を各フィールド
同時に読み出すことができる。まだ標準テレビジョン方
式で不可欠なインターレース動作は同時に読み出した電
荷を、例えば第1フイールドではφ7.の電荷を1垂直
転送によってφ7□に転送しφv2の電荷と混合した後
、順次垂直、水平転送して出力し、第2フイールドでは
φ7□の電荷を垂直転送によりφ7、に転送し、混合し
た後、順次垂直、水平転送して出力すれば可能である。
The electric charge of each diode corresponding to each field can be read out simultaneously. The interlacing operation, which is still indispensable in the standard television system, uses charges read out at the same time, for example, in the first field, φ7. The charge of φ7□ was transferred to φ7□ by one vertical transfer and mixed with the charge of φv2, and then sequentially transferred vertically and horizontally and output. In the second field, the charge of φ7□ was transferred to φ7 by vertical transfer and mixed. This can be done by sequentially transferring the data vertically and horizontally and outputting it.

しかしながら、素子構成上からは実現可能なフィールド
蓄積駆動方法にもかかわらず、実際に素子を駆動した場
合フィールド毎に大きな信号レベル差を生じ、画面上フ
リッカとなって満足な撮像ができないことが分っている
。このフリッカを抑えるため駆動方法として次の方法が
ある。すなわち第1フイールドでは第1或いは第2の一
方の垂直転送電極に対応したダイオードの蓄積電荷を垂
直電荷転送レジスタに読み出した後、この電荷を1垂直
転送し、続いて最初に読み出したダイオードとは異なる
ダイオードの蓄積電荷を垂直電荷転送レジスタに読み出
し、最初に読み出した電荷と混合して、順次読み、出力
し、第2のフィールドでは、第1のフィールドとは異な
るダイオードの蓄積電荷を垂直電荷転送レジスタに読み
出し、1垂直転送し、もう一方のダイオードからの蓄積
電荷を読み出し、混合して、順次出力する方法で6る。
However, even though the field accumulation driving method is feasible from the element configuration, it has been found that when the element is actually driven, a large signal level difference occurs from field to field, resulting in flicker on the screen, making it impossible to obtain satisfactory imaging. ing. The following driving methods are available to suppress this flicker. That is, in the first field, after reading out the accumulated charge of the diode corresponding to either the first or second vertical transfer electrode to the vertical charge transfer register, this charge is vertically transferred one time, and then the first diode read out is The accumulated charges of different diodes are read out to a vertical charge transfer register, mixed with the charges read out first, and sequentially read and output. In the second field, the accumulated charges of diodes different from the first field are transferred vertically. 6. Read it to the register, perform one vertical transfer, read the accumulated charge from the other diode, mix it, and sequentially output it.

しかしこの方法はフリッカの低減において完全でないこ
とが明らかとなった。低減効果は認められるものの、明
るい被写体を映した場合や、飽和照度近くになると無視
できない程のフリッカを発生し、大きな利得を必要とす
るカラー撮像のような場合、このフリッカが強調され、
この方法はとれないことが分ってきた。この原因を調べ
たところ、ダイオードから垂直電荷転送レジスタへの転
送に問題があることが分った。
However, it has become clear that this method is not perfect in reducing flicker. Although the reduction effect is recognized, when a bright subject is projected or when the illuminance is near saturation, flicker occurs that cannot be ignored, and in cases such as color imaging that requires a large gain, this flicker is accentuated.
It turns out that this method is not possible. When we investigated the cause of this, we found that there was a problem with the transfer from the diode to the vertical charge transfer register.

すなわち、ダイオードから垂直電荷転送レジスタへの転
送に、最初、ダイオードの蓄積電荷は、電荷の存在しな
い垂直電荷転送Vジスタヘ転送されるが、次にこの電荷
は垂直転送され、次に読み出されるダイオードの位置ま
で移されている。こうした状態でダイオードの蓄積電荷
が垂直電荷転送レジスタへ移され、混合される。すなわ
ち最初のダイオードから垂直電荷転送レジスタへの転送
と、次のダイオードから垂直電荷転送レジスタへの転送
とでは、前者は垂直電荷転送レジスタに電荷が存在しな
いところへの転送であるのに対し、後者は電荷が存在し
ているところへの転送となり転送効率が異なるというこ
とに起因していることが分った。特にダイオードから垂
直電荷転送レジスタへの転送UIIBD転送タイプの不
完全転送となりこの影響を受け易く、垂直電荷転送レジ
スタに多くの電荷が存在している時に影響が大きいこと
が分った。これが被写体照度があがるとフリ、力となる
原因となっている。
That is, when transferring from a diode to a vertical charge transfer register, the charge stored in the diode is first transferred to the vertical charge transfer V register where no charge exists, but then this charge is vertically transferred and then transferred to the diode that is read out. has been moved to position. Under these conditions, the accumulated charges of the diodes are transferred to the vertical charge transfer registers and mixed. That is, the transfer from the first diode to the vertical charge transfer register and the transfer from the next diode to the vertical charge transfer register, the former is a transfer where there is no charge in the vertical charge transfer register, whereas the latter It was found that this is due to the fact that the transfer efficiency is different because the charge is transferred to the location where it exists. In particular, it has been found that the transfer from the diode to the vertical charge transfer register is an incomplete transfer of the UIIBD transfer type and is susceptible to this effect, and the effect is large when a large amount of charge exists in the vertical charge transfer register. This is the cause of the increase in illuminance of the subject, which becomes a force.

このようにフィールド蓄積動作でフリッカを抑えるのは
困難な状況にある。
In this way, it is difficult to suppress flicker by field accumulation operation.

こうしたことから改めてダイオードから垂直レジスタへ
の読み出しに伴う7リツカについて詳細な検討実験を繰
り返したところ次のようなことが分った。
In light of this, we repeated detailed experiments to investigate the 7 errors associated with reading from the diode to the vertical register, and found the following.

■ 2層構造をもつ垂直転送レジスタはフリッカを起し
易い。
■ Vertical transfer registers with a two-layer structure tend to cause flicker.

■ ダイオードから垂直電荷転送レジスタへの転送を転
送ゲート電極を設けて行なうものの方が、垂直電荷転送
レジスタの転送電極と共用し、バリア構造を設けるもの
(第2図)より7リツカは発生し易い。
■ A transfer gate electrode that performs transfer from a diode to a vertical charge transfer register is more likely to generate 7 losses than one that uses a transfer electrode of the vertical charge transfer register and has a barrier structure (Figure 2). .

■ 2層構造をもつ垂直電荷転送レジスタはクロックパ
ルスの相補性によりフリッカが変わる。
■ The flicker of a vertical charge transfer register with a two-layer structure changes depending on the complementarity of clock pulses.

■ 4相構造のものは7リツカに強く、ダイオードから
垂直電荷転送レジスタへ同時に蓄積電荷を移しても7リ
ツカL起こさない。
■Those with a four-phase structure are resistant to 7 losses, and will not cause 7 losses even if accumulated charges are transferred from the diode to the vertical charge transfer register at the same time.

■ 4相構造のものでも一方のダイオードから蓄積電荷
を垂直電荷転送レジスタに移し、j垂直転送して、他方
のダイオードの蓄積電荷の垂直電荷転送レジスタに移し
て混合する方法にフリッカとなる。
(2) Even with a four-phase structure, flicker occurs due to the method of transferring the accumulated charge from one diode to the vertical charge transfer register, vertically transferring it, and transferring the accumulated charge of the other diode to the vertical charge transfer register and mixing.

以上の実験結果から、垂直電荷転送レジスタは4相宿造
とし、ダイオードから垂直電荷転送レジスタへの電荷の
転送は、垂直電荷転送レジスタと共通の転送電極とし、
ポテンシャルバリアを設ける構造をとり、ダイオードの
蓄積電荷を垂直電荷転送レジスタへ同時に移し、それか
ら垂直転送して2つの電荷を混合する駆動方法でフリッ
カに発生しないことをつきとめた。このような方法によ
って7リツカのないフィールド蓄状動作が可能となった
。しかしここで1つの問題が発生した。それはフリッカ
とは関係のないpウェル構造に伴うものでらる。
From the above experimental results, the vertical charge transfer register is a 4-phase built-in structure, and the transfer of charge from the diode to the vertical charge transfer register is performed using a common transfer electrode with the vertical charge transfer register.
We have found that flicker does not occur by using a driving method that uses a structure that provides a potential barrier, simultaneously transfers the charges accumulated in the diode to a vertical charge transfer register, and then vertically transfers the two charges to mix them. With this method, it has become possible to perform a field accumulation operation without any errors. However, a problem arose here. This is due to the p-well structure and has nothing to do with flicker.

前述したようにプルーミングによる過剰電荷は基板深部
に吸い取るため、pウェル層とn基板間にはバイアスf
li 圧VsuBが印加されているが、この電圧の安定
範囲が極めて狭くしか設定できないことが分った。すな
わち、v8UI+が大きい方V8UBMXは過剰電荷を
吸い取り、信号電荷は吸い出さない電圧で決壕り、小さ
い方vStlBMNはn基板からpウェルへ偽電荷が注
入されない電圧でろる。この■8UBMXとVsUBM
N の電圧範囲がO,SV程度しかとれないことが分っ
た。これで扛温度や供給電源の安定性を考えると実用上
問題となる。素子設計では5V程度を見込んで設計しで
あるにもかかわらず、0.5V程度しかとれない原因を
究明したところ、pウェル層は転送電極に印加するクロ
ックパルスに対して、印加時大きく変動していることが
分った。pウェル層はできるだけ電位を安定させるコン
タクトを設ける構造により多少の改善が認められる程度
で、依然実用上は問題となる。
As mentioned above, in order to absorb excess charge due to pluming deep into the substrate, a bias f is applied between the p-well layer and the n-substrate.
li voltage VsuB is applied, but it has been found that the stable range of this voltage can only be set extremely narrowly. That is, V8UBMX, which has a larger v8UI+, absorbs excess charge and remains at a voltage that does not suck out signal charges, and vStlBMN, which has a smaller value, is a voltage that does not inject false charges from the n-substrate to the p-well. This ■8UBMX and VsUBM
It was found that the voltage range of N can only be about O and SV. This poses a practical problem when considering the temperature and stability of the power supply. When we investigated the reason why the voltage was only around 0.5V even though the device was designed with around 5V in mind, we found that the p-well layer fluctuates greatly in response to the clock pulse applied to the transfer electrode. I found out that The p-well layer is still a problem in practical use, although some improvement can be seen by providing a structure in which a contact is provided to stabilize the potential as much as possible.

(発明の目的) 本発明は、前述のような問題点を解消するだめのもので
、7リツカの無い安定した電荷転送撮像装Uの駆動方法
を提供しようとするものでろる。
(Objective of the Invention) The present invention is intended to solve the above-mentioned problems, and is intended to provide a stable method for driving a charge transfer imaging device U without any damage.

(発明の構成) 本発明は2次元的に複数分離配列された光電変換領域と
、その光電変換領域に対応した垂直電荷転送レジスタを
有し、その垂直電荷転送レジスタが4相駆動で動作され
る構造からなるとともに、前記垂直電荷転送レジスタの
垂直転送電極が、前記光電変換領域に対応して、第Jの
垂直転送電極群と第2の垂直転送電極群とに一つ置きに
配置され、前記垂直電荷転送レジスタの並列転送電荷を
順次読み州す水平転送電荷読出しレジスタとを備えた電
荷転送撮像装置の、前記充電変換領域の同じフィールド
時間内の蓄積電荷を、対応した前記垂直電荷転送レジス
タへ転送する電荷転送の始まりが、前記第1の垂直転送
電極群と前記第2の垂直転送電極群とで異なり、その第
1及び第2の垂直転送電極群への電荷転送が完了した後
、その転送電荷を前記垂直電荷転送レジスタ内で、前記
第1の垂直転送電極群の電荷と、第2の垂直転送電極群
の電荷を所定の方向へ転送し、混合しで、単位画素信号
電荷とする仁とにより、フリ、7カが無く、バイアス電
圧v8oBK広い安定性を持たせる構成としfcもので
ある。
(Structure of the Invention) The present invention has a plurality of two-dimensionally arranged photoelectric conversion regions and vertical charge transfer registers corresponding to the photoelectric conversion regions, and the vertical charge transfer registers are operated by four-phase drive. The vertical transfer electrodes of the vertical charge transfer register are arranged every other in the J-th vertical transfer electrode group and the second vertical transfer electrode group, corresponding to the photoelectric conversion region, and In a charge transfer imaging device equipped with a horizontal transfer charge readout register that sequentially reads parallel transfer charges of vertical charge transfer registers, charges accumulated within the same field time in the charge conversion region are transferred to the corresponding vertical charge transfer registers. The start of the charge transfer is different between the first vertical transfer electrode group and the second vertical transfer electrode group, and after the charge transfer to the first and second vertical transfer electrode groups is completed, Transfer charges are transferred in a predetermined direction within the vertical charge transfer register by transferring the charges of the first vertical transfer electrode group and the charges of the second vertical transfer electrode group in a predetermined direction and mixing them to form a unit pixel signal charge. It is a fc type with a structure that provides wide stability of the bias voltage v8oBK without any distortion or bias.

(実施例の説明) 第6図は、本発明の一実施例によるクロックパルスの波
形の一例を示す図であり、4相駆動パルスと垂直ブラン
キング時間t1でのAフィールド拡大図が示しておる。
(Description of Embodiment) FIG. 6 is a diagram showing an example of the waveform of a clock pulse according to an embodiment of the present invention, and shows an enlarged view of the A field at the four-phase drive pulse and the vertical blanking time t1. .

ダイオードの蓄積電荷は垂直電荷転送レジスタの転送電
極φ、2.φV4に転送されるため、この転送電極に最
も高い電圧が印加される“。この最も高い電圧はφV2
が印加されて0.5μIIeC後にφV4が印加される
実施例となっている。すなわち、φV□とφV4は0.
5μsecの時間差で印加し、垂直電荷転送レジスタへ
フォトダイオードの蓄積電荷を移す。このあと2つの電
荷を混合して、順次出力していく。
The accumulated charge of the diode is transferred to the transfer electrode φ of the vertical charge transfer register, 2. φV4, so the highest voltage is applied to this transfer electrode.This highest voltage is transferred to φV2.
In this embodiment, φV4 is applied after 0.5μIIeC is applied. That is, φV□ and φV4 are 0.
It is applied with a time difference of 5 μsec to transfer the accumulated charge of the photodiode to the vertical charge transfer register. After this, the two charges are mixed and sequentially output.

φVllφV3は、7オトダイオードの蓄積電荷がφ、
2゜φV4へ転送されるときは閉じており、従来問題で
めった容量結合による電荷の漏洩によるフリッカを防止
する役目を果している。このため相補性のないクロック
パルスでろるがフリッカは発生することはない。
φVllφV3 is the accumulated charge of the 7 otodiodes φ,
It is closed when transferred to 2°φV4, and serves to prevent flicker caused by leakage of charge due to capacitive coupling, which rarely occurs in the prior art. Therefore, clock pulses with no complementarity will cause errors, but no flicker will occur.

本実施例においてはVsuillJxとVBUBMN間
の電圧範囲Δv8UBは約5vで安定した動作を示した
。φ9□とφV4のパルス印加時間の時間差t3とΔV
8UBを調べたところ、同時に印加したとき0.5V程
度のものが、0.2μBee程度でほぼ一定し九1vR
UBが得られ、5v程度が確保できることが明らかとな
った。
In this example, the voltage range Δv8UB between VsuillJx and VBUBMN was approximately 5V, and stable operation was demonstrated. Time difference t3 and ΔV between pulse application times of φ9□ and φV4
When I investigated 8UB, when applied at the same time, about 0.5V was almost constant at about 0.2μBee, and 91vR.
It became clear that UB could be obtained and that about 5V could be secured.

上記の例は、φ7□、φv4の高い電圧を加えるパルス
間に重なりがある場合を述べたが、重なりの無い状態の
時間差になっても、その効果は同じく得られる。高いパ
ルス■□を加えた時、との印加時K 。
In the above example, the case where there is an overlap between the pulses applying high voltages φ7□ and φv4, but the same effect can be obtained even if the time difference is such that there is no overlap. When applying a high pulse ■□, K.

最も太きく影響を受けることが予想され、これを時間を
おくことにより軽減されたと考えられる。
It is expected that this will be the most severely affected, and it is thought that this will be alleviated by allowing some time to pass.

(発明の効果) 以上説明したような、本発明の駆動方法により撮像素子
の撮像を行ったところ、フリッカは全黙認められず、ア
ンプの利得を上けて使うカラー撮像でも、全照度にわた
って7リツカは無くなり、このような状態でブルーミン
グ抑制のためのpウェル層とn基板に加える安定範囲も
5vで実用上の問題は無く々るという効果が得られた。
(Effects of the Invention) When the image sensor was imaged using the driving method of the present invention as described above, no flicker was observed at all, and even in color imaging using a high amplifier gain, the The effect is that there is no problem in practical use, and the stable range of voltage applied to the p-well layer and n-substrate to suppress blooming in such a state is 5V.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電荷転送撮像装留の構成を示す図、第2
図は画素近傍の構造を示す断面図、第3図(a)はブル
ーミングの抑圧機能を示すための説明図、第3図(旬は
垂直電荷転送レジスタへ印加されるクロックパルスの一
例を示す図、flc4図はフィールド蓄積動作の印加ク
ロックパルスを示す図、第5図は従来例における駆動パ
ルスを示す図、第6図は本発明の一実施例によるクロッ
クパルスの波形の一例を示す図である。 1 ・・・・・・・・・光電変換蓄積ダイオード、 2
・・・・・曲論−直電荷転送レジスタ、 3・・・曲・
・水平転送電荷読出しレジスタ、 9・・・・・・・・
・垂直電荷転送レジスタのチャンネル(埋め込み層)、
1o・・・山・・・垂直転送電極、11曲叩・チャンネ
ルストッパー、12・・・・・・・・・光遮蔽膜、13
・・・・・曲絶縁膜。 特許出願人 松下電子工業株式会社 第1図 第2図 第3図 (al 第4図 φ鵡□VL 第5図
Figure 1 shows the configuration of a conventional charge transfer imaging device;
The figure is a cross-sectional view showing the structure near the pixel, FIG. 3(a) is an explanatory diagram showing the blooming suppression function, and FIG. , flc4 is a diagram showing applied clock pulses for field accumulation operation, FIG. 5 is a diagram showing driving pulses in a conventional example, and FIG. 6 is a diagram showing an example of a clock pulse waveform according to an embodiment of the present invention. 1......Photoelectric conversion storage diode, 2
...Song Theory - Direct Charge Transfer Register, 3...Song・
・Horizontal transfer charge read register, 9...
・Vertical charge transfer register channel (buried layer),
1o...Mountain...Vertical transfer electrode, 11 track/channel stopper, 12...Light shielding film, 13
...Curved insulating film. Patent applicant Matsushita Electronics Co., Ltd. Figure 1 Figure 2 Figure 3 (al Figure 4 φ□VL Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)2次元的に複数分離配列された光電変換領域と、
その光電変換領域に対応した垂直電荷転送レジスタを有
し、その垂直電荷転送レジスタが4相駆動で動作される
構造からなるとともに、前記垂直電荷転送レジスタの垂
直転送電極が、前記光電変換領域に対応して、第1の垂
直転送電極群と第2の垂直転送電極群とに一つ置きに配
置され、前記垂直電荷転送レジスタの並列転送電荷を順
次読み出す水平転送電荷読出しレジスタとを備えた電荷
転送撮像装置の、前記光電変換領域の同じフィールド時
間内の蓄積電荷を、対応した前記垂直電荷転送レジスタ
へ転送する電荷転送の始まりが、前記第1の垂直転送電
極群と前記第2の垂直転送電極群とで異なり、その@1
及び第2の垂直転送′IIL極群への電荷転送が完了し
た後、その転送電荷を前記垂直電荷転送レジスタ内で、
前記第1の垂直転送電極群の電荷と、第2の垂直転送電
極群の電荷を所定の方向へ転送し、混合して、単位画素
信号電荷とすることを特徴とする電荷転送撮像装置の駆
動方法。
(1) A plurality of photoelectric conversion regions separated and arranged two-dimensionally,
It has a vertical charge transfer register corresponding to the photoelectric conversion area, and has a structure in which the vertical charge transfer register is operated by four-phase drive, and the vertical transfer electrode of the vertical charge transfer register corresponds to the photoelectric conversion area. A charge transfer device comprising horizontal transfer charge readout registers arranged every other time between the first vertical transfer electrode group and the second vertical transfer electrode group and sequentially reads out the parallel transfer charges of the vertical charge transfer registers. The start of charge transfer for transferring accumulated charges in the photoelectric conversion region within the same field time of the imaging device to the corresponding vertical charge transfer register is between the first vertical transfer electrode group and the second vertical transfer electrode group. Different from the group, @1
And after the charge transfer to the second vertical transfer 'IIL pole group is completed, the transferred charges are transferred in the vertical charge transfer register,
Driving a charge transfer imaging device characterized in that charges of the first vertical transfer electrode group and charges of the second vertical transfer electrode group are transferred in a predetermined direction and mixed to form a unit pixel signal charge. Method.
(2) 光電変換領域の蓄積電荷を、対応した垂直電荷
転送レジスタへ転送する電荷転送の完了する時間が異な
ることを特徴とする特許請求の範囲第(1)項記載の電
荷転送撮像装置の駆動方法。
(2) Driving the charge transfer imaging device according to claim (1), wherein the charge transfer completion time for transferring the accumulated charge in the photoelectric conversion region to the corresponding vertical charge transfer register is different. Method.
JP59054391A 1984-03-23 1984-03-23 Driving method for charge transfer imaging device Expired - Lifetime JPH0714199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59054391A JPH0714199B2 (en) 1984-03-23 1984-03-23 Driving method for charge transfer imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59054391A JPH0714199B2 (en) 1984-03-23 1984-03-23 Driving method for charge transfer imaging device

Publications (2)

Publication Number Publication Date
JPS60198978A true JPS60198978A (en) 1985-10-08
JPH0714199B2 JPH0714199B2 (en) 1995-02-15

Family

ID=12969382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59054391A Expired - Lifetime JPH0714199B2 (en) 1984-03-23 1984-03-23 Driving method for charge transfer imaging device

Country Status (1)

Country Link
JP (1) JPH0714199B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163960A (en) * 1979-06-08 1980-12-20 Nec Corp Electric charge transfer pickup unit
JPS5754476A (en) * 1980-09-19 1982-03-31 Nec Corp Driving method for charge transfer image sensor element
JPS58178674A (en) * 1982-04-12 1983-10-19 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JPS604379A (en) * 1983-06-22 1985-01-10 Matsushita Electric Ind Co Ltd Solid-state camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163960A (en) * 1979-06-08 1980-12-20 Nec Corp Electric charge transfer pickup unit
JPS5754476A (en) * 1980-09-19 1982-03-31 Nec Corp Driving method for charge transfer image sensor element
JPS58178674A (en) * 1982-04-12 1983-10-19 Matsushita Electric Ind Co Ltd Solid-state image pickup device
JPS604379A (en) * 1983-06-22 1985-01-10 Matsushita Electric Ind Co Ltd Solid-state camera

Also Published As

Publication number Publication date
JPH0714199B2 (en) 1995-02-15

Similar Documents

Publication Publication Date Title
JP3222586B2 (en) Image sensor drive
JP2001238134A (en) Solid-state imaging device, driving method therefor and camera system
JPH04262679A (en) Driving method for solid-state image pickup device
US6778215B1 (en) Driving method of solid-state image pickup device and image pickup system
JPS61117978A (en) Drive method of solid-state image pickup element
JPS60198978A (en) Driving method of charge transfer image pickup device
JPS59122085A (en) Solid-state image pickup element
Yamada et al. A 1/2-in 1.3 M-pixel progressive-scan IT-CCD for digital still camera applications
JP4269701B2 (en) Driving method of solid-state imaging device
JPS6046594B2 (en) How to drive a charge transfer image sensor
JPH0446477A (en) Driving method for solid-state image pickup device
JPH0556354A (en) Sensitizing method for solid-state image pickup device
JPS604379A (en) Solid-state camera
JP2904180B2 (en) Driving method of charge transfer device
JPS6236392Y2 (en)
JPS60208178A (en) Method for driving charge transfer image pickup device
JP4001841B2 (en) Driving method of solid-state imaging device
JP2000050169A (en) Solid-state image pickup device and its driving method
JPH0654245A (en) Driving system for solid state image pickup element
JPH0117315B2 (en)
JPS62281573A (en) Solid-state image pickup device
JPH02196575A (en) Drive method for solid-state image pickup device
JPH0746722B2 (en) Driving method for charge transfer type imaging device
JPH0818869A (en) Solid-state image pickup element
JPS6027280A (en) Still camera using solid-state image pickup device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term