JPS60192357A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPS60192357A
JPS60192357A JP59048711A JP4871184A JPS60192357A JP S60192357 A JPS60192357 A JP S60192357A JP 59048711 A JP59048711 A JP 59048711A JP 4871184 A JP4871184 A JP 4871184A JP S60192357 A JPS60192357 A JP S60192357A
Authority
JP
Japan
Prior art keywords
transistor
power supply
gate
surge voltage
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59048711A
Other languages
Japanese (ja)
Inventor
Hideki Matsuura
英樹 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59048711A priority Critical patent/JPS60192357A/en
Publication of JPS60192357A publication Critical patent/JPS60192357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent any latch-up from generating easily even if a surge voltage is impressed by a method wherein a resistor and a condenser are respectively provided between a gate of N channel.enhancement type MOS transistor and a grounding terminal as well as between the gate and a power supply. CONSTITUTION:A drain is connected to a power supply between a power supply terminal 25' and a grounding terminal while a source is grounded. An N channel enhancement type MOS transistor 31 with a gate grounded through the intermediary of a resistor 33 is arranged while a capacitor 32 is provided between the gate of MOS transistor 31 and the power supply terminal 25'. When the power supply terminal 25' is impressed with a surge voltage, the gate voltage of transistor 31 is boosted and when the gate voltage reaches the value sufficient to form a channel, said transistor 31 is turned ON making a low impedance path between the power terminal 25' and the grounding terminal to lower the surge voltage abruptly. Resultantly any latch-up may be prevented from occurring even if power supply is impressed on the surge voltage.

Description

【発明の詳細な説明】 (技術分野) 本発明は半導体集積回路に係り、特に相補をMOSトラ
ンジスタ(以下CMO8Trと記す)I11成を有する
半導体集積回路に使用される電源に対するサージ電圧に
よるラッチアップ現象防止回路に関する。
Detailed Description of the Invention (Technical Field) The present invention relates to a semiconductor integrated circuit, and in particular to a latch-up phenomenon caused by a surge voltage to a power supply used in a semiconductor integrated circuit having a complementary MOS transistor (hereinafter referred to as CMO8Tr) I11 configuration. Regarding the prevention circuit.

(従来技術) 第1図は従来のCMO8Tr構成を有する半導体集積回
路(以下CMO8乗積回路と記す)の断面図である。同
図において5本CMO8業積回路は、N−型の半導体基
板11の主面に、Pウェル領域12と、P 駿半導体領
賊からなるチャンネルストッパ19.20とNil半導
体領域からなるチャンネルストッパ17.18とが形成
され、さらに前記Pウェル領bjtt2内にはNU半導
体領賊からなるンース、ドレイン領FJA15.16が
形成され、Pウェル領1112の境界域表面にはP5i
半導体領域からなるチャンネルストッパ13゜14が形
成されている。さて、釆集積回路は、その構造上寄生N
PN)ランラスタ23.寄生PNPトランジスタ21が
存在し、これら寄生トランジスタ23.21は、PNP
Naのサイリスタを形成している。第2図は、これらの
寄生NPN。
(Prior Art) FIG. 1 is a cross-sectional view of a semiconductor integrated circuit (hereinafter referred to as a CMO8 multiplication circuit) having a conventional CMO8Tr configuration. In the same figure, the five CMO8 product circuit has a P well region 12, a channel stopper 19 and 20 made of a P well semiconductor region, and a channel stopper 17 made of a Nil semiconductor region on the main surface of an N-type semiconductor substrate 11. Furthermore, a drain region FJA15.16 made of NU semiconductor regions is formed in the P well region bjtt2, and a P5i region is formed on the surface of the boundary area of the P well region 1112.
Channel stoppers 13 and 14 made of semiconductor regions are formed. Now, the integrated circuit has a parasitic N due to its structure.
PN) Run raster 23. There are parasitic PNP transistors 21, these parasitic transistors 23.21 are PNP
It forms a Na thyristor. Figure 2 shows these parasitic NPNs.

PNP )ランジスタ23.21によるサイリスタ等価
回路を示す回路図である。第1のトランジスタ21’は
、第1図における寄生PNP トランジスタ21であ凱
抵抗22′は第1図のN−型の半導体基板11と電源端
子25との間の抵抗である。又第2のトランジスタ23
′は第1図の寄生NPNトランジスタ23であり、抵抗
24′は第1図のP−ウェル12と接地端子との間の抵
抗である。電源端子25は第1の電源端子25′である
。このような第1.第2のトランジスタ21′。
FIG. 3 is a circuit diagram showing a thyristor equivalent circuit using transistors 23 and 21. The first transistor 21' is the parasitic PNP transistor 21 in FIG. 1, and the resistor 22' is a resistor between the N- type semiconductor substrate 11 and the power supply terminal 25 in FIG. Also, the second transistor 23
' is the parasitic NPN transistor 23 of FIG. 1, and resistor 24' is the resistance between the P-well 12 of FIG. 1 and the ground terminal. The power supply terminal 25 is a first power supply terminal 25'. Such a first. Second transistor 21'.

23′よりなるサイリスタ回路をMするCMO8集積回
路において、今電源端子25′にサージ電圧が加わり、
第1のトランジスタ21’又は第2のトランジスタ23
′のコレクタ、エミッタ間がブレークダウンを起こした
場合を想定する。
In a CMO8 integrated circuit that has a thyristor circuit M23', a surge voltage is now applied to the power supply terminal 25',
First transistor 21' or second transistor 23
Assume that a breakdown occurs between the collector and emitter of .

まず、電源端子25′に何らかの原因でサージ電圧が加
わり、第1のトランジスタ21’のエミッタコレクタ間
がブレークダウンした場合について述べる。この場合、
第1のトランジスタ21’のコレクタ電流は、抵抗24
′を通して接地点へと流れる。この抵抗24′による電
圧降下により、第2のトランジスタ23′のベース電位
が上昇しトランジスタ23′は導通状態となる。第2の
トランジスタ23′が導通状態となると、抵抗22′へ
電流が流れ、その電圧降下により第1のトランジスタ2
1’のベースがバイアスされ、トランジスタ21’ も
導通状態となる。この状態になると。
First, a case will be described in which a surge voltage is applied to the power supply terminal 25' for some reason and the emitter-collector of the first transistor 21' breaks down. in this case,
The collector current of the first transistor 21' is
′ to the grounding point. Due to the voltage drop across the resistor 24', the base potential of the second transistor 23' increases and the transistor 23' becomes conductive. When the second transistor 23' becomes conductive, current flows to the resistor 22', and the resulting voltage drop causes the first transistor 23' to become conductive.
The base of transistor 1' is biased, and transistor 21' is also rendered conductive. When it comes to this state.

サージ電圧がなくなっても第1.第2のトランジスタ2
1’、23’は導通状態のままであり、電源端子、接地
端子間に低インピーダンスのバスができるため、大電流
が流れ、ひいてはデバイスの破壊を引き起こすこともあ
る。
Even if the surge voltage disappears, the first second transistor 2
1' and 23' remain in a conductive state, creating a low impedance bus between the power supply terminal and the ground terminal, causing a large current to flow, which may even destroy the device.

また、第2のトランジスタ23′のコレクタ。Also, the collector of the second transistor 23'.

エミッタ間がブレークダウンした場合も同様にして、第
1.第2のトランジスタ21’、23’が導通状態とな
る。
Similarly, if there is a breakdown between the emitters, the first. The second transistors 21' and 23' become conductive.

以上述べた如く、従来のCMO8集積回路は。As mentioned above, the conventional CMO8 integrated circuit.

その構造上肩する寄生トランジスタからなるサイリスタ
回路が電源に加わるサージ電圧によりトリガーされ、過
電流破壊する現象(以下ラヅチアヴプと記す)1r、有
するという欠点がある。
Due to its structure, a thyristor circuit consisting of parasitic transistors is triggered by a surge voltage applied to a power supply, resulting in an overcurrent breakdown phenomenon (hereinafter referred to as "radiation") 1r.

(発明の目的) 本発明の目的は、このような欠点が改善δれ、電源にサ
ージ電圧が加わっても容易に7−yチアヅプが発生しな
い半導体集積回路を提供することにある。
(Object of the Invention) An object of the present invention is to provide a semiconductor integrated circuit in which the above drawbacks are improved and 7-y chiadup does not easily occur even when a surge voltage is applied to the power supply.

(発明の構成) 本発明の半導体集積回路の構成は、ドレインが電源に接
続されかつソースが接地点に接続されたNチャンネル・
エンハンスメント形MO1lランジスタト、このNチャ
ンネル・エンハンスメント形MO8)ランジスタのゲー
トと前記接地点との間に介在した抵抗と、前記ゲートと
前記電源との間に介在したコンデンサとを有する回路を
備えたことt−特徴とする。
(Structure of the Invention) The structure of the semiconductor integrated circuit of the present invention is an N-channel semiconductor integrated circuit whose drain is connected to a power supply and whose source is connected to a ground point.
an enhancement type MO1l transistor, comprising a circuit having a resistor interposed between the gate of the N-channel enhancement type MO8 transistor and the ground point, and a capacitor interposed between the gate and the power source; -Characteristics.

(実施例) 次に図面を参照しながら本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第3図は本発明の実施例の半導体集積回路を示す回路図
である。同図において、本半導体集積回路は、第2図と
同等な従来回路34’iiする他に。
FIG. 3 is a circuit diagram showing a semiconductor integrated circuit according to an embodiment of the present invention. In the figure, the present semiconductor integrated circuit includes a conventional circuit 34'ii which is equivalent to that in FIG.

電源端子25′と接地点との間に、ドレインが電5− 源に接続されかつソースが接地され、ゲートが抵抗33
を介して接地されたNチャンネルエンハンスメントIj
j1MO8)ランラスタ31L−有し、さらにNチャン
ネルエンハンスメント!IIIMO8)ランジスタ31
のゲートと電源端子25′との間に容量32t−有する
ことである。
Between the power supply terminal 25' and the ground point, the drain is connected to the power source, the source is grounded, and the gate is connected to the resistor 33.
N-channel enhancement Ij grounded through
j1MO8) Run raster 31L-equipped with N channel enhancement! IIIMO8) Transistor 31
A capacitance of 32t- is provided between the gate of the power supply terminal 25' and the power supply terminal 25'.

次に電源端子25′にサージ電圧が加わった場合の本回
路の動作について述べる。今、電源端子25′にサージ
電圧が加わるとNチャンネルMOSトランジスタ31の
ゲート電圧は、コンデンサ32、抵抗33より構成され
る微分回路により上昇し、チャンネルを形成するのに十
分な値となると、NチャンネルMO8)ランジスタ31
はオン状態となり、電源端子25′と接地端子との間に
低インピーダンスのパスができ、その結果サージ電圧は
急激に低下する。サージ電圧が低くなると。
Next, the operation of this circuit when a surge voltage is applied to the power supply terminal 25' will be described. Now, when a surge voltage is applied to the power supply terminal 25', the gate voltage of the N-channel MOS transistor 31 is increased by a differentiating circuit composed of a capacitor 32 and a resistor 33, and when it reaches a value sufficient to form a channel, N Channel MO8) transistor 31
turns on, creating a low impedance path between the power supply terminal 25' and the ground terminal, resulting in a sudden drop in surge voltage. When the surge voltage becomes low.

NチャンネルMO8)ランジスタ31のゲート電圧も低
下し、トランジスタ31はオフ状態となる。
N-channel MO8) The gate voltage of the transistor 31 also decreases, and the transistor 31 is turned off.

ここで、NチャンネルMOSトランジスタ31がオン状
態となるのに十分なサージ電圧は、サイリ6− スタを構成する第1.第2の寄生トランジスタ21’、
23’のコレクタエミ・ツタ間がブレークダウンする電
圧に比較し十分低い値であるため。
Here, a surge voltage sufficient to turn on the N-channel MOS transistor 31 is applied to the first . second parasitic transistor 21',
This is because the voltage is sufficiently low compared to the voltage that causes breakdown between the collector emitter and ivy of 23'.

電源に加わったサージ電圧は第1.第2の寄生トランジ
スタ21’、23’のコレクタエミッタ間をブレークダ
ウンさせることができる電圧に達する前に、トランジス
タ31により低下させられる。
The surge voltage applied to the power supply is the first. It is lowered by the transistor 31 before reaching a voltage that can cause a breakdown between the collector and emitter of the second parasitic transistor 21', 23'.

従って、従来回路のように電源にサージ電圧が加わって
もラッチアップが発生することはない。
Therefore, unlike conventional circuits, latch-up does not occur even if a surge voltage is applied to the power supply.

サージ電圧により上昇したトランジスタ31のゲート電
圧は、コンデンサ32にチャージされた電荷が抵抗33
を通じてディスチャージされるのにつれて低下する。従
って、サージ電圧によりトランジスタ31がオン状態に
保たれる時間は、コンデンサ32及び抵抗33により決
定される。つまり1時間が長いサージ電圧に対してもト
ランジスタalt−オン状態に保つには、コンデンサ3
2及び抵抗33を大きな値とすればよい。
The gate voltage of the transistor 31 increased due to the surge voltage, and the electric charge charged in the capacitor 32 is transferred to the resistor 33.
It decreases as it is discharged through. Therefore, the time period during which the transistor 31 is kept on due to the surge voltage is determined by the capacitor 32 and the resistor 33. In other words, in order to keep the transistor alt-on state even in the case of a surge voltage that lasts for an hour, the capacitor 3
2 and the resistor 33 may have large values.

また、サージ電圧が加わらない状態においては、トラン
ジスタ31のゲートは、抵抗33t−介して接地されて
いるので、オフ状態にあり、不夾施例で付加された回路
は従来回路の動作には何ら影響を与えない。
Furthermore, when no surge voltage is applied, the gate of the transistor 31 is grounded through the resistor 33t, so it is in an off state, and the circuit added in the non-contaminated embodiment has no effect on the operation of the conventional circuit. No impact.

(発明の効果) 以上述べた如く2本発明によれば、電源にサージ電圧が
印加されてもラッチアップが発生しないという効果が得
られる。
(Effects of the Invention) As described above, according to the two aspects of the present invention, it is possible to obtain the effect that latch-up does not occur even if a surge voltage is applied to the power supply.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMO8渠積回路を示す断面図。 第2図は第1図のCMO8乗積回路が有する寄生トラン
ジスタからなるサイリスタ等両回路を示す回路図、第3
図は本発明の一実施例の半導体集積回路を示す回路図で
ある。 同図において、11・・・・・・へ一基板、12・・・
・・・P−ウェル領域、13.14・・・・・・pHチ
ャンネルストッパ、+5.ts・・・・・・Nチャンネ
ルMOSトランジスタのソース、ドレイン領Lt7.t
s・・・・・・NUチャンネルストッパ、19.20・
・・・・・PチャンネルMO8)ランジスタのソース、
ドレイン領域、25.25’・・・・・・電源端子、2
3・・・・・・寄生NPN)ランジスタ、21・・・・
・・寄生PNP )ランジスタ、21′・・・・・・第
1のトランジスタ、23′・・・・・・第2のトランジ
スタ、22′・・・・・・N−賊半導体基板領域の抵抗
、24′・・・・・・P−ウェル領域のm抗、31・・
・・・・Nチャンネルエンハンスメント形MOSトラン
ジスタ、32・・・・・・コンデンサ、33・・・・・
・抵抗% 34・・・・・・寄生トランジスタからなる
サイリスタを有する従来回路。 9− 茅1回 ) 第2図 Jダ 事3習
FIG. 1 is a sectional view showing a conventional CMO 8-channel circuit. Figure 2 is a circuit diagram showing both circuits such as thyristors made of parasitic transistors included in the CMO8 multiplication circuit in Figure 1;
The figure is a circuit diagram showing a semiconductor integrated circuit according to an embodiment of the present invention. In the same figure, 11... one board, 12...
... P-well region, 13.14 ... pH channel stopper, +5. ts... Source and drain region Lt7 of N-channel MOS transistor. t
s...NU channel stopper, 19.20.
...P channel MO8) transistor source,
Drain region, 25.25'...Power terminal, 2
3... Parasitic NPN) transistor, 21...
...parasitic PNP) transistor, 21'...first transistor, 23'...second transistor, 22'...resistance in N-parasitic semiconductor substrate region, 24'... m anti of P-well area, 31...
...N-channel enhancement type MOS transistor, 32... Capacitor, 33...
-Resistance% 34...Conventional circuit with a thyristor consisting of a parasitic transistor. 9- Kaya 1 time) Figure 2 J da thing 3 lessons

Claims (1)

【特許請求の範囲】[Claims] ドレインが電源に接続されかつソースが接地点に接続さ
れたNチャンネル・エンハンスメント形MO8)ランジ
スメと、このNチャンネル・エンハンスメント形MO8
)ランジスタのゲートと前記接地点との間に介在した抵
抗と、前記ゲートと前記電源との間に介在したコンデン
サとを有する回路を備えたことを特徴とする半導体集積
回路。
An N-channel enhancement type MO8 whose drain is connected to a power supply and a source connected to a ground point, and this N-channel enhancement type MO8
) A semiconductor integrated circuit comprising a circuit including a resistor interposed between the gate of a transistor and the ground point, and a capacitor interposed between the gate and the power supply.
JP59048711A 1984-03-14 1984-03-14 Semiconductor integrated circuit Pending JPS60192357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048711A JPS60192357A (en) 1984-03-14 1984-03-14 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048711A JPS60192357A (en) 1984-03-14 1984-03-14 Semiconductor integrated circuit

Publications (1)

Publication Number Publication Date
JPS60192357A true JPS60192357A (en) 1985-09-30

Family

ID=12810891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048711A Pending JPS60192357A (en) 1984-03-14 1984-03-14 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS60192357A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629545A (en) * 1991-03-28 1997-05-13 Texas Instruments Incorporated Electrostatic discharge protection in integrated circuits, systems and methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629545A (en) * 1991-03-28 1997-05-13 Texas Instruments Incorporated Electrostatic discharge protection in integrated circuits, systems and methods

Similar Documents

Publication Publication Date Title
US5218222A (en) Output ESD protection circuit
JP3174636B2 (en) Electrostatic discharge protection for CMOS integrated circuits
US6399990B1 (en) Isolated well ESD device
US5760446A (en) Electrostatic discharge structure of semiconductor device
US4647956A (en) Back biased CMOS device with means for eliminating latchup
JPH06163824A (en) Semiconductor integrated circuit
JPH08274267A (en) Semiconductor device
JPH07193195A (en) Cmos integrated circuit device
US6894881B1 (en) ESD protection methods and devices using additional terminal in the diode structures
EP0292327A2 (en) Electrostatic breakdown protection circuits
US20030116778A1 (en) Semiconductor apparatus
JP2783191B2 (en) Semiconductor device protection circuit
US20030230781A1 (en) Semiconductor device
JPS60192357A (en) Semiconductor integrated circuit
JPH044755B2 (en)
JPH11145454A (en) Semiconductor device, electrostatic protective element, and dielectric breakdown preventing method
JP3100137B2 (en) Semiconductor integrated device
US4591895A (en) CMOS circuit with separate power lines to suppress latchup
JPH06244371A (en) Semiconductor device
JPH05267586A (en) Output protection network
JPH0532908B2 (en)
US5432369A (en) Input/output protection circuit
JPH0766405A (en) Semiconductor protection device
JPS63301558A (en) Semiconductor integrated circuit device
JPH0753307Y2 (en) ESD protection circuit