JPS6019098A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS6019098A
JPS6019098A JP12658083A JP12658083A JPS6019098A JP S6019098 A JPS6019098 A JP S6019098A JP 12658083 A JP12658083 A JP 12658083A JP 12658083 A JP12658083 A JP 12658083A JP S6019098 A JPS6019098 A JP S6019098A
Authority
JP
Japan
Prior art keywords
tank
denitrification
bacteria
reaction
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12658083A
Other languages
Japanese (ja)
Other versions
JPH0324280B2 (en
Inventor
Hiroji Seki
廣二 関
Takao Mineo
嶺尾 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK, Ataka Construction and Engineering Co Ltd filed Critical Ataka Kogyo KK
Priority to JP12658083A priority Critical patent/JPS6019098A/en
Publication of JPS6019098A publication Critical patent/JPS6019098A/en
Publication of JPH0324280B2 publication Critical patent/JPH0324280B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To highly remove residual inorg. nitrogen, by introducing oxygen- containing gas into an effluent liquid, in which denitration bacteria and denitrification bacteria having applied biological BOD removal and nitrogen removal to inorg. waste water containing a nitrogen compound in a high concn. coexist, in a denitration and denitrification tank. CONSTITUTION:Activated sludge containing nitration bacteria, denitrification bacteria and BOD oxidizing bacteria in a well grown state is held at a high concn. in a high load reaction tank 2 and the oxidation of NH3 in raw water 1 and the oxidation of BOD therein are performed by oxygen supplied into the tank 2. The treated water not decomposed by microorganisms containing nitration bacteria and denitrification bacteria from the high load reaction tank 2 is introduced into a nitration and denitrification tank 7 while oxygen-containing gas is blown into the tank 7 and aeration is performed under stirring to simultaneously perform biological nitriration reaction and biological endogenous breathing type denitrification reaction. The effluence liquid from the nitration and denitrification tank 7 is introduced into a precipitation basin 5 and subjected to solid-liquid separation treatment to discharged a supernatant liquid as treated water while sludge 6 is returned to the high load reaction tank 2.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、廃水中の無機性窒素を、生物学的内生呼吸型
脱窒反応を利用して除去する廃水の処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a wastewater treatment method that removes inorganic nitrogen from wastewater using a biological endogenous respiration type denitrification reaction.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

近来し尿等の窒素化合物を高濃度に含有する有機性廃水
を生物学的に処理する場合、無希釈のままで高負荷運転
によりBOD、窒素の除去を行5ことが一般化しつつあ
る。この場合の窒素除去は硝化反応と脱窒反応で行なわ
れる。硝化反応は廃水中のNH4+を溶存酸素の存在下
で硝化菌によりNO2−%あるいはNO,に酸化する反
応のことで、一般的には次式で表現される。
In recent years, when organic wastewater containing a high concentration of nitrogen compounds, such as human waste, is biologically treated, it has become common to remove BOD and nitrogen through high-load operation without dilution. Nitrogen removal in this case is performed by nitrification and denitrification reactions. The nitrification reaction is a reaction in which NH4+ in wastewater is oxidized to NO2-% or NO by nitrifying bacteria in the presence of dissolved oxygen, and is generally expressed by the following equation.

2NH4+ 302→2NO2+2H20+4Hこうし
て生成したNO□−1No、(以下NO□とよぶ)は脱
窒工程において廃水中の有機炭素源を還元剤として、脱
窒菌により還元されN2ガスとなり除去される。
2NH4+ 302→2NO2+2H20+4H NO□-1No, (hereinafter referred to as NO□) generated in this way is reduced by denitrification bacteria using the organic carbon source in the wastewater as a reducing agent in the denitrification process, and is removed as N2 gas.

次に、IF1図によってその一例を説明する。Next, an example will be explained using an IF1 diagram.

無希釈のし尿等の窒素化合物を高濃度に含む原水(1)
を高負荷反応槽(2)に流入させ、ここで窒素とBOD
の大部分が除去される。高負荷反応@(2)からの流出
液は、固液分離は行わず生物濃度(MLSS)はその濃
度を維持し硝化菌と脱窒歯を存在させたまま医の硝化槽
(3)に導入される。硝化槽(3)では曝気攪拌により
高負荷反応槽(2)からの流出液中の硝化菌を利用して
NH,の硝化が行われNH,は高度に除去され、BOD
の除去も同時に行われる。
Raw water containing high concentrations of nitrogen compounds such as undiluted human waste (1)
into the high-load reactor (2), where nitrogen and BOD
Most of them are removed. The effluent from the high-load reaction @ (2) is introduced into the clinic's nitrification tank (3) with the biological concentration (MLSS) maintained at the same concentration without solid-liquid separation and with nitrifying bacteria and denitrifying bacteria still present. be done. In the nitrification tank (3), nitrification of NH is performed using nitrifying bacteria in the effluent from the high-load reaction tank (2) through aeration and agitation, and NH is highly removed and BOD
is also removed at the same time.

次に硝化槽(3)からの流出液は脱窒槽14)に導かれ
る。
The effluent from the nitrification tank (3) is then led to the denitrification tank 14).

脱窒槽14)では、高負荷反応槽(2)からの流出液中
に存在するNoよおよび硝化槽(3)で生成したNoよ
の脱窒が行われる。このとき液中のBOD@度は低くな
っているから、原水中の有機質炭素源を利用する脱窒は
行われない。このため、メタノール等の有機質炭素源を
添加するか或い高負荷反応槽(2)から分離されずに流
出液中に残存しているMLSS中の脱窒菌の内生呼吸作
用を利用して内生呼吸型脱窒反応を行わせる。この内生
呼吸型脱窒反応とは脱窒菌の構成成分自体を還元剤とす
る脱窒反応であり、一般に内生呼吸においても水中の溶
存酸素を利用するが、水中り溶存酸素が低下すれば。
In the denitrification tank 14), denitrification of No. present in the effluent from the high-load reaction tank (2) and No. produced in the nitrification tank (3) is performed. At this time, since the BOD level in the liquid is low, denitrification using organic carbon sources in the raw water is not performed. Therefore, it is necessary to add an organic carbon source such as methanol or to utilize the endogenous respiration of denitrifying bacteria in the MLSS that remains in the effluent without being separated from the high-load reaction tank (2). A live respiration type denitrification reaction is performed. This endogenous respiration-type denitrification reaction is a denitrification reaction that uses the constituent components of denitrifying bacteria itself as a reducing agent.Generally, endogenous respiration also uses dissolved oxygen in water, but if dissolved oxygen in water decreases, .

No:を中の酸素を利用して脱窒反応が進行するもので
ある。有機炭素源を添加せずに内生呼吸型脱窒反応を行
わせると、有機炭素源添加に比べて反応速度が低下する
が、MLSSを高濃度に維持することにより実用的速度
で脱窒が行われる。このようにして脱窒された流出液は
、沈澱池(5)に導かれ、固液分離され、上澄液は放流
され汚泥16)は高負荷反応槽(2)に返送される。
No.: The denitrification reaction proceeds using the oxygen inside. If an endogenous respiration-type denitrification reaction is performed without adding an organic carbon source, the reaction rate will be lower than when an organic carbon source is added, but by maintaining a high concentration of MLSS, denitrification can be carried out at a practical rate. It will be done. The effluent denitrified in this way is led to the sedimentation tank (5), where it is separated into solid and liquid, the supernatant liquid is discharged, and the sludge 16) is returned to the high-load reaction tank (2).

上述のように内生呼吸型脱窒反応による脱窒な行うとき
は有機炭素源を供給することなく脱窒が行われるという
利点はあるが、これを実用的速度で行わせるには脱窒槽
14)にλ(LSSを高濃度に維持する必要があり、こ
のため微生物の自己分かにより硝化槽(3)でせりか(
除去したNHs濃度が脱窒槽14)で増加するとい5欠
点がある。その−例とし℃高負荷反応槽(2)の流出液
を回分方式でNH,を硝化させた後に脱窒素実験を行っ
た結果を矛2図に示す。
As mentioned above, when denitrification is carried out by endogenous respiration type denitrification reaction, there is an advantage that denitrification is carried out without supplying an organic carbon source, but in order to carry out this at a practical rate, the denitrification tank 14 ) in the nitrification tank (3) because it is necessary to maintain a high concentration of λ (LSS
There are five drawbacks: the concentration of removed NHs increases in the denitrification tank 14). As an example, Figure 2 shows the results of a denitrification experiment conducted after nitrifying NH in the effluent from the high-load reaction tank (2) in a batch manner.

実験の条件 M L S S p 15000 m9/1硝化工程溶
存酸素濃度; 2 my/l水温;50に の矛2図によれば、硝化工程においては無機性窒素の増
加が認められ、脱窒素工程ではNHの増加が認められる
。脱窒素工程でのNH,の増加は高濃度のMLSSの自
己分解によるものである。
Experimental conditions M L S S p 15000 m9/1 Nitrification process Dissolved oxygen concentration; 2 my/l Water temperature; An increase in NH is observed. The increase in NH during the denitrification process is due to the self-decomposition of high-concentration MLSS.

なお硝化工程でもNH,が増加しているのであるが硝化
されるため無機性窒素の増加となって表われている。
Note that NH is also increased in the nitrification process, but because it is nitrified, it appears as an increase in inorganic nitrogen.

〔発明の目的〕[Purpose of the invention]

本発明は上述の問題に鑑み高負荷反応槽の流出液を単一
の硝化脱窒槽に導き、この硝化脱窒槽の溶存酸素濃度な
O〜0.5 mg/lに維持するように曝気攪拌するこ
とにより生物学的硝化反応と内生呼吸型脱窒反応とを同
時に行わせ、高負荷反応槽の流出液中に残存する無機性
窒素(NH,、N02、N01)を高度に除去しようと
するものである。
In view of the above-mentioned problems, the present invention introduces the effluent from the high-load reaction tank to a single nitrification-denitrification tank, and aerates and stirs the solution to maintain the dissolved oxygen concentration in the nitrification-denitrification tank at O ~ 0.5 mg/l. By doing so, the biological nitrification reaction and the endogenous respiration-type denitrification reaction are carried out simultaneously, and the inorganic nitrogen (NH, N02, N01) remaining in the effluent of the high-load reaction tank is attempted to be removed to a high degree. It is something.

〔発明の概要〕[Summary of the invention]

本発明は、高負荷反応槽で窒素化合物を高濃度に含有す
る有機性廃水を生物学的BOD除去、窒素除去を施すこ
とにより得られ1こ硝化菌と脱窒菌が共に存在する流出
液を、単一の硝化脱窒槽に導入し、この液中に酸素含有
ガスを導入して攪拌し液中の溶存酸素濃度な0〜0.5
 my/lに維持することにより、液中の無機性窒素(
NH,、NO,、N05)を生物学的硝化反応と生物学
的内生呼吸型脱窒反応とにより除去するものである。
In the present invention, organic wastewater containing a high concentration of nitrogen compounds is subjected to biological BOD removal and nitrogen removal in a high-load reaction tank, and the effluent containing both nitrifying bacteria and denitrifying bacteria is The solution is introduced into a single nitrification and denitrification tank, and an oxygen-containing gas is introduced into the solution and stirred to reduce the dissolved oxygen concentration in the solution to 0 to 0.5.
my/l, inorganic nitrogen (
NH, NO, N05) are removed by a biological nitrification reaction and a biological endogenous respiration type denitrification reaction.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を矛5図について説明する。 Next, an embodiment of the present invention will be described with reference to Figure 5.

(2)は窒素化合物を高度に含有する無希釈のし尿等の
廃水よりなる原水11)が導入される高負荷反応槽で、
高度の酸素溶解能力を有する。槽(2)内にはよく顔養
された硝化菌、脱窒菌、BOD酸化菌からなる活性汚泥
が高濃度に維持され又おり、槽(2)内に供給される酸
素によりNH5の酸化とBODの酸化が行われる。また
NH,の酸化により生じたNO5は脱窒菌によりN2ガ
スとして除去されるが、この際NO□中の酸素を利用し
たBOI)の酸化も行われる。このようにして窒素とB
ODの大部分が除去される。
(2) is a high-load reaction tank into which raw water 11) consisting of wastewater such as undiluted human waste containing a high degree of nitrogen compounds is introduced;
Has a high degree of oxygen dissolution ability. In tank (2), activated sludge consisting of well-cultured nitrifying bacteria, denitrifying bacteria, and BOD oxidizing bacteria is maintained at a high concentration, and the oxygen supplied to tank (2) oxidizes NH5 and BOD. oxidation takes place. Further, NO5 generated by oxidation of NH, is removed as N2 gas by denitrifying bacteria, but at this time, BOI) is also oxidized using oxygen in NO□. In this way, nitrogen and B
Most of the OD is removed.

(7ンは硝化脱窒槽で高負荷反応槽(2)から硝化菌と
脱窒菌を含む微生物が分離されない液(NH,−Nとし
て20〜50 my/)、無機性窒素として20〜60
 mg/!l )が導入されこの液中に酸素含有ガスが
吹き込まれて曝気攪拌され、液中の溶存酸素濃度が常に
0〜0.5 mg/lとなるよう制御され生物学的硝化
反応と生物学的内生呼吸型肌゛窒反応とが同時に行われ
る。硝化反応と脱窒反応とを同時に進行させる条件とし
ては、液中の溶存酸素濃度るO −0,5mg/l 、
好ましくは0.1〜0.3 mg/lに維持することが
必要である。溶存酸素濃度が0.1−g/1以上で内生
呼吸型脱窒反応は遅(なりだし、0.5 my/1以上
では殆んど認められない。
(N7 is a nitrification-denitrification tank, which contains a liquid from which microorganisms including nitrifying bacteria and denitrifying bacteria are not separated from the high-load reaction tank (2) (20 to 50 my/y as NH, -N), and 20 to 60 my/in as inorganic nitrogen.
mg/! l) is introduced into the liquid, oxygen-containing gas is blown into this liquid, aeration is agitated, and the dissolved oxygen concentration in the liquid is controlled to be 0 to 0.5 mg/l at all times, resulting in biological nitrification reactions and biological An endogenous respiration type skin nitrification reaction takes place at the same time. The conditions for simultaneously proceeding the nitrification reaction and denitrification reaction are as follows: dissolved oxygen concentration in the liquid is O −0.5 mg/l;
It is necessary to maintain it preferably at 0.1 to 0.3 mg/l. When the dissolved oxygen concentration is 0.1-g/1 or more, the endogenous respiration-type denitrification reaction is slow (beginning), and when it is 0.5 my/1 or more, it is hardly observed.

また溶存酸素が0.1 mg/l以下では硝化反応が遅
くなりだす。ま1こ溶存酸素の存在によりBODの除去
も同時に行われる。この硝化脱窒槽(7)の溶存酸素濃
度を0.1〜0.3 my/lで運転した場合は、その
処理水質を従来法の硝化槽と脱窒槽よりなる2槽方式の
処理水質と比較すると、洲、濃度、BODa度は硝化槽
を略等しく、例えばNHs−N5mg/l以下、BOD
 20〜50mg/lであり。
Furthermore, when dissolved oxygen is less than 0.1 mg/l, the nitrification reaction begins to slow down. Due to the presence of dissolved oxygen, BOD is also removed at the same time. When this nitrification-denitrification tank (7) is operated at a dissolved oxygen concentration of 0.1 to 0.3 my/l, the treated water quality is compared with the treated water quality of the conventional two-tank system consisting of a nitrification tank and a denitrification tank. Then, the concentration and BODa degree of the nitrification tank are approximately equal, for example, NHs-N 5 mg/l or less, BOD
It is 20-50 mg/l.

No、濃度は略脱窒槽と等しい例えばNH,、−N 1
myl以下のものが得られる。
No, the concentration is approximately the same as that of the denitrification tank. For example, NH,, -N 1
myl or less can be obtained.

また、硝化脱窒槽(7)の液温は10SIIOc%pH
は6.0〜g4゜5に維持することが好ましい。水温が
10C以下になると硝化菌、脱窒菌の活性が低下し、反
応速度が急に遅くなり、qot:’以上になると、硝化
菌が死滅するようになるためである。さらにpHが6.
0以下になると硝化に必要なアルカリ度が低下し硝化速
度が遅くなり、pHが8.5以上になると一般的に細菌
の活性が低下するため反応速度が低下する。したがって
pHは6.0〜8.5の範囲が適当である。
In addition, the liquid temperature in the nitrification and denitrification tank (7) is 10SIIOc% pH
is preferably maintained at 6.0 to g4°5. This is because when the water temperature falls below 10C, the activity of nitrifying bacteria and denitrifying bacteria decreases, and the reaction rate suddenly slows down, and when the water temperature rises above qot:', the nitrifying bacteria become extinct. Furthermore, the pH is 6.
When the pH is below 0, the alkalinity necessary for nitrification decreases and the nitrification rate slows down, and when the pH becomes 8.5 or above, the reaction rate generally decreases because the activity of bacteria decreases. Therefore, a suitable pH range is 6.0 to 8.5.

(5)は沈澱池で、硝化脱窒槽(7)からの流出液が導
入され、固液分離されて上澄、液は処理水として放流さ
れ、汚泥(6)は前記高負荷反応槽(2)へ返送される
(5) is a sedimentation tank into which the effluent from the nitrification and denitrification tank (7) is introduced, solid-liquid separated and the supernatant liquid is discharged as treated water, and the sludge (6) is the high-load reaction tank (2). ) will be returned to.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高負荷反応槽で窒素化合物を高濃度に
含有する有機性廃水に生物学的BOD除去、窒素除去を
施すことにより得られた硝化菌と脱窒菌が共存する流出
液を、単一の硝化脱窒槽に導き、液中に酸素含有ガスを
導いて攪拌し水中の溶存酸素濃度な0〜0.5 m、l
it/lに維持することにより、液中の無機性窒素を生
物学的硝化反応と生物学的内生呼吸型脱窒反応とにより
除去するため硝化菌と脱窒菌の共存により単一槽内で生
物学的硝化反応゛と生物学的内生呼吸型脱窒反応が行わ
れ液中の溶存酸素濃度をOmII/1以上にして硝化反
応を進行させかつ0.5771g713以下に維持して
内生呼吸型脱窒反応を同時に進行させることによりBO
D、 No、、 NH,の高度な除去を行うことができ
る。さらに硝化と脱窒を単−櫂で行うため設備が簡単化
し装置の保守管理も容易となるものである。
According to the present invention, an effluent in which nitrifying bacteria and denitrifying bacteria coexist is obtained by biologically removing BOD and removing nitrogen from organic wastewater containing a high concentration of nitrogen compounds in a high-load reaction tank. Oxygen-containing gas is introduced into the liquid into a single nitrification-denitrification tank and stirred to reduce the dissolved oxygen concentration in the water from 0 to 0.5 m, l.
By maintaining the inorganic nitrogen in the liquid at 100 mt/l, the inorganic nitrogen in the liquid is removed by biological nitrification reaction and biological endogenous respiration type denitrification reaction. A biological nitrification reaction and a biological endogenous respiration-type denitrification reaction are carried out, and the dissolved oxygen concentration in the liquid is made to be OmII/1 or more, the nitrification reaction proceeds, and the endogenous respiration is maintained at 0.5771g713 or less. By simultaneously proceeding with type denitrification reaction, BO
D, No, NH, can be highly removed. Furthermore, since nitrification and denitrification are performed with a single paddle, the equipment is simplified and the maintenance of the equipment is also easy.

〔発明の実験例〕[Experimental example of invention]

次に本発明の詳細な説明する。 Next, the present invention will be explained in detail.

1実験の装置 a試 料 原水として、処理水量15m’/日でし尿の無希釈処理
を行っている実設備の高負荷反応槽内の反応液を用いた
。反応液の性状は下記表1のとおりでムる。
Apparatus a sample for 1 experiment As raw water, we used a reaction solution in a high-load reaction tank of an actual facility that performs non-dilution treatment of human waste with a treated water volume of 15 m'/day. The properties of the reaction solution are as shown in Table 1 below.

5、実験の方法 実験1;硝化槽と脱窒槽を用いて従来の方法により硝化
槽で曝気による硝化反応、脱 窒槽で内生呼吸型脱窒反応を行わせた。
5. Experimental Method Experiment 1: Using a nitrification tank and a denitrification tank, a nitrification reaction by aeration was performed in the nitrification tank, and an endogenous respiration-type denitrification reaction was performed in the denitrification tank using the conventional method.

各実験の運転条件は下記表2の通りである。The operating conditions for each experiment are shown in Table 2 below.

表2 電実験1の溶存酸素濃度は硝化槽の溶存酸素濃度を示す
Table 2: Dissolved oxygen concentration in electricity experiment 1 indicates the dissolved oxygen concentration in the nitrification tank.

4、実験の結果 実験の結果は下記表5の通りである。4. Experiment results The results of the experiment are shown in Table 5 below.

表5 上記表5より、従来法である実験1は、脱窒槽では硝化
槽で生成したNo:I:は除去されているが、硝化槽で
除去されたBOD、NH,が増加している。
Table 5 From Table 5 above, in Experiment 1, which is the conventional method, No:I: generated in the nitrification tank was removed in the denitrification tank, but BOD and NH removed in the nitrification tank increased.

実験2〜勾は何れも単一の脱窒槽で夫々異なる溶存酸素
濃度で硝化と脱窒を同時に行ったものであるが、実験2
は、溶存酸素濃度を叶り/lに維持すると、BOD、N
o、は除去されるが硝化が完全でなく、■、が残存する
ことを示し、実験うは、溶存酸素濃度がO81〜0.3
す/lに維持すると、BOD%NB5、Noよが高度に
除去されることを示し、実験1は、溶存酸素濃度なo、
5〜OJ rpti/ノに維持すると、BOD、NH,
は除去されるが、脱窒が完全でなく No□が残存する
ことを示している。
In Experiments 2 and 3, nitrification and denitrification were performed simultaneously at different dissolved oxygen concentrations in a single denitrification tank.
If the dissolved oxygen concentration is maintained at 1/l, BOD, N
O indicates that although nitrification is not complete, ▪ remains, and experiment U indicates that the dissolved oxygen concentration is O81 to 0.3.
Experiment 1 shows that BOD%NB5 is highly removed when the dissolved oxygen concentration is maintained at o,
When maintained at 5~OJ rpti/no, BOD, NH,
is removed, but denitrification is not complete and No□ remains.

したかつ1本発明の方法で溶存酸素濃度は、特に0.1
〜0.311Lll/lが好適であることがわかる。
However, in the method of the present invention, the dissolved oxygen concentration is particularly 0.1
It turns out that ~0.311 Lll/l is suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

才1図は従来の廃水処理方法の工程説明図、矛2図は同
上工程における無機性窒素の濃度と反応時間の関係図、
オラ図は本発明の一実施例を示す工程説明図である。 (21・・高負荷反応槽、(7)・・硝化脱窒槽。 及点峙rfI(ん9 手続補正書(自制 昭和58年08月17日 1、事件の表示 昭和58年特許願i’126580号
2・発10名称 廃水の処理方法 3、補正をする者 事件との関係 特許出願人 アクカニ業株式会社 4、代理人 5、補正命令の日付 なし ム 補正の対象 明細書中「発明の詳細な説明」の欄。 l補正の内容 (1) 明細書矛5頁矛2行に「NH4+202→No
5+ 2H,0+ 2HJとあるを、「NH4+20□
→NOs+ N20 +2HJと訂正する。 +21 明細書矛ヰ頁牙8行に「或い高負荷反応槽」と
あるな、「或いは高負荷反応槽」と訂正する。 (3) 明細書矛10頁矛ヰ行に「硝化槽を略等しく、
」とあるな、「硝化槽と略等しく、」と訂正する。 (4)朋細書矛10頁矛6行に「例えばNH,−N1〜
/!」とあるな、「例えばNo、 −N 1ツ/IJと
、訂を正する。
Figure 1 is an explanatory diagram of the process of the conventional wastewater treatment method, Figure 2 is a diagram of the relationship between the concentration of inorganic nitrogen and reaction time in the same process,
The Ola diagram is a process explanatory diagram showing one embodiment of the present invention. (21...High-load reaction tank, (7)...Nitrification-denitrification tank. Point of reference rfI (n9) Procedural amendment (Self-restraint August 17, 1982 1, Incident indication 1982 patent application i'126580 No. 2/Issue 10 Name Wastewater treatment method 3, Relationship with the person making the amendment Patent applicant Akkanigyo Co., Ltd. 4, Agent 5, Date of amendment order None Subject of amendment "Explanation" column. Contents of the amendment (1) On page 5, line 2 of the specification, "NH4+202→No.
5+ 2H, 0+ 2HJ is replaced with "NH4+20□
→Corrected as NOs+ N20 +2HJ. +21 On page 8 of the specification, it says "or high-load reaction tank." Correct it to "or high-load reaction tank." (3) On page 10 of the specification, it is written that ``The nitrification tanks are approximately equal,
'', I corrected it by saying, ``It's almost the same as a nitrification tank.'' (4) In the 6th line of the 10th page of the Home specs: ``For example, NH, -N1 ~
/! It says, ``For example, No, -N 1tsu/IJ.

Claims (2)

【特許請求の範囲】[Claims] (1)高負荷反応槽で窒素化合物を高濃度に含有する有
機性廃水に生物学的BOD除去、窒素除去′を施すこと
により得られた硝化菌と脱窒菌が共存する流出液を、単
一の硝化脱窒槽に導き、液中に酸素含有ガスを導いて攪
拌し液中の溶存酸素濃度な0〜0.5m9/73に維持
することにより、液中の無機性窒素を生物学的硝化反応
と生物学的内生呼吸型脱窒反応とにより除去することを
特徴とする廃水の処理方法。
(1) The effluent in which nitrifying bacteria and denitrifying bacteria coexist, obtained by applying biological BOD removal and nitrogen removal to organic wastewater containing a high concentration of nitrogen compounds in a high-load reaction tank, is By introducing oxygen-containing gas into the liquid and stirring it to maintain the dissolved oxygen concentration in the liquid at 0 to 0.5 m9/73, inorganic nitrogen in the liquid undergoes a biological nitrification reaction. and a biological endogenous respiration type denitrification reaction.
(2)硝化脱窒槽の液中の溶存酸素濃度を0.1〜0.
3す/lに維持することを特徴とする特許請求の範囲矛
1項記載の廃水の処理方法。
(2) The dissolved oxygen concentration in the liquid in the nitrification and denitrification tank is set to 0.1 to 0.
3. The method for treating wastewater according to claim 1, wherein the wastewater is maintained at 3 s/l.
JP12658083A 1983-07-12 1983-07-12 Treatment of waste water Granted JPS6019098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12658083A JPS6019098A (en) 1983-07-12 1983-07-12 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12658083A JPS6019098A (en) 1983-07-12 1983-07-12 Treatment of waste water

Publications (2)

Publication Number Publication Date
JPS6019098A true JPS6019098A (en) 1985-01-31
JPH0324280B2 JPH0324280B2 (en) 1991-04-02

Family

ID=14938685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12658083A Granted JPS6019098A (en) 1983-07-12 1983-07-12 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS6019098A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724699A (en) * 1980-07-17 1982-02-09 Mitsubishi Heavy Ind Ltd Disposal of highly concentrated waste liquid
JPS57204294A (en) * 1981-06-10 1982-12-14 Kubota Ltd Denitrification of water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724699A (en) * 1980-07-17 1982-02-09 Mitsubishi Heavy Ind Ltd Disposal of highly concentrated waste liquid
JPS57204294A (en) * 1981-06-10 1982-12-14 Kubota Ltd Denitrification of water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015208708A (en) * 2014-04-25 2015-11-24 株式会社日立製作所 Water treatment monitor system, water treatment system having the same and water treatment method

Also Published As

Publication number Publication date
JPH0324280B2 (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JPH06226272A (en) Method of reducing content of organic chemical substance in waste liquid
JPS5881491A (en) Purification of filthy water with activated sludge
JPH02273600A (en) Process for purifying water
JP2007117842A (en) Method and apparatus for removing nitrogen of high concentration organic waste water
JP2017018861A (en) Method for removing nitrogen and nitrogen removal device
JPS6019098A (en) Treatment of waste water
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JPS6316100A (en) Biological nitraification and denitrification for drainage containing ammonia
JPS6222678B2 (en)
JPS5929092A (en) Treatment of sewage containing nitrogen component
KR100470350B1 (en) Method for disposing of livestock waste water
JP2001259688A (en) Waste liquid treating method
JPH0483594A (en) Biological treatment of organic sewage
JPH03275196A (en) Nitrous acid type nitrifying and denitrifying treatment device
JPH06190396A (en) Purifying treatment of nitrogen-containing sewage
JP7050204B1 (en) Wastewater treatment equipment and wastewater treatment method for wastewater containing high-concentration organic matter
JPH0141115B2 (en)
JPS6253238B2 (en)
JPH09290290A (en) Treatment of coke-oven gas liquor
JPS6014997A (en) Treatment of organic filthy water
JPS59109293A (en) Biological denitrification method of waste water
JPS61118196A (en) Biological treatment of waste water
JP2000263069A (en) Method and apparatus for treating waste water containing dimethyl sulfoxide
JPH03161096A (en) Treatment process for organic soil water
JPS6320599B2 (en)