JPS60184649A - Manufacture of sintered body of high pressure phase boron nitride - Google Patents
Manufacture of sintered body of high pressure phase boron nitrideInfo
- Publication number
- JPS60184649A JPS60184649A JP59039682A JP3968284A JPS60184649A JP S60184649 A JPS60184649 A JP S60184649A JP 59039682 A JP59039682 A JP 59039682A JP 3968284 A JP3968284 A JP 3968284A JP S60184649 A JPS60184649 A JP S60184649A
- Authority
- JP
- Japan
- Prior art keywords
- boron nitride
- pressure phase
- pressure
- sintered body
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)技術分野
この発明は切削]−員等どして使用りるのに適した^強
度でかつ耐摩耗性、靭性にす”ぐれた高圧相型窒化(/
II索焼結体の製造方法に関するものである。[Detailed Description of the Invention] (a) Technical Field This invention is a high-pressure phase nitriding process that is suitable for use in cutting, etc., and has excellent strength, wear resistance, and toughness.
The present invention relates to a method for manufacturing a sintered cord II.
(ロ)技術背景
高圧相型窒化(111素には立方晶型窒化1!Ill素
(以下CBNという)とウルツ鉱型窒化硼素(以下WB
Nという)どの2種があるが、いずれもダイヤモンドに
次ぐ高い硬石を有し、またダイ−7モンドに比べて鉄族
金属どの反応性が少ないため、研削や切削工具材料とし
C極めて有望であり、既にかなり多く用いられている。(b) Technical background High-pressure phase type nitridation (111 element includes cubic crystal nitride element (hereinafter referred to as CBN) and wurtzite type boron nitride (hereinafter referred to as WB).
There are two types of diamonds, both of which have the highest hardness next to diamond, and are less reactive with iron group metals than diamonds, so they are extremely promising as materials for grinding and cutting tools. Yes, it is already widely used.
特に切削用途にはCBNをGoなどで結合した焼結体が
一部使用されている。Particularly for cutting applications, sintered bodies made of CBN bonded with Go or the like are partially used.
CBNは前記した如く、高硬度であり、耐熱性、耐摩耗
性にすぐれた物質である。このCBNのみを焼結する試
みは種々なさねでいるが、これには例えば特公昭39−
8948号公報に記載されている如く、約70kb以上
、1900℃以上の超高圧高温下で焼結する必要がある
。As mentioned above, CBN is a material that has high hardness and excellent heat resistance and wear resistance. There have been various attempts to sinter only this CBN, for example,
As described in Japanese Patent No. 8948, it is necessary to sinter the material at a size of about 70 kb or more and at an extremely high pressure and high temperature of 1900° C. or more.
現状の超高圧高温装置では、このような高圧^温条件を
発生させることはできるが、■集的規模に装置を大型化
した場合、高圧高温発生部の耐用回数が制約され、実用
的でない。Current ultra-high-pressure, high-temperature equipment can generate such high-pressure and high-temperature conditions, but if the equipment is enlarged to a collective scale, the number of times the high-pressure and high-temperature generating section can be used is limited, making it impractical.
また前述の如り、うなどの金属を結合lどした焼結体が
一部使用されているが、これを切削工具として使用した
場合
(1)金属結合相から摩耗が進行する。Further, as mentioned above, some sintered bodies are used in which metals such as porcelain are bonded together, but when this is used as a cutting tool, (1) wear progresses from the metal bonding phase.
(2)金属相の存在のために焼結体全体の耐溶着性が低
下する。(2) The presence of the metal phase reduces the welding resistance of the entire sintered body.
+31GBN含有量が多いため、結合強度の低いCBN
粒子の接触が多く、CBN粒子間で破壊していることが
多い。+31 CBN with low bond strength due to high GBN content
There is a lot of contact between the particles, and there is often destruction between the CBN particles.
という問題が生じる。これは以下の成因による金属相が
原因で′ある。A problem arises. This is due to the metallic phase due to the following factors.
一般↓こCBN焼結体全体成する場合、まず圧力を加え
(、その後温度を上げる。そして十分高温ど4【つC溶
りた金属がCBN粒子間の隙間に浸入づる。General ↓ When forming a whole CBN sintered body, first apply pressure (and then raise the temperature. Then, if the temperature is sufficiently high, the molten metal will penetrate into the gaps between the CBN particles.
従って、圧力を加えた時CBN粒子間でひっかかりを生
じ、いわゆる架橋現象を生じた時には、この隙間が人さ
くなっ−Cいるため、大きな金属相をこの部分に形成り
る。この大きな金属相は、溶着現象を発生さVたすして
、前述したように焼結体全体の性能を劣化さぼる。Therefore, when pressure is applied and a catch occurs between the CBN particles and a so-called crosslinking phenomenon occurs, this gap becomes narrow and a large metal phase is formed in this part. This large metal phase causes a welding phenomenon and deteriorates the performance of the entire sintered body as described above.
(ハ)発明の開示
この発明は上記のような大きな金属相の偏析の発生を減
少させ、さらに高圧相型窒化硼素粒子間間隙を減少さけ
、含有される金属量を低下させることと、接触している
高圧相型窒化硼素粒子同志の結合強度を高めることにあ
る。(C) Disclosure of the Invention This invention reduces the occurrence of large metal phase segregation as described above, further reduces the gap between particles of high-pressure phase type boron nitride, and reduces the amount of metal contained. The aim is to increase the bonding strength between high-pressure phase type boron nitride particles.
架橋を発生させない方法は次の2通りが考えられる。The following two methods can be considered to prevent crosslinking from occurring.
1つは結合材の存在しないところで、これを行なうもの
であり、他の1つは結合材中の金属の溶融体存在下でこ
れを行なうものである。One is to do this in the absence of a binder, and the other is to do so in the presence of a molten metal in the binder.
前者は高圧相型窒化硼素粒子の表面を低圧相型窒化硼素
(以下hBNという)に変換し、この表面に生成しhB
Nの強度の弱いことおよび潤滑性を利用して架橋の発生
をなくすというものである。The former converts the surface of high-pressure phase boron nitride particles into low-pressure phase boron nitride (hereinafter referred to as hBN), and hB is generated on this surface.
The idea is to eliminate the occurrence of crosslinking by utilizing the low strength and lubricity of N.
予め常圧または減圧下で高圧相型窒化硼素粒子の表面を
IIBNに変換しておく方法と、焼結時に図面abcd
e〆1で示すように、高圧相型窒化硼素の不安定領域に
さらし、表面をhBNに変換覆る方法とがある。後者の
方法は、焼結時例えば図面aMeに示ツJ:うに、一旦
高粗相型窒化11N+素の不安定領域内の高圧下で結合
材中の金属を溶融し、これを高圧相型窒化硼素粒子と接
触「しめ、粒子間の架橋を高圧相型窒化硼素粒子の一部
を金属中に溶かしこむこと、あるいはhBNに変換Iし
めることで減らすものである。A method of converting the surface of high-pressure phase type boron nitride particles into IIBN under normal pressure or reduced pressure in advance, and drawings abcd during sintering.
As shown in e〆1, there is a method of exposing the high-pressure phase type boron nitride to an unstable region and converting the surface to hBN. In the latter method, the metal in the binder is melted under high pressure in the unstable region of the high coarse phase type 11N+ element during sintering, for example as shown in drawing aMe, and then the metal in the binder is melted under high pressure in the unstable region of the high coarse phase type boron nitride. This method reduces cross-linking between particles by dissolving some of the high-pressure phase type boron nitride particles into the metal, or by converting them into hBN.
高圧相型窒化硼素粒子はHいに圧縮されている ゛から
条件さえ選べば、後者の方法のほうが金属量の少ない焼
結体を得る可□能性がある。High-pressure phase type boron nitride particles are highly compressed.If conditions are selected, the latter method has the possibility of obtaining a sintered body with a smaller amount of metal.
何れにしても焼結の最終工程は、高圧相型窒化riJI
素の安定領域で行なわれるので、hBNに変換した部分
は再び高圧相型窒化硼素に戻る。In any case, the final step of sintering is high-pressure phase type nitrided riJI
Since the process is carried out in the stable region of the element, the portion converted to hBN returns to high-pressure phase type boron nitride.
この発明において結合相として用いる周期律表第4a、
5a、6aIJ′に金属の炭化物、窒化物、期化物、■
」化物の1種bt、<はこれらの混合物あるいは相互固
溶体としくのレラミックJ5)末は、+llI!+哀が
高く、J’t+ A11l!点(あり、さらにこれらレ
ラミック物質が酸化物に比較しく金属的な物情をイ」し
Cいる。特にこれらレラミックス物質の熱伝導瓜は金属
に近い1111を承り。No. 4a of the periodic table used as a bonding phase in this invention,
5a, 6aIJ' include metal carbides, nitrides, and compounds, ■
``One type of compound bt, < is a mixture or mutual solid solution of these compounds, and Relamic J5) is +llI! + Sadness is high, J't+ A11l! In addition, these Relamic materials have metallic properties compared to oxides. In particular, the thermal conductivity of these Relamic materials is similar to that of metal.
このJ、うな狛tiIを右りる上記レラミック物質を結
合相としく用いることで前述のCI3 Nの1ぐれIC
!l:J19を牛かした焼結体を得ることができるので
ある。By using the above-mentioned relamic material containing J and Unakoma tiI as a binding phase, the above-mentioned CI3N single-grain IC can be obtained.
! It is possible to obtain a sintered body that is superior to l:J19.
ま)こ結合相中に上記ロラミック物質を合孔Jることで
相対的に結合相中の金属量は低下り−る。M) By forming the above Roramic material into the binder phase, the amount of metal in the binder phase is relatively reduced.
+Nk IEi−、相!−゛2窒化11j+素粒子同志
の結合強度は、例えばwc−co超硬合金の液相焼結の
如く硬質粒子の結合金属への溶解と再析出現象があれば
、高いものが得られる。+Nk IEi-, phase! -゛2Nitride 11j+ A high bonding strength between elementary particles can be obtained if there is a phenomenon of dissolution and reprecipitation of hard particles into the bonding metal, such as in liquid phase sintering of wc-co cemented carbide.
次にこの発明でさらに結合相どじ−(用いるA&または
Nと5j1Nj、い、Fe 、 Cr 、 Knの1種
もしく(よこれらの混合物あるいは相互固溶体は、CB
N合成時の触媒であり、焼結時にこれら金属の融体と表
面がhBNに変換された高圧相型窒化Ill!I素粒子
が接触しているため、前述の溶解と再析出と類似しIC
現象が生じ、高圧相型窒化硼素粒子同志の結合が高めら
れる。Next, in this invention, the bonded phase (A & or N and 5j1Nj, used, one type of Fe, Cr, Kn, or a mixture or mutual solid solution of CB
It is a catalyst during N synthesis, and the melt and surface of these metals are converted to hBN during sintering. Since the I elementary particles are in contact, IC
This phenomenon occurs, and the bonding between the high-pressure phase type boron nitride particles is enhanced.
即ち、焼結の最終■稈は、高圧相型窒化硼素の安定域で
行なわれているため、hBNの溶解、高圧相型窒化硼素
の析出が生じると考えられる。またこの時、高圧相型窒
化硼素粒子は圧縮されているので、析出りる高圧相型窒
化硼素は互いの粒子の接触部を成長させるので高圧相型
窒化硼素粒子同志の結合強度が高めβ−れる。That is, since the final culm of sintering is carried out in the stable region of high-pressure phase type boron nitride, it is considered that hBN is dissolved and high-pressure phase type boron nitride is precipitated. In addition, since the high-pressure phase boron nitride particles are compressed at this time, the precipitated high-pressure phase boron nitride grows the contact areas between the particles, increasing the bonding strength between the high-pressure phase boron nitride particles and β- It will be done.
この発明において焼結体を得るに使用する装置としては
、ベルト型、ガードル型のダイ\7[ンド合成に用いら
れる超高1巳装置が過当て・′ある。In this invention, the apparatus used to obtain the sintered body is a belt-type, girdle-type, ultra-high-speed apparatus used for die synthesis.
イしC焼結にお【)る温′瓜、圧力条件は図面に示しI
J高JJg 4Llハリ窒化Ill 累の安定領域で行
なう。この領域のなかでし1200℃以上C圧力40k
b以上が好ましい。The temperature and pressure conditions for sintering are shown in the drawing.
J high JJg 4Ll halinitride Ill It is carried out in the stable region of the formation. In this area, above 1200℃C pressure 40k
b or more is preferable.
以上実施例にJ、りこの発明の詳細な説明りる。The detailed description of the invention by Riko J is given in the Examples above.
実施例1
平均粒度2μのCB’NI)末ど結合材粉末を第1表の
組成に混合した後、ダイヤモンド合成に使用される超高
圧高温装置を用いて焼結を行なった。Example 1 CB'NI) end binder powder having an average particle size of 2 μm was mixed with the composition shown in Table 1, and then sintered using an ultra-high pressure and high temperature apparatus used for diamond synthesis.
まず、圧力を15kbに上げた後、温度1300℃に加
熱し、5分間保持した。First, the pressure was raised to 15 kb, and then heated to a temperature of 1300°C and held for 5 minutes.
口の領域はCBN不安定域である。この後温度を130
0’Cに保1もしたJ、ま、45kbまで圧力をゆっく
り十り゛、10分間保持しIこのら降温し、さらに降圧
し lこ 。The mouth region is a CBN unstable region. After this, increase the temperature to 130
After keeping it at 0'C, the pressure was slowly increased to 45 kb for 10 minutes, then the temperature was lowered and the pressure was lowered further.
j51られた焼結体は結合相が組織的に均一に分布しく
おり、118Nは残存しくいなかった。In the sintered body, the binder phase was uniformly distributed in structure, and there was not much 118N remaining.
この発明の方法を採用Uずに、まず圧力を45 k b
まで上げ、その後圧力を保持したまま温度を1300℃
にあげて10分間保持して得た焼結体は金属の偏析がみ
られ、また完全に焼結していなかった。Without adopting the method of this invention, the pressure was first increased to 45 kb.
and then raise the temperature to 1300℃ while maintaining the pressure.
The sintered body obtained by holding for 10 minutes showed segregation of metal and was not completely sintered.
第 1 表
実施例2
平均粒度4μのCBN粉末を予め10 mm 1−11
の真空下で1300℃に10分間保持してCBN粒子の
表面をhBNに変換した。Table 1 Example 2 CBN powder with an average particle size of 4μ was prepared in advance into 10 mm 1-11
The surface of the CBN particles was converted to hBN by holding at 1300° C. for 10 minutes under vacuum.
この粉末を実施例1で用いたCBN粉末の代りに用い、
第1表に示り一結合材を同じ組成に混合したのち、−容
器に充填し、ダイヤモンド合成に使用される超高圧高温
装置を用いて焼結した。This powder was used instead of the CBN powder used in Example 1,
The binders shown in Table 1 were mixed to the same composition, then filled into a container and sintered using an ultra-high pressure and high temperature apparatus used for diamond synthesis.
まず圧ノコを45kbまで上げ、温度を1300℃にし
て15分間保持した。First, the pressure saw was raised to 45 kb, and the temperature was raised to 1300°C and held for 15 minutes.
得られた焼結体の組織゛は実施例1で得た試料とほぼ同
じであった。The structure of the obtained sintered body was almost the same as that of the sample obtained in Example 1.
実施例3
平均検疫3μのCBN粉末と結合材粉末を第2表に示す
組成に混合したのち、一容器に充填した。Example 3 CBN powder with an average quarantine of 3 μm and binder powder were mixed to have the composition shown in Table 2, and then filled into a container.
これらを実施例1と同様に焼結して焼結体を得た。These were sintered in the same manner as in Example 1 to obtain a sintered body.
この焼結体と市販のωなどを結合材とづる焼結体を用い
てFCD45を周速300+n / Ill!II 、
り込み0 、3 nun、送りQ、1mm/ I゛eV
、 tki1式の条件ぐ切削した。その結果は第2表
の通りであった。Using this sintered body and a sintered body made of commercially available ω etc. as a binder, the FCD45 was set at a circumferential speed of 300+n/Ill! II,
Penetration 0, 3 nun, feed Q, 1mm/IeV
, Cutting was carried out under the conditions of the tki1 formula. The results were as shown in Table 2.
なお、セラミック物質金属は各々平均検電1μ、40μ
のしのを用いノこ。In addition, the average voltage detection for ceramic materials and metals is 1 μ and 40 μ, respectively.
A saw using wood.
第 2 表
実施例4
実施例3の試料N005と同じ組成の結合材ど第3表の
組成の高圧相型窒化硼素を混合して一容器に充填した。Table 2 Example 4 A binder having the same composition as Sample No. 005 of Example 3 and high-pressure phase boron nitride having the composition shown in Table 3 were mixed and filled into a container.
この容器を実施例1と同じ装置を用いて焼結した。This container was sintered using the same equipment as in Example 1.
第 ;3° 表
J、J” f:L力を20 k bに−1げlc後、1
300℃に加熱しC10分間保1\1jシIご。−での
後j1力を45kbに上げたのらに、さらに)ム、11
哀を1400℃に−1−げ゛(15分間保持した後、降
温、降月1 シlj+u′1を取出しIこ。3° Table J, J” f: L force to 20 k b -1 glc, 1
Heat to 300℃ and hold for 10 minutes. -After increasing the j1 force to 45kb, further)mu, 11
After holding the temperature at 1400°C for 15 minutes, the temperature decreases and the temperature decreases.
こ、れら焼結体ど実施例3の試料N095の焼結体おJ
、び市販のCo ’c=どを結合材どする焼結体を用い
CIC2!iをIr1l j% !+OOm / 1l
lin 、切込み0°4mm゛送り0.2mm ’ r
(!V 、乾式の条(’I ’(’切削した。その結果
【1第4表の通り′C″あった。These sintered bodies are the sintered bodies of sample N095 of Example 3.
, and CIC2 using a commercially available sintered body with Co'c as a binder. i to Ir1l j%! +OOm / 1l
lin, depth of cut 0°4mm, feed 0.2mm' r
(!V, dry strip ('I') was cut. The result was 'C' as shown in Table 4 of [1].
第 4 表Table 4
図面はこの発明の方法による焼結体の製造条1′1を説
明するためのもので、高圧相型窒化硼素の圧力一温度相
図上にa3りる熱力学的な安定領域を示したものである
。
1・・・立方晶−低圧相型窒化硼素平衡線A・・・高圧
相型窒化硼素安定域
B・・・低圧相型窒化硼素安定域
特¥1出願人 住友電気工業株式会社
代 理 人 弁坤十 和 1) 昭The drawing is for explaining the production line 1'1 of a sintered body by the method of the present invention, and shows the thermodynamic stable region of a3 on the pressure-temperature phase diagram of high-pressure phase type boron nitride. It is. 1...Cubic crystal - low pressure phase type boron nitride equilibrium line A...High pressure phase type boron nitride stability region B...Low pressure phase type boron nitride stability region Special price ¥1 Applicant Sumitomo Electric Industries, Ltd. Agent Ben 1) Akira
Claims (1)
面−を低圧相型窒化硼素に変換さμに高圧相型窒化硼素
粒子とセラミック粉末および金属粉末からなる結合材と
を混合せしめた後、高圧相型窒化硼素の安定湿度、圧力
範囲内で焼結することを特徴とする高圧相型窒化硼素焼
結体の製造方法。 (2)高圧相型窒化Ia素が立方晶型窒化硼素であるこ
とを特徴とする特ム1請求の範囲第1項記載の高圧相型
窒化硼素焼結体の製造方法。 、f4311?ラミック粉末からなる結合材として周期
社表第4a、5a、6al/*金属の炭化物、窒化物、
硼化物、珪化物の1種またはこれらの混合物あるいは相
互固溶体を用いることを特徴とする特許請求の範囲第1
項記載の8正相型窒化硼素焼結体の製造す法。 (4)金属粉末からなる結合材としてNまたはNとSi
、Ni、も、Fe、Cr、Mnの1種またはこれらの混
合物あるい(,1相互固溶体を用いることを特徴とする
特許請求の範囲第1項記載のl&圧圧型型窒化硼素焼結
体製造方法。 (5)高圧相型窒化硼素粒子とレラミッゲ粉末および金
属粉末からなる結合材とを混合した後、高圧相型窒化硼
素の不安定渇瓜、圧力範囲内で高圧下に一旦保持して、
溶融した結合材中金属と高圧相型窒化硼素粒子とを接触
さけ、次いで高圧相型窒化硼素の安定温度、圧力範囲内
で焼結することを特徴とする高圧相型窒化硼素焼結体の
製造方法。 (6)高圧相型窒化硼素が立方晶型窒化硼素であること
を特徴とする特許請求の範囲第5項記載の高圧相型窒化
硼素焼結体の製造方法。 (7) セラミック粉末からなる結合材として周期律表
第4a、5a、6aの族金属の炭化物、窒化物、硼化物
、珪化物の1種またはこれらの混合物あるいは相互固溶
体を用いることを特徴とする特許請求の範囲第51jJ
記載の高圧相型窒化硼素焼帖体の製造方法。 (8)金属粉末からなる結合材どしてNまたはNとSl
、N1、ω、Fe、Cr、inの1種またはこれらの混
合物あるいは相互固溶体を用いることを特徴とする特め
請求の範囲第55項記載の高圧相型窒化III素焼結体
の製造方法。[Claims] (1) The surface of high-pressure phase boron nitride is converted into low-pressure phase boron nitride within an unstable temperature and pressure range from high-pressure phase boron nitride particles, ceramic powder, and metal powder. A method for producing a high-pressure phase type boron nitride sintered body, which comprises mixing the high-pressure phase type boron nitride with a binder, and then sintering the high-pressure phase type boron nitride within a stable humidity and pressure range. (2) The method for producing a high-pressure phase type boron nitride sintered body according to claim 1, wherein the high-pressure phase type Ia nitride is cubic boron nitride. , f4311? As a binder made of lamic powder, carbides and nitrides of metals listed in Periodic Table 4a, 5a, 6al/*
Claim 1 characterized in that one of borides and silicides, a mixture thereof, or a mutual solid solution is used.
8. A method for producing a positive phase boron nitride sintered body as described in Section 8. (4) N or N and Si as a binder made of metal powder
, Ni, Fe, Cr, Mn, or a mixture or (, 1 mutual solid solution) is used. Method. (5) After mixing high-pressure phase type boron nitride particles with a binder consisting of Leramigge powder and metal powder, the high-pressure phase type boron nitride is unstablely quenched, and once held under high pressure within a pressure range,
Production of a high-pressure phase boron nitride sintered body, which is characterized by avoiding contact between the molten metal in the binder and high-pressure phase boron nitride particles, and then sintering within the stable temperature and pressure range of the high-pressure phase boron nitride. Method. (6) The method for producing a high-pressure phase boron nitride sintered body according to claim 5, wherein the high-pressure phase boron nitride is cubic boron nitride. (7) As a binder made of ceramic powder, one of carbides, nitrides, borides, and silicides of metals in groups 4a, 5a, and 6a of the periodic table, or a mixture or mutual solid solution thereof is used. Claim No. 51jJ
The method for manufacturing the high-pressure phase type boron nitride sintered body described above. (8) Binding material made of metal powder is N or N and Sl
, N1, ω, Fe, Cr, in, a mixture thereof, or a mutual solid solution. 56. A method for producing a high-pressure phase type III nitride sintered body according to claim 55.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59039682A JPS60184649A (en) | 1984-02-29 | 1984-02-29 | Manufacture of sintered body of high pressure phase boron nitride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59039682A JPS60184649A (en) | 1984-02-29 | 1984-02-29 | Manufacture of sintered body of high pressure phase boron nitride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60184649A true JPS60184649A (en) | 1985-09-20 |
JPH0435540B2 JPH0435540B2 (en) | 1992-06-11 |
Family
ID=12559854
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59039682A Granted JPS60184649A (en) | 1984-02-29 | 1984-02-29 | Manufacture of sintered body of high pressure phase boron nitride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60184649A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066082A1 (en) | 2007-11-22 | 2009-05-28 | Advanced Interactive Materials Science Limited | Net or near net shape powder metallurgy process |
-
1984
- 1984-02-29 JP JP59039682A patent/JPS60184649A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009066082A1 (en) | 2007-11-22 | 2009-05-28 | Advanced Interactive Materials Science Limited | Net or near net shape powder metallurgy process |
EA026007B1 (en) * | 2007-11-22 | 2017-02-28 | Адвансд Интерэктив Материалз Сайнз Лимитед | Process for producing net or near net shape metal component by isostatic pressing or hot uniaxial pressing and pressed metal component |
Also Published As
Publication number | Publication date |
---|---|
JPH0435540B2 (en) | 1992-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6919040B2 (en) | Method of producing an abrasive product containing cubic boron nitride | |
US20050257430A1 (en) | Method of producing an abrasive product containing diamond | |
US20150023830A1 (en) | Diamond metal composite | |
JPH0621312B2 (en) | Sintered body for high hardness tool and manufacturing method thereof | |
JPH07188803A (en) | Highly tough ceramic/metal composite material and its production | |
JPS6132275B2 (en) | ||
JPS60184649A (en) | Manufacture of sintered body of high pressure phase boron nitride | |
JPS6137221B2 (en) | ||
JP2020059079A (en) | Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same | |
JPS6369760A (en) | Sintered body for high hardness tools and manufacture | |
JPS60184648A (en) | Manufacture of sintered body of high pressure phase boron nitride | |
JPH03215363A (en) | Production of ceramic material based on cubic boron nitride having high toughness | |
JPS644987B2 (en) | ||
JPH0463607A (en) | Cutting tool having cutting edge part formed of cubic boron nitride sintered substance | |
JPH0154302B2 (en) | ||
JPS639009B2 (en) | ||
JPS6270268A (en) | Sintered body for high hardness tool | |
JPS6335456A (en) | High hardness sintered body for cast iron catting work | |
JPS6177670A (en) | Manufacture of cubic boron nitride base sintered body for cutting tool | |
JPS63282166A (en) | High-density metal boride-base sintered ceramics body | |
JPH0377151B2 (en) | ||
JPS60184650A (en) | Manufacture of sintered body of high pressure phase boron nitride | |
JPH03193668A (en) | Production of cubic boron nitride ceramic material having high toughness | |
JPH05194032A (en) | Production of diamond-based ultra-high pressure sintered material for highly heat-resistant machining tool | |
JPS6039138A (en) | Manufacture of tungsten carbide-base sintered hard alloy for cutting tool |