JPS60184648A - Manufacture of sintered body of high pressure phase boron nitride - Google Patents

Manufacture of sintered body of high pressure phase boron nitride

Info

Publication number
JPS60184648A
JPS60184648A JP59039680A JP3968084A JPS60184648A JP S60184648 A JPS60184648 A JP S60184648A JP 59039680 A JP59039680 A JP 59039680A JP 3968084 A JP3968084 A JP 3968084A JP S60184648 A JPS60184648 A JP S60184648A
Authority
JP
Japan
Prior art keywords
pressure phase
boron nitride
pressure
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59039680A
Other languages
Japanese (ja)
Inventor
Katsuhiro Mitsusaka
三坂 勝弘
Shuji Yatsu
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59039680A priority Critical patent/JPS60184648A/en
Publication of JPS60184648A publication Critical patent/JPS60184648A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a sintered body of high pressure phase BN having high strength, superior wear resistance and toughness by converting the material of the surfaces of high pressure phase BN particles into low pressure phase BN by treatment under temp. and pressure conditions under which high pressure phase BN is unstable, mixing the particles with binder powder, and sintering the mixture under temp. and pressure conditions under which high pressure phase BN is stable. CONSTITUTION:The material of the surfaces of high pressure phase BN (cubic BN) particles is converted into low pressure phase BN by treatment under temp. and pressure conditions under which high pressure phase BN is unstable, e.g., at about 1,300 deg.C under about 15kb pressure. The particles are then mixed with binder powder and sintered under temp. and pressure conditions under which high pressure phase BN is stable, e.g., at about 1,400 deg.C under about 50kb pressure. Powder of one or more kinds of components selected among alkali metals, alkaline earth metals, the nitrides and boronitrides of the metals, Pb, Sb, Sn and alloys of Pb, Sb and Sn is used as the binder powder.

Description

【発明の詳細な説明】 (イ)技術分野 この発明は切削工具等どして使用りるのに適し1=高強
度でかつ耐厚耗性、靭性にりぐれた。−゛)圧用型窒化
硼素焼結体の製造方法に関り−るものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field The present invention is suitable for use as a cutting tool, etc. 1 = High strength and excellent wear resistance and toughness. -゛) This relates to a method of manufacturing a press-type boron nitride sintered body.

(ロ)技術背景 高圧相型窒化硼素には立方晶型窒化硼素(以下C[3N
という)とウルツ鉱望窒化硼素(以下WBNという)と
の2種があるが、いずれしダイヤモンドに次ぐ、zlい
硬磨をイjし、またタイヤ−しンドに比べ(鉄族金属と
の反応性が少ないため、研削や切削J−貝祠料どして極
め−(イJ望であり、既にかなり多く用いられている。
(b) Technical background The high-pressure phase type boron nitride is cubic type boron nitride (hereinafter referred to as C[3N
There are two types: wurtzite boron nitride (hereinafter referred to as WBN), but both of them have the highest hardness, second only to diamond, and have a higher hardness than tire nitride (reaction with iron group metals). Because of its low properties, it is extremely useful for grinding and cutting, such as shell abrasions, and is already widely used.

特に切削用途にはCBNをGoなどC結合した焼結体が
一部使用されている。
Particularly for cutting applications, sintered bodies in which CBN is bonded with C such as Go are partially used.

に B Nは前記した如く、13硬麿ぐあり、耐熱性、
耐1!^耗11に4ぐれた物質ぐある。このCBNのみ
を焼結する試みは種々なされ°(いるが、これには例え
ば特公昭39−8948号公報に記載されている如く、
約7旧(1)以−1,190(1℃以上の超高圧高温下
で焼結りる必要がある。
As mentioned above, BN has 13 hardness, heat resistance,
Endurance 1! There are 4 substances in wear 11. Various attempts have been made to sinter only this CBN (there are some, for example, as described in Japanese Patent Publication No. 39-8948).
Approximately 7 years old (1) -1,190 (needs to be sintered under ultra-high pressure and high temperature of 1°C or higher.

」り状の超、X’+11.4−/+:4 温’A 置で
は、このJ、うな畠ル1z)7ム、1条イ′1を発生さ
せることはできるが、工業的規模に装置4人型化し/c
JJ、i合、畠11高温発生部の耐用回数が制約され、
実用的でない。
It is possible to generate this J, Unahataru 1z) 7mu, 1 strand A'1 at a temperature of 4. Device 4 humanoid/c
JJ, i, Hatake 11 The number of service life of the high temperature generation part is limited,
Not practical.

また前述の如く、Cなどの金属を結合材とした焼結体が
一部使用されているが、これを切削工具として使用した
場合。
Further, as mentioned above, some sintered bodies using metals such as C as a binder are used, but when this is used as a cutting tool.

(1)金属結合相から摩耗が進(うする。(1) Wear progresses from the metal bonding phase.

(2)金属相の存在のために焼結体全体の耐溶着性が低
下−りる。
(2) The presence of the metal phase reduces the welding resistance of the entire sintered body.

という問題が生じる。これは以下の成因による金属相が
原因である。
A problem arises. This is due to the metallic phase due to the following factors.

一般にCI3 N焼結体を作成”する場合、まず圧力を
加えて、その後itを上げる。そして1−分高温どなっ
て溶りた金属がCBN粒子間の隙間に浸入づる。
Generally, when creating a CI3N sintered body, pressure is first applied and then the temperature is increased.Then, the molten metal infiltrates into the gaps between the CBN particles due to the high temperature for 1 minute.

従って、圧力を加えた詩CB N粒子間(゛ひっかかり
を生じ、いわゆる架橋現象を生じた時には、この隙間が
大きくなっているため、大ぎな金属相をこの部分に形成
Jる。この大きな金属相は、溶6現象を発生さl!Iこ
すして、前述しIこj、うに焼結体全体の性能を劣化さ
せる。
Therefore, when pressure is applied between the CBN particles (snapping occurs and a so-called crosslinking phenomenon occurs), this gap becomes large and a large metal phase is formed in this part. This causes the melting phenomenon, which deteriorates the overall performance of the sintered body as described above.

(ハ)発明の開示 この発明は上記のような大ぎな結合相の偏析の発生を減
少させ、さらに高圧相型窒化硼素粒子表面隙を減少ざU
、含イ・Jされる結合材tdを低下ざぜる。−どにある
(C) Disclosure of the Invention This invention reduces the occurrence of large binder phase segregation as described above, and further reduces surface pores of high-pressure phase type boron nitride particles.
, the bonding material td contained in the material is reduced. -Where is it?

即ノ5、架橋を光生さlない、bし、<は一旦発生しl
、:架橋を破駒りることを考察したものひある。
Immediately 5, cross-linking is not photogenerated, b, and < is once generated.
, : There are some studies that consider breaking the bridge.

【の方法は次の2通りが占えられる。。There are two ways to do this: .

1つは結合Hの存在しないところで、これを行<iうb
のCあり、他の1゛)は結合材と混合後これを行なうし
のぐある。
One is to do this where there is no bond H
There is C, and the other 1) can be done after mixing with the binder.

前者は高圧相型窒化I#I素粒子の表面を低りIm相型
窒化i索(以1’1l13Nという)に変換し、この表
面に生成したIIBNの強瓜の弱いことおよび潤滑性を
右りることを利用しく架橋の発生をなくすというしので
ある。
The former converts the surface of high-pressure phase type nitrided I#I elementary particles into a low Im phase type nitrided i-cord (hereinafter referred to as 1'1l13N), and the weak strength and lubricity of IIBN generated on this surface are improved. The idea is to eliminate the occurrence of crosslinking by taking advantage of the fact that

予め、iHi、圧または減圧下ぐIΩΩ粗相型窒化硼素
粒子表面をIIBNに変換しておく方法と、高温高圧下
での焼結+++旨こ図面abCdeの順で示−リ゛よう
に、高圧相型窒化硼素不安定領域にさらし、表面を11
BNに変換づる方法どがある。
As shown in the order of the drawings abCde, there is a method of converting the IΩΩ coarse-phase type boron nitride particle surface to IIBN in advance under iHi pressure or reduced pressure, and sintering under high temperature and high pressure. Type boron nitride unstable region exposed to 11
There are ways to convert it to BN.

後者の方法は、高圧相型窒化硼素粒子は互いに14:K
i;Xi〆l−7’1.%人−hIQ4ζ、M−A−=
二!!A”+4デ蚤jk−さ1麺411′1コ一:毫+
の方が結合相ωの少ない焼結体を得るiij能↑1があ
る。
In the latter method, high-pressure phase boron nitride particles are placed at 14:K with each other.
i;Xi〆l-7'1. % people-hIQ4ζ, M-A-=
two! ! A" + 4 demi jk - 1 noodle 411' 1 piece: 毫 +
The ability to obtain a sintered body with less binder phase ω is ↑1.

何れにしてもホットプレスの最終工程は高圧相型窒化硼
素安定領域で行なわれるのて”h[3Nに変換した部分
は、再び^粗相型窒化1素に戻る。
In any case, the final step of hot pressing is carried out in the high-pressure phase type boron nitride stable region, so that the portion converted to ``h[3N'' returns to coarse phase type mononitride again.

この発明で結合材として用いるアルカリ金属、j′ルカ
リ土類金属またはこれらの窒化物、硼窒化物、鉛、アン
チモン、錫あるいはこれらの合金は、hBN粉末を原料
とし”C高圧、高温下でCBN粉末を製造する際の触媒
として用いられることが知られでいる。
The alkali metals, alkaline earth metals, nitrides, boronitrides, lead, antimony, tin, or alloys thereof used as binders in this invention are made from hBN powder and are converted into CBN under high pressure and high temperature. It is known to be used as a catalyst when producing powder.

しかしながら、この発明にJ3いては、これら触媒作用
を有する物質群より選択した一種またはそれ以上を結合
材として用いることで、高圧相型窒化硼素粒子表面のh
BNが高圧相型窒化硼素に再乾換する際に有効に作用し
、結合相聞の少ない均一な組織を得ることができるので
&る。
However, in J3 of the present invention, by using one or more selected from the group of substances having catalytic action as a binder, h
This is because BN acts effectively when re-drying to high-pressure phase type boron nitride, making it possible to obtain a uniform structure with few bonding phases.

この結合材は最終的には焼結体に残るので、その使用量
が多く’fKると、工具等の用途に使用する焼結体とし
ての梅能が低下して好ましくなく、そ0) ijsは5
体積%以下が適当である。
This binding material ultimately remains in the sintered body, so if the amount used is large, the performance of the sintered body for use in tools etc. will deteriorate, which is undesirable. is 5
It is appropriate that the amount is less than % by volume.

この発明においζ焼結体を得るに使用する装置とし”C
は、ベルト型、ガードル型のダイヤモンド合成に用いら
れる超高圧装置がある。
In this invention, the device used to obtain the ζ sintered body is "C"
There are belt-type and girdle-type ultrahigh-pressure equipment used for diamond synthesis.

ぞしC焼結にa3りる渇爪、圧力条イ′1は図面に示し
た高圧相型窒化硼素の安定領域で行なう。この領域のな
か(・j>1200℃以上で圧力40 k 11以上が
好ましい。
The drying process a3 and the pressure process '1' for C sintering are carried out in the stable region of high-pressure phase type boron nitride shown in the drawing. Within this range (.j > 1200°C or higher and pressure 40 k 11 or higher is preferred.

以上実論例によりこの発明の詳細な説明Jる。The above is a detailed explanation of the present invention using practical examples.

実施例1 ゝP均粉粒度5μCBN粉末とマグネシウム粉末、窒化
マグネシウム粉末を第1表に示づ組成に配合しlこ後、
混合を行ない、これを1容器に充填してグイX7モンド
合成に使用される超高圧l!8II温装置にて次のJ、
うにしく焼結をijなった。
Example 1 After blending CBN powder with a uniform particle size of 5μ, magnesium powder, and magnesium nitride powder into the composition shown in Table 1,
Mix it, fill it into a container, and apply the ultra-high pressure L used for Gui X7 Mondo synthesis! In the 8II heating device, perform the following J.
I really enjoyed sintering.

J:すJ−Lカを15kbに上げIc後1300℃に加
熱し、5分間保持しIC0この領域はCB N不安定域
ぐある。
J: Raise the J-L power to 15 kb, heat to 1300°C after Ic, hold for 5 minutes, and IC0 This region is in the CBN unstable region.

この後温度を1400℃に圧力を50 k bにゆっく
り上げ−(10分間保持したのちL’f温し、さらに降
圧した。
Thereafter, the temperature was slowly increased to 1400° C. and the pressure was increased to 50 kb (maintained for 10 minutes, then the temperature was increased to L'f, and the pressure was further lowered).

tIられた焼結体は結合材が組織的に均一に分布してお
り、hBNは残存していなかった。また全ての試料に酸
化マグネシウムが検出され、各々のビッカース硬度(測
定荷重10−)は第1表の通りであった。
In the tI-treated sintered body, the binder was uniformly distributed in structure, and no hBN remained. Further, magnesium oxide was detected in all the samples, and the Vickers hardness (measured load: 10-) of each sample was as shown in Table 1.

第 1 表 この発明の方法によらず、図面abeのルートをとった
時には、焼結体には結合材の偏析が認められ、J:た一
部空孔も観察された。
Table 1 Regardless of the method of the present invention, when the route shown in Figure abe was taken, segregation of the binder was observed in the sintered body, and some vacancies were also observed.

試料1〜4 J3よび市販の6などを結合材どする焼結
体を用い−UFC25を周速500 +n / III
 i n 、切込み0.3mu+、送り0.1mm /
 r(3V 、乾式の条件で切削しIC8逃げ面摩耗幅
が0 、2111n+に達するまCのスf命時間は′i
82表に示した。
Samples 1 to 4 Using sintered bodies made of J3 and commercially available 6 as binders - UFC25 at a peripheral speed of 500 +n/III
i n , depth of cut 0.3mu+, feed 0.1mm/
r(3V, cutting under dry conditions until IC8 flank wear width reaches 0, 2111n+, C life time is 'i
It is shown in Table 82.

第2表 実施例2 3 平均粒度2μのCI3 N粉末を予め10mm 1−1
)の貞空下u1300℃に10分間保1.+1シてGB
N粒子の表面を118Nに変換した。
Table 2 Example 2 3 CI3 N powder with an average particle size of 2μ was preliminarily prepared into 10 mm 1-1
) kept at 1300℃ for 10 minutes under a clean air 1. +1 GB
The surface of the N particles was converted to 118N.

この粉末と実施例1の第1表に示したNol〜3の結合
4A粉宋を第゛1表の組成に況含し/=のら;出容:量
に充l眞し、タイヤピント合成に使用されるM +:i
+ IJ’: j−4渇装置を用い−(焼結しlこ、。
This powder and the combined 4A powder of No. 3 shown in Table 1 of Example 1 were included in the composition of Table 1. M+:i used for
+ IJ': Sintered using a J-4 quenching device.

J、 J’圧力を!i 0 k bまC上げ、温1印を
1400℃にしてj 1..5j−IAI保1jl L
/ /C、。
J, J'pressure! i 0 k b Raise the temperature to 1400°C and set it to 1400°C.j 1. .. 5j-IAI 1jl L
/ /C,.

(1〕られだ焼結体の組織、tl哀i1j J、び性能
は実施例1 (1!J A:試オ゛1と(よは同じであ
った。
(1) The structure, structure, and performance of the sintered body were the same as those of Example 1 (1!J A: Trial 1).

実/+li+ lu+ 、’3 実施例1の方法に従って、実施例1のCBNを平均粒度
1μのWB’N粉末を用いて実験を行なった。ただし組
成は第1表の試料N o、 1〜3の3種どした。
/+li+lu+,'3 According to the method of Example 1, an experiment was conducted using the CBN of Example 1 as WB'N powder with an average particle size of 1 μm. However, the compositions were three types, Samples No. 1 to 3 in Table 1.

得られた焼結体の組織は均一で、hBNは残存しCいな
かった。
The structure of the obtained sintered body was uniform, and hBN and C were not present.

この焼結体と市販のCoなどを結合材ど9る焼結体を用
いて、F C,,1) 45を周速300m / mi
+1、切込みO’、 3 mnt、送り0.Inun 
/ I’eV 1湿式の条件で切削したところ、逃げ面
摩耗幅が0 、2 nunに達りるまでの寿命時間は、
この発明のNo、1〜3の焼結体は各々42分、56分
、45分、市販品は20分であった。
Using this sintered body and a commercially available sintered body with a binder such as Co, FC,,1) 45 was heated at a circumferential speed of 300 m/mi.
+1, depth of cut O', 3 mnt, feed 0. Inun
/ I'eV 1 When cutting under wet conditions, the life time until the flank wear width reaches 0,2 nun is:
The sintered bodies No. 1 to 3 of this invention took 42 minutes, 56 minutes, and 45 minutes, respectively, and the commercial product took 20 minutes.

実施例4 第3表に示り゛組成のgI汁相型窒化硼素粉末ど結合材
を混合したのら、臨容器に充填した。イし−(実施例1
と同様の方法にて焼結を行なっノコ。
Example 4 A binder such as gI juice phase type boron nitride powder having the composition shown in Table 3 was mixed and then filled into a container. (Example 1)
Sintering was performed using the same method as the saw.

第3表 itIられI、:焼結体は、結合材が組織的に均一に分
4+ L/ t jjす、IIBNは残存しくいながっ
IC0でしく試料NO,5〜1oJ5よび市販の6など
を結合(AどJる焼結体を用い−(r−025を周速5
00m /min、切込み0.311Ill11送りO
,1non / reV 、乾式の条fli ’i(’
切削した。逃げ面摩耗幅が0.2 mmに達りるまでの
Ki命時間は第4表に示した。
Table 3: The sintered body has a structure in which the binder is uniformly divided into 4+L/tjj, and IIBN remains and is IC0. (using a sintered body) (r-025 at a circumferential speed of 5
00m/min, depth of cut 0.311Ill11 feed O
,1non/reV, dry article fli 'i('
I cut it. The Ki life time until the flank wear width reaches 0.2 mm is shown in Table 4.

第4表 実施例4の試料N098の鉛の代りに第5表に示づ結合
材を用いて実施例1と同様にして焼結した。 第 り 
表 1°1られた焼結体の組織は均一で、1l13Nは残存
しCいなかっIこ。また各々のビッカース硬度(測定前
型iokg>は第5表の通りCあった。
Table 4 Sample No. 098 of Example 4 was sintered in the same manner as in Example 1 except that the binder shown in Table 5 was used instead of lead. The second
Table 1: The structure of the sintered body was uniform, with no residual 1l13N and no carbon. In addition, the Vickers hardness (before measurement iokg) of each was C as shown in Table 5.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこのR明の方法に−(焼結体を製)貴する条件を
説明りるための6の0、I11圧相型窒化fil索のF
i−)J−渇麿相図上におりる熱力学的な安定領域を1
・・・立方晶−低圧相型窒化硼素平衡線A・・・高圧相
型窒化硼素安定域 B・・・低圧相型窒化硼素安定域 特許出願人 住友電気工業株式会社 代 理 人 弁理士 和 1) 昭
The drawing shows the F of 60, I11 pressure phase type nitrided film cable to explain the conditions for producing the sintered body in this method.
i-) The thermodynamically stable region on the J-Tsumaro phase diagram is 1
...Cubic crystal - low pressure phase type boron nitride equilibrium line A...High pressure phase type boron nitride stability region B...Low pressure phase type boron nitride stability region Patent applicant Sumitomo Electric Industries, Ltd. Agent Patent attorney Kazu 1 ) Akira

Claims (1)

【特許請求の範囲】 (1) 高几相型!、・化)U1素の不安定温度、圧力
範囲内0表面を低圧相型窒化1i111索に変換さけた
高圧相バ(窒化11111素享1゛)子ど結合4A粉末
どを混合したのら、高圧相型窒化硼素の安定温1豆、圧
力範囲内(゛焼結りることを特徴どりる1烏圧相型窒化
硼素焼結体の製造方法。 (2) 結合+A粉末どしCノ1ルカリ金属、ノフルカ
リ二1類金属、またはこれらの窒化物、硼窒化物あるい
は11)、ノノンJ1.:ン、錫またはこれらの合金か
らなる11Yより選んだ一種またはそれ以上の粉末を用
いることを1z1徴どりる!14+ Q’l請求の範囲
第1項記載の高圧相型窒化硼素焼結体の製造方法。 +31 1!“1ILl−相を窒化))M1素が立1ノ
品窒化硼素であることを’47徴とりる特許請求の範囲
第1項記載のiN E[In型窒化1tjl素焼結体の
製造方法。 (4) 高圧相を窒化硼素粒子と結合材ち)末を混合さ
せたのち、高圧相型窒化硼素の不安定温度、圧力範囲内
におりる高圧下に一旦保持し、次いで高圧相型窒化硼素
の安定温度、圧力範囲内で焼結することを特徴どJる高
圧相型窒化硼素焼結体の製造方法。 (5) 結合材粉末どしてアルカリ金属、アルカリ土類
金属、またはこれらの窒化物、硼窒化物あるいは鉛、ア
ンチモン、錫まl〔はこれらの合金からなる群より選ん
だ一種またはそれ以上のわ)末を用いることを特徴とす
る特Y1請求の範囲第4項記載の高圧相型窒化硼素焼結
体の製造方法。 (6) 高圧相型窒化硼素が立方晶窒化圃索であること
を特徴とする特許請求の範囲第111記載の11圧相型
窒化硼素焼結体の製造方法。
[Claims] (1) High-temperature type! ,・C) If the unstable temperature and pressure range of U1 element is mixed with high pressure phase bar (nitride 11111 element) which avoids converting the 0 surface into low pressure phase type nitride 1i111 wire, child-bonded 4A powder, etc. Stable temperature of high-pressure phase type boron nitride within the pressure range (1) Manufacturing method of 1-pressure phase type boron nitride sintered body characterized by sintering. (2) Bonding + A powder and C-1 alkali metals, noflukali metals, or their nitrides, boronitrides, or 11), nonone J1. : We recommend using one or more powders selected from 11Y consisting of tin, tin, or their alloys! 14+ Q'l A method for producing a high-pressure phase type boron nitride sintered body according to claim 1. +31 1! The method for producing an iN E[In-type nitrided 1tjl element sintered body according to claim 1, wherein the M1 element is nitrided boron nitride. 4) After mixing the high-pressure phase with the boron nitride particles and the binder powder, the high-pressure phase is held at a high pressure that is within the unstable temperature and pressure range of the high-pressure phase boron nitride, and then the high-pressure phase boron nitride is mixed with the powder. A method for producing a high-pressure phase type boron nitride sintered body characterized by sintering within a stable temperature and pressure range. (5) A binder powder containing an alkali metal, an alkaline earth metal, or a nitride thereof. , boronitride, or lead, antimony, tin (one or more selected from the group consisting of these alloys) powder is used. (6) Production of a 11-pressure phase type boron nitride sintered body according to claim 111, wherein the high-pressure phase type boron nitride is a cubic nitride sintered body. Method.
JP59039680A 1984-02-29 1984-02-29 Manufacture of sintered body of high pressure phase boron nitride Pending JPS60184648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59039680A JPS60184648A (en) 1984-02-29 1984-02-29 Manufacture of sintered body of high pressure phase boron nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59039680A JPS60184648A (en) 1984-02-29 1984-02-29 Manufacture of sintered body of high pressure phase boron nitride

Publications (1)

Publication Number Publication Date
JPS60184648A true JPS60184648A (en) 1985-09-20

Family

ID=12559802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59039680A Pending JPS60184648A (en) 1984-02-29 1984-02-29 Manufacture of sintered body of high pressure phase boron nitride

Country Status (1)

Country Link
JP (1) JPS60184648A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183468A (en) * 1988-01-14 1989-07-21 Showa Denko Kk Cubic boron nitride sintered body
WO2018066261A1 (en) * 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01183468A (en) * 1988-01-14 1989-07-21 Showa Denko Kk Cubic boron nitride sintered body
WO2018066261A1 (en) * 2016-10-06 2018-04-12 住友電気工業株式会社 Method for producing boron nitride polycrystal, boron nitride polycrystal, cutting tool, wear-resistant tool, and grinding tool
JPWO2018066261A1 (en) * 2016-10-06 2018-10-04 住友電気工業株式会社 Boron nitride polycrystal manufacturing method, boron nitride polycrystal, cutting tool, wear-resistant tool and grinding tool

Similar Documents

Publication Publication Date Title
JP2004505786A (en) Manufacturing method of polishing products containing diamond
CN106312839A (en) Low-temperature porcelain/ferrous-based metal binding agent for diamond and preparation method thereof
CN108527176A (en) A kind of production method of novel diamond tool
JP2005532476A (en) High hardness sintered body for cutting cast iron and method for producing the same
JPS627149B2 (en)
JPS60184648A (en) Manufacture of sintered body of high pressure phase boron nitride
JPS5939766A (en) Alumina-silicon carbide complex sintered body
JPH01116048A (en) High hardness sintered diamond and its manufacture
JPH10310838A (en) Superhard composite member and its production
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPS6137221B2 (en)
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JP4781934B2 (en) Method for producing aluminum alloy matrix composite
JPS6034514B2 (en) Manufacturing method of diamond sintered body
JPS6222951B2 (en)
JPH01122971A (en) Cubic boron nitride sintered product
US1826454A (en) Composition of matter
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS60184649A (en) Manufacture of sintered body of high pressure phase boron nitride
JP2005082815A (en) Highly thermal conductive wear resistant material, and its production method
JPS6157382B2 (en)
JPS6270268A (en) Sintered body for high hardness tool
JPS5969472A (en) Manufacture of diamond composite sintered body
JPH09316589A (en) Aluminum oxide-tungsten carbide-cobalt composite material having high toughness, high strength, and high hardness
RU2296727C2 (en) Method of production of the composite materials based on the ultra-hard particles for manufacture of the cutting tools