JPS6270268A - Sintered body for high hardness tool - Google Patents

Sintered body for high hardness tool

Info

Publication number
JPS6270268A
JPS6270268A JP61063386A JP6338686A JPS6270268A JP S6270268 A JPS6270268 A JP S6270268A JP 61063386 A JP61063386 A JP 61063386A JP 6338686 A JP6338686 A JP 6338686A JP S6270268 A JPS6270268 A JP S6270268A
Authority
JP
Japan
Prior art keywords
sintered body
cbn
cutting
powder
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61063386A
Other languages
Japanese (ja)
Inventor
昭夫 原
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61063386A priority Critical patent/JPS6270268A/en
Publication of JPS6270268A publication Critical patent/JPS6270268A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 立方晶型窒化硼素(Cubtc Boron N1tr
ide以下CBNと称す)はその高い硬度と優れた熱伝
導度などの特性故に今后の工具材料として期待されてい
る。現在このCBN結晶をCoを主体とした金属で結合
した焼結体が切削用途に1都市版されている。
[Detailed description of the invention] Cubic boron nitride (Cubtc Boron N1tr)
IDE (hereinafter referred to as CBN) is expected to be used as a tool material in the future due to its properties such as high hardness and excellent thermal conductivity. Currently, a sintered body made of CBN crystals bonded with a metal mainly composed of Co is being used in one city for cutting purposes.

このCBNを金属で結合した焼結体は切削工具として使
用した場合、結合金属相の高温での軟化による耐摩耗性
の低下や、被削材金属が溶着し易い為に工具が損傷する
といった欠点がある。
When this sintered body of CBN bonded with metal is used as a cutting tool, there are disadvantages such as a decrease in wear resistance due to the softening of the bonded metal phase at high temperatures, and damage to the tool because the work material metal is easily welded. There is.

また結合材のCoは大部分CBNと反応し、脆いC。In addition, most of the binder Co reacts with CBN, making it brittle.

の硼化物に変化していて靭いCOの特徴を有していない
It has changed into a boride and does not have the characteristics of tough CO.

本発明は、このような金属で結合した焼結体でなく、高
強度で耐熱性に優れた硬質金属化合物を結合相とした切
削工具等の工具用途に適した新しいCBN焼結体に関す
るものである。本発明者等は共にこのCBNの優れた特
徴を最大に発揮しうる工具用焼結体を発明し既に特許出
願した。この出願は周期律表第4a、5a、6a族遷移
金属の炭化物、窒化物、硼化物、硅化物、もしくはこれ
等の相互固溶体化合物が連続相をなしてCBN結晶を結
合しているというものであり、耐熱性、耐摩耗性に冨む
と共に、高温でも高い熱伝導性を維持し、特に熱衝撃特
性に富む高硬度工具用焼結体を提供したものである。
The present invention relates to a new CBN sintered body suitable for tool applications such as cutting tools, which uses a hard metal compound as a binder phase with high strength and excellent heat resistance, rather than a sintered body bonded with such metals. be. Together, the present inventors have invented a sintered body for tools that can maximize the excellent characteristics of CBN, and have already applied for a patent. This application claims that carbides, nitrides, borides, silicides of transition metals in Groups 4a, 5a, and 6a of the periodic table, or mutual solid solution compounds of these, form a continuous phase and bind CBN crystals. The present invention provides a sintered body for a hard tool that is rich in heat resistance and abrasion resistance, maintains high thermal conductivity even at high temperatures, and has particularly excellent thermal shock properties.

本発明者らは前記出願の焼結体を用いて色々な分野で切
削試験を行った。その結果画期的な工具特性を認識した
と同時にCBN工具の本質的特徴をも認識した。その認
識の一つに基づいて本出願をするものである。前記出願
の場合、その出願明細書に述べたようにAltosなど
は耐熱性や強度の点からみて優れているが高温下での熱
伝導率の低下が著しいという理由で除いた。同じ理由で
除いたものがAJ N、 SiC,5jsNn+BtC
である。これらはいずれも切削、研削材料などの工具材
料として使われているか、注目されているものである。
The present inventors conducted cutting tests in various fields using the sintered body of the above application. As a result, we recognized the revolutionary tool properties and at the same time recognized the essential characteristics of CBN tools. This application is filed based on one of these recognitions. In the case of the above application, Altos and the like are excellent in terms of heat resistance and strength, as stated in the specification of the application, but were excluded because their thermal conductivity drops significantly at high temperatures. Those excluded for the same reason are AJ N, SiC, 5jsNn+BtC
It is. All of these materials are used as tool materials for cutting and grinding materials, or are attracting attention.

前記出願でこれら化合物を除いたのはCBNの耐熱性に
注目し、工具刃先が高温となる用途に主として焦点を合
わせていたためである。
The reason why these compounds were excluded in the aforementioned application is that the heat resistance of CBN was noted and the application was mainly focused on applications where the cutting edge of the tool is exposed to high temperatures.

先程述べたように色々な個所で試験したところCBNは
高速度鋼が現在使われているような低速の切削分野でも
、その優れた耐溶着性の故に極めて秀でた物質であるこ
とを発見した。この場合の切削温度は500〜600℃
以下であり、M2O,などが十分に高い熱伝導度を有す
る範囲である。また熱伝導度よりも工具材料としての他
の特性、すなわち強度、硬度などの優先する範囲と言え
よう。
As mentioned earlier, after testing in various locations, we discovered that CBN is an extremely excellent material due to its excellent welding resistance, even in the low-speed cutting field where high-speed steel is currently used. . The cutting temperature in this case is 500-600℃
This is the range in which M2O, etc. has a sufficiently high thermal conductivity. Moreover, it can be said that other properties as a tool material, such as strength and hardness, are prioritized over thermal conductivity.

特にIJ zOx 、512N 、、/V NをCl5
Nの結合材として用いた場合これ等は被削材金属との反
応性の点で周期律表第4a、5a、6a族金属の炭化物
−5窒化物、硼化物、硅化物よりも安定であるという特
性を有しており、加工する被削材の種類及び加工条件に
よってより優れた耐摩耗性を有する場合がある。
In particular, IJ zOx , 512N , , /V N with Cl5
When used as a binder for N, these are more stable than carbides-5 nitrides, borides, and silicides of group 4a, 5a, and 6a metals of the periodic table in terms of reactivity with workpiece metals. Depending on the type of work material to be machined and the machining conditions, it may have better wear resistance.

なお、刃先が高温となる場合でも熱伝導性よりも強度、
硬度という特性が優先する場合も珍しくない、このよう
な場合にも本発明は当然存用である。
In addition, even when the cutting edge becomes hot, strength and thermal conductivity are more important than thermal conductivity.
It is not uncommon for the property of hardness to take precedence, and the present invention is of course applicable to such cases as well.

・本出願は以上の主旨にて前記出願を補足するものであ
る。このようにして選択された耐熱性化合物とCBNの
複合焼結体を製造する方法は、先ず、CBN粉末と、こ
の耐熱性化合粉末の1種もしくは2種以上をボールミル
等の手段を用いて混合し、これを粉状でもしくは常温下
で所定の形状に型押成型し、超高圧装置を用いて高圧、
高温下で焼結する。用いる超高圧装置はダイヤモンド合
成に使用されるガードル型、ベルト型等の装置である。
・This application supplements the above-mentioned application based on the above-mentioned purpose. The method for manufacturing a composite sintered body of the heat-resistant compound and CBN selected in this way is to first mix CBN powder and one or more of these heat-resistant compound powders using a means such as a ball mill. This is then molded into powder form or molded into a predetermined shape at room temperature, and then subjected to high pressure using an ultra-high pressure device.
Sinter under high temperature. The ultra-high pressure equipment used is a girdle type, belt type, etc. equipment used for diamond synthesis.

発熱体には黒鉛円筒を用い、その中にタルク、NaCj
等の絶縁物をつめてCBHの混合粉末型押体を包む、黒
鉛発熱体の周囲にはパイロフィライト等の圧力媒体を置
く、焼結する圧力、温度条件は第1図に示した立方晶型
窒化硼素の安定領域内で行うことが望ましいが、この平
衡線は必ずしも正確には分かっておらず、一つの目安に
すぎ゛ない。
A graphite cylinder is used as the heating element, and talc, NaCj
A pressure medium such as pyrophyllite is placed around the graphite heating element.The sintering pressure and temperature conditions are as shown in Figure 1. Although it is desirable to carry out the process within the stability region of type boron nitride, this equilibrium line is not necessarily known accurately and is only a guideline.

又CBNと組合す耐熱性化合物の種類によって条件は変
え得る。なお第1図中(^)は立方晶型窒化硼素安定域
、(B)は大方晶型窒化硼素安定域を夫々示している。
Further, conditions can be changed depending on the type of heat-resistant compound to be combined with CBN. In FIG. 1, (^) indicates the stability region of cubic boron nitride, and (B) indicates the stability region of largely cubic boron nitride.

本発明による焼結体の非常に注目すべき、また本発明を
有用ならしめる特徴として前記耐熱性化合物が焼結体M
i繊織上連続した相をなすことが挙げられる。即ち、本
発明の焼結体では強靭な耐熱性化合物が、あたかもWC
−Co超硬合金中の結合相である金属Co相の如く、高
硬度のCBN粒子間の隙間に侵入して連続した結合相の
状態を呈し、このことにより焼結体に強靭性が付与せし
められたものである。このような組織を有する焼結体を
得る為にはCBNの含有量を体積で80%以下とする必
要があることが実験の結果間らかになった。
A very remarkable feature of the sintered body according to the present invention, which makes the present invention useful, is that the heat-resistant compound
i) Forming a continuous phase on the fiber. That is, in the sintered body of the present invention, the tough heat-resistant compound is as if it were WC.
Like the metallic Co phase which is the binder phase in -Co cemented carbide, it penetrates into the gaps between the high hardness CBN particles and forms a continuous binder phase, thereby imparting toughness to the sintered body. It is something that was given. As a result of experiments, it has become clear that in order to obtain a sintered body having such a structure, the content of CBN must be 80% or less by volume.

本発明による焼結体中のCBN相量の下限は体積で30
%までである。これ以下ではCBNの特徴を生かした工
具としての性能が発揮されない。第2図は本発明による
体積60%のCBN残部がAINよりなる焼結体の組織
を示したものである。
The lower limit of the amount of CBN phase in the sintered body according to the present invention is 30 by volume.
up to %. If it is less than this, the performance as a tool that takes advantage of the characteristics of CBN will not be exhibited. FIG. 2 shows the structure of a sintered body according to the present invention in which the volume is 60% CBN and the remainder is AIN.

図中点(見えるCBN粒子の間隙には白く見える相のU
Nが侵入して完全に緻密な焼結体となっており、MN相
は連続してCBN粒子の結合相となっている。このよう
な組織を呈する理由は、高温下でCBNに比し相対的に
変形し易いMNが焼結中にCBN粒子間に侵入していく
為と考えられる。
Point in the middle of the figure (in the gaps between visible CBN particles, there is a white phase U)
N penetrates into the material to form a completely dense sintered body, and the MN phase continues to serve as a bonding phase for CBN particles. The reason for this structure is considered to be that MN, which is relatively easily deformed compared to CBN at high temperatures, invades between CBN particles during sintering.

工具材用として考えた時、特に切削工具用途では、焼結
体の結晶粒の大きさは、数ミクロン以下が望ましい。数
ミクロンまたはミクロン以下の微粉は、かなり多量の酸
素を含有している。一般に、この酸素は粉末表面に、は
ぼ水酸化物の形に近い化合物の形で存在するのが大部分
である。この水酸化物の形に近い化合物は加熱時分解し
てガスとなって出てくる。焼結される物質が密封されて
いない時には、このガスを系外に放出するのは困難では
ない。しかし本発明の如く、超高圧下で焼結する場合に
は、発生したガスは、加熱系外に脱出することは殆ど不
可能である。一般にかかる場合には、予め脱ガス処理を
する事が粉末冶金業界では常識であるが、脱ガス処理温
度が十分高く出来ない場合には問題である0本件は、ま
さにそれに当たる。即ちCBNの低圧相への変態を考え
ると加熱温度に上限がある。
When considered as a tool material, particularly in a cutting tool, the crystal grain size of the sintered body is preferably several microns or less. Fine powder of several microns or less than a micron contains a considerably large amount of oxygen. Generally, most of this oxygen exists on the powder surface in the form of a compound similar to hydroxide. This hydroxide-like compound decomposes when heated and comes out as a gas. When the material to be sintered is not sealed, it is not difficult to vent this gas out of the system. However, when sintering is performed under ultra-high pressure as in the present invention, it is almost impossible for the generated gas to escape outside the heating system. In general, it is common knowledge in the powder metallurgy industry to perform degassing treatment in advance in such cases, but this is a problem if the degassing temperature cannot be made high enough. This is exactly the case. That is, when considering the transformation of CBN into a low pressure phase, there is an upper limit to the heating temperature.

微粉末の脱ガス過程としては、温度と共に次の各段階が
ある。まず低温では物理吸着しているものと吸湿水分が
除去される0次いで化学吸着しているもの及び水酸化物
の分解が起きる。最後に酸化物が残る。CBNの場合1
000℃位までは安定であるので、最低でもこの温度値
には予め加熱出来る。従って、予め加熱脱ガスすれば残
留ガス成分は酸化物の形で残っていると考えてよい、逆
に言えばガス成分は、なるべく焼結体中に残したくない
のだから、水および水素を全て除去することは予備処理
として行うのが好ましい。
The degassing process of fine powder involves the following stages depending on the temperature. First, at low temperatures, physically adsorbed substances and hygroscopic moisture are removed, and then chemically adsorbed substances and hydroxides are decomposed. At the end, oxide remains. In case of CBN 1
Since it is stable up to about 000°C, it can be preheated to at least this temperature value. Therefore, it can be assumed that if the gas is heated and degassed in advance, the residual gas components will remain in the form of oxides.Conversely, since we do not want the gas components to remain in the sintered body as much as possible, we will remove all the water and hydrogen. Preferably, the removal is carried out as a preliminary treatment.

本発明では、この考えの下に全て1ooo℃以上の脱ガ
ス処理を真空中でしている。
In the present invention, based on this idea, all degassing treatments at temperatures of 100° C. or higher are performed in vacuum.

本発明による焼結体ではCBN(71結合体として前記
した耐熱性化合物を用いるものであるが、更に必要によ
り耐熱性化合物以外の” i+ Co + F e等の
金属相を第3相として含むものであっても良い。
In the sintered body according to the present invention, the heat-resistant compound described above is used as the CBN (71 bond), but if necessary, a metal phase other than the heat-resistant compound such as "i+Co+Fe" may be included as a third phase. It may be.

但し、結合相の主となる成分は耐熱性化合物相であり、
これ等金属相は焼結体中の体積比で耐熱性化合物相の量
以下とする必要がある。それ以上では焼結体の耐熱性、
耐摩性が低下し、工具としての性能が失われる。また本
発明による焼結体ではCBNの合成に使用され、高温、
高圧下で六方晶型窒化硼素及びCBNに対して熔解性を
有すると信じられる元素、例えばLi等のアルカリ金属
、1等ノアルカリ土類金属、I’b、Sn、Sb、 /
V、Cd、Si等を添加物として含むものであっても良
い。
However, the main component of the binder phase is a heat-resistant compound phase,
The volume ratio of these metal phases in the sintered body must be equal to or less than that of the heat-resistant compound phase. Above that, the heat resistance of the sintered body
Wear resistance decreases and the performance as a tool is lost. Furthermore, the sintered body according to the present invention can be used in the synthesis of CBN, and can be used at high temperatures and
Elements believed to be soluble in hexagonal boron nitride and CBN under high pressure, such as alkali metals such as Li, primary alkaline earth metals, I'b, Sn, Sb, /
It may also contain V, Cd, Si, etc. as additives.

本発明の焼結体の原料として使用するCBSは六方晶型
窒化硼素を原料として超高圧下で合成されたものである
。従ってCBN粉末中には不純物として大方晶型窒化硼
素が残存している可能性がある。また、超高圧下で焼結
する場合においても、結合材がCBNの個々の粒子間に
侵入するまではCBN粒子は外圧を静水圧的に受けてお
らず、この間の加熱によって大方晶型窒化硼素へ逆変態
を起こす一可能性もある。−このような場合に前記した
六方晶型窒化硼素に対して触媒作用を有する元素が混合
粉末中に添加されていると、この逆変態を防止する効果
があると考えられる0発明者らは、この考えに基づいて
特にAN、Siについて効果を確認する実験を行った。
CBS used as a raw material for the sintered body of the present invention is synthesized under ultra-high pressure using hexagonal boron nitride as a raw material. Therefore, there is a possibility that most cubic boron nitride remains as an impurity in the CBN powder. In addition, even when sintering under ultra-high pressure, the CBN particles do not receive external pressure hydrostatically until the binder penetrates between the individual CBN particles, and the heating during this time causes the macrogonal boron nitride to form. There is also the possibility of reverse metamorphosis. - In such a case, it is believed that if an element that has a catalytic effect on the hexagonal boron nitride is added to the mixed powder, it will have the effect of preventing this reverse transformation. Based on this idea, experiments were conducted to confirm the effects particularly on AN and Si.

焼結体を研摩して組織観察を行うとJV、Siを含む焼
結体の方が研摩面においてCBS粒子が焼結体より剥離
することが少なく、CBN粒子と結合相との結合強度が
強いと考えられる。また切削工具として性能を比較する
と、やはりAj、Siを含有する方が耐摩耗性、靭性と
もに優れていた。なお、このような効果が現れるのは焼
結体中に重量%0.1%以上のM又はSiを含む場合で
あった。
When a sintered body is polished and its structure is observed, it is found that the CBS particles are less likely to peel off on the polished surface in the sintered body containing JV and Si than in the sintered body, and the bond strength between the CBN particles and the binder phase is stronger. it is conceivable that. Furthermore, when comparing the performance as a cutting tool, the one containing Aj and Si was superior in both wear resistance and toughness. Note that such an effect appears when the sintered body contains M or Si in a weight percent of 0.1% or more.

本発明による焼結体は、高硬度で強靭性を存し、耐熱、
耐摩耗性に優れており、切削工具以外に線引きダイスや
皮剥ぎダイス、ドリルビット等の工具用途にも適したも
のである。
The sintered body according to the present invention has high hardness and toughness, and has heat resistance and
It has excellent wear resistance and is suitable not only for cutting tools but also for tools such as wire drawing dies, peeling dies, and drill bits.

以下、実施例を述べる。Examples will be described below.

実施例1 平均粒度7μのCBN粉末と平均粒度1μのUN粉末と
を体積で各々60%、40%の割合に配合し乳鉢で充分
混合した。この混合粉末にカンファーを2%加え、外径
10IIIAl、高さ1.5+mmに型押成型した。
Example 1 CBN powder with an average particle size of 7 μm and UN powder with an average particle size of 1 μm were blended at a volume ratio of 60% and 40%, respectively, and thoroughly mixed in a mortar. 2% camphor was added to this mixed powder, and it was molded to have an outer diameter of 10IIIAl and a height of 1.5+mm.

これをステンレス製の容器中に挿入した。この容器を真
空炉中で10 ″4 m m Hgの真空度で1100
℃に20分間加熱して脱ガスした。これをガードル型超
高圧装置に装入した。圧力媒体としてはパイロフィライ
トを、ヒーターとしては黒鉛の円筒を用いた。
This was inserted into a stainless steel container. The container was heated in a vacuum furnace at 10 mm at a vacuum of 1100 mm Hg.
Degassed by heating to <RTIgt;C</RTI> for 20 minutes. This was charged into a girdle type ultra-high pressure device. Pyrophyllite was used as the pressure medium, and a graphite cylinder was used as the heater.

なお、黒鉛ヒーターと試料の間はNaαを充填した。Note that Naα was filled between the graphite heater and the sample.

先ず圧力を55Kbにあげたのちに温度を1400℃に
上げ、30分間保持したのち温度を下げ、圧力を徐々に
おろした。得られた焼結体は外径約10mm、厚さは約
ll1lIであった。これをダイヤモンド砥石で平面に
研削し、更にダイヤモンドのペーストを用いて研摩した
。研摩面を光学顕微鏡を用いて観察したところ第2図に
示した組織を呈していた。即ちの硬度をマイクロビッカ
ース硬度計を用いて測定した。硬度の平均値は2800
であった。焼結体をダイヤモンド切断刃を用いて切断し
、切削チップを作成し、これを鋼の支持体にロウ付けし
た。比較のために平均粒度3μのCBNを金属Coで結
合した市販されているCBN焼結体及びJIS分[Ko
lの超硬合金で同一形状の切削工具を作成した。
First, the pressure was raised to 55 Kb, and then the temperature was raised to 1400°C, held for 30 minutes, and then the temperature was lowered and the pressure was gradually lowered. The obtained sintered body had an outer diameter of about 10 mm and a thickness of about ll1lI. This was ground to a flat surface using a diamond grindstone, and further polished using diamond paste. When the polished surface was observed using an optical microscope, it exhibited the structure shown in FIG. That is, the hardness was measured using a micro Vickers hardness meter. The average value of hardness is 2800
Met. The sintered body was cut using a diamond cutting blade to create a cutting chip, which was brazed to a steel support. For comparison, a commercially available CBN sintered body made by bonding CBN with an average particle size of 3μ with metal Co and a JIS [Ko
Cutting tools of the same shape were made of cemented carbide.

被削材には熱処理後のSNCM 9種の鋼を用いた。被
削材の硬度はHRC54である。
Heat-treated SNCM grade 9 steel was used as the work material. The hardness of the work material is HRC54.

切削条件は切削速度50m/win、切り込み0.1m
m。
Cutting conditions are cutting speed 50m/win, depth of cut 0.1m
m.

送り0.02+*@/revとした。この条件で切削試
験したところ本発明による合金は被削面状態悪化まで1
80分間切削できたが、金属Coで結合したCBN焼結
体工具では20分で被削面が悪化した。即ち、本発明の
工具寿命は9倍である。また超硬合金工具では始めから
良好な被削面が得られなかった。
The feed was set to 0.02+*@/rev. When a cutting test was conducted under these conditions, the alloy according to the present invention showed 1.
Although cutting was possible for 80 minutes, the cut surface deteriorated after 20 minutes with the CBN sintered tool bonded with metal Co. That is, the tool life of the present invention is nine times longer. Also, with cemented carbide tools, it was not possible to obtain a good work surface from the beginning.

実施例2 第1表の組成にCBN粉末と耐熱性化合物粉末とを混合
した。使用したCBS粉末は平均粒度4μのもので、粒
径範囲が3〜6μに1分級されたランピング加工用に市
販されているミクロンパウダーであ名。このCBN中に
は分析の結果ダイヤモンドの粉末が体積で約6%混入し
ていた。
Example 2 CBN powder and heat-resistant compound powder were mixed in the composition shown in Table 1. The CBS powder used had an average particle size of 4 microns, and was classified into micron powders with a particle size range of 3 to 6 microns, which is commercially available for ramping processing. As a result of analysis, approximately 6% by volume of diamond powder was mixed in this CBN.

実施例1と同様に混合粉末の型押体を作成し、M。A molded body of mixed powder was created in the same manner as in Example 1, and M.

製の容器に入れ、実施例1と同様に前処理を行った後、
超高圧装置を用いて第1表の条件で焼結した。加熱保持
時間はいずれも20分間である。
After pretreatment in the same manner as in Example 1,
Sintering was performed using an ultra-high pressure device under the conditions shown in Table 1. The heating and holding time was 20 minutes in each case.

いずれの場合も緻密な焼結体が得られた。In both cases, dense sintered bodies were obtained.

第   1   表 この焼結体より切削チップを作成し、実施例1の切削試
験と同一条件で切削性能を評価した。被削面状態が悪化
するまでの切削可能時間はA、B。
Table 1 Cutting chips were prepared from this sintered body, and the cutting performance was evaluated under the same conditions as in the cutting test of Example 1. The machining time until the condition of the workpiece surface deteriorates is A and B.

C,D、E、F、Gの順に40.20.180.200
.120゜40、20分であった。即ちM 、0.を結
合材とする焼結体が性能が良く、且つCBNの体積%が
60%の焼結体りが最も高性能であった。CBNの体積
%が70%になるとかえって性能は低下している。
C, D, E, F, G in order 40.20.180.200
.. The temperature was 120°40 for 20 minutes. That is, M, 0. The sintered body using CBN as a binder had good performance, and the sintered body with a volume percent of CBN of 60% had the highest performance. When the volume % of CBN becomes 70%, the performance is rather degraded.

実施例3 平均粒度7μのCBN粉末を用いて、これを体積で60
%残部が第2表のものからなる混合粉末を作成した。
Example 3 Using CBN powder with an average particle size of 7 μm, it was
A mixed powder having the percentage balance shown in Table 2 was prepared.

実施例1と同様にしてMO製容器に入れた混合粉末型押
体を第2表の条件で焼結した。焼結体をダイヤペースト
で研摩し&ll織観察を行ったところ、緻密な組織をい
ずれも示していた。
A mixed powder stamped body placed in an MO container in the same manner as in Example 1 was sintered under the conditions shown in Table 2. When the sintered bodies were polished with diamond paste and their textures were observed, they all showed a dense structure.

実施例4 平均粒度1μのM2O,粉末に重量で平均粒度30μの
M粉末を2%加え、これに平均粒度4μのCBN粉末を
体積%で各々65%、35%配合し、実施例1と同様に
して外径10mm、厚みIRIllの焼結体を作成した
。但し、焼結時の圧力は50にbで温度は1300℃と
した。
Example 4 2% M powder with an average particle size of 30 μm by weight was added to M2O powder with an average particle size of 1 μm, and CBN powder with an average particle size of 4 μm was blended at 65% and 35% by volume, respectively, as in Example 1. A sintered body having an outer diameter of 10 mm and a thickness of IRIll was prepared. However, the pressure during sintering was 50°C and the temperature was 1300°C.

実施例1と同様にして切削工具を作成し、市販のAl、
0. 30%T1Cu成の黒セラミックと切削性能を比
較した。被削材としては550Cを用い、切削速度40
0m/分、切込み2mm %送り0.36m5+/回転
で30分切削した。黒セラミックの逃げ面摩耗幅が0.
301であったのに対し、本発明のそれはCBN65%
のもので0.21mm、  CB N 35%で0.1
9mmであった。
A cutting tool was prepared in the same manner as in Example 1, and commercially available Al,
0. The cutting performance was compared with that of black ceramic made of 30% T1Cu. 550C was used as the work material, and the cutting speed was 40.
Cutting was carried out for 30 minutes at 0 m/min, depth of cut 2 mm, and % feed of 0.36 m5+/rotation. The flank wear width of black ceramic is 0.
301, whereas that of the present invention was CBN 65%.
0.21 mm for CB N 35%, 0.1 for CB N 35%
It was 9mm.

なお、市販のCo結合CBN焼結体では2分切削后刃先
が欠は落ちてしまった。
In addition, in the commercially available Co-bonded CBN sintered body, the cutting edge fell off after 2 minutes of cutting.

実施例5 平均粒度3μのCBIIJFA末と平均粒度lμのTi
c。
Example 5 CBIIJFA powder with an average particle size of 3μ and Ti with an average particle size of 1μ
c.

M N l)末及び平均粒度0,3μのAj 、03粉
末とを第3表の組成に配合した。
M N l) powder and Aj, 03 powder with an average particle size of 0.3μ were blended into the composition shown in Table 3.

以下実施例1と同様にして外径ioam、厚さ1.51
に型押成型し、別に作成したWC−10%Co合金製の
外径10mm、厚さ3III11の円盤に接しておき、
これをステンレス製の容器に入れた。
Hereinafter, in the same manner as in Example 1, the outer diameter is ioam and the thickness is 1.51.
It was pressed and molded into a separately prepared disk made of WC-10%Co alloy with an outer diameter of 10 mm and a thickness of 3III11.
This was placed in a stainless steel container.

真空炉中で加熱脱ガス后超高圧装置を用いて圧力50K
b、 ’14度1200℃で20分間保持して焼結した
。焼結体の側面を研摩して観察したところCBNを含有
する厚さ約1鶴の層が連結した結合相により超硬合金の
円盤に強固に固着していた。CBNを含有する焼結体部
の硬度をピンカース硬度計を用いて荷重10Kgで測定
したところ第3麦の如き値を示した。焼結体を鋼製のシ
ャンクにロウ付けして実施例4と同様の切削性能試験を
行−ったところ、工具の逃げ面摩耗中は焼結体に、L、
Al、N、Oの麺に0.25.0.15.0.13.0
.20.0.16mmであった。
After heating and degassing in a vacuum furnace, the pressure is 50K using an ultra-high pressure device.
b. Sintered by holding at 14 degrees and 1200 degrees Celsius for 20 minutes. When the side surface of the sintered body was polished and observed, it was found that the layer containing CBN and having a thickness of about 1 square inch was firmly fixed to the cemented carbide disk by the connected binder phase. When the hardness of the sintered body containing CBN was measured using a Pinkers hardness tester under a load of 10 kg, it showed a value similar to that of the third barley. When the sintered body was brazed to a steel shank and a cutting performance test similar to that in Example 4 was conducted, it was found that during flank wear of the tool, L, L,
0.25.0.15.0.13.0 for Al, N, O noodles
.. 20. It was 0.16 mm.

比較例: 40uI−積%のウルツ型窒化硼素(WBN)、立方晶
型窒化硼素(CBN)を残部Al、0.との組合せで上
記実施例に述べた方法で2種類の焼結体を製作し組織、
硬度及び工具特性を比較した。
Comparative Example: 40 uI-vol.% Wurtz type boron nitride (WBN), cubic boron nitride (CBN), balance Al, 0. Two types of sintered bodies were manufactured by the method described in the above example in combination with
The hardness and tool properties were compared.

倍率1500倍の光学顕微鏡による組織写真を第3図に
示す0図中黒色部がWBN結晶の凝集体であり、灰色の
Al、Off相の中にも細かく分散する。
FIG. 3 shows a microstructure photograph taken with an optical microscope at a magnification of 1500 times. The black areas in Figure 0 are aggregates of WBN crystals, which are also finely dispersed in the gray Al and Off phases.

このようにCBSを基にした焼結体とは組織が全く異な
る。
In this way, the structure is completely different from that of a sintered body based on CBS.

〔硬度〕〔hardness〕

Hv (10Kg)  ヌープ硬す(5Kg)CBN+
JV、○、:2380  2180wBN十Al、o、
: 1800     測定不能〔耐摩耗性〕 硬度(HRC)が63の浸炭鋼を被削材とし、速度Lo
om/min、切込み0.2N、送り 0.1 tm 
/ revの条件で乾式切削を行った時の摩耗幅V、は
2α分間でCBN焼結体: 0.15++m 、 W 
B N焼結体が0 、2 鶴であった。
Hv (10Kg) Knoop Hard (5Kg) CBN+
JV,○,:2380 2180wBN10Al,o,
: 1800 Unmeasurable [wear resistance] Carburized steel with a hardness (HRC) of 63 was used as the work material, and the speed was Lo.
om/min, depth of cut 0.2N, feed 0.1 tm
The wear width V when dry cutting is performed under the conditions of /rev is 2α minutes for CBN sintered body: 0.15++ m, W
The BN sintered bodies were 0.2 and 2.

C靭性〕 上記耐摩耗性試験に用いた同じ材質でUa付の丸材を被
削材とし、速度:  100m / l1in、切込み
:0・3龍・送り0・41關/revの乾式切削を行っ
たところ、CBN焼結体が32秒で欠けたのに対し比較
例のWBN焼結体は19秒で欠けた。
C toughness] A round material with Ua made of the same material used in the above wear resistance test was used as the work material, and dry cutting was performed at a speed of 100 m/1 inch, depth of cut: 0.3 mm, feed rate of 0.41 mm/rev. However, while the CBN sintered body chipped in 32 seconds, the WBN sintered body of the comparative example chipped in 19 seconds.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の焼結体の製造条件に関するもので立方
晶型窒化硼素の圧力、温度相図上での安定存在領域を示
す。 第2図は本発明焼結体の組織的特徴を示すもので実施例
1に詳細を述べた焼結体の&[l織写真である(倍率1
500倍)。黒(見える粒子が立方晶型窒化硼素の結晶
粒子で連続した結合相をなしているのがMNである。 第3図は比較例におけるウルツ型窒化硼素を主体とした
焼結体の組織写真(倍率1500倍)である。 代理人 弁理士  上代言回fL1゛f、″奪。 −I+、 、 !φ =J 第1図 遍M cC) 手続補正書彷式) %式% 許庁長官 黒 1)明 雄殿         −、ハ
1、事件の表示 昭和61年 特許願 第63386号 、発明の名称 高硬度工具用焼結体 、補正をする者 事件との関係    特 許 出 願 人件  所  
  大阪市東区北浜5丁目15番地名 称(213) 
 住友電気工業株式会社社長 用上哲部
FIG. 1 relates to the manufacturing conditions of the sintered body of the present invention, and shows the stable existence region on the pressure and temperature phase diagram of cubic boron nitride. Figure 2 shows the structural characteristics of the sintered body of the present invention, and is a photograph of the sintered body detailed in Example 1 (magnification: 1
500 times). Black (The visible particles are cubic boron nitride crystal grains that form a continuous binder phase. 1,500 times magnification). Agent Patent attorney Senior representative's speech fL1゛f, "deprived. -I+, !φ = J Figure 1 Hen M cC) Procedural amendment form) % type % Commissioner of the Office Black 1 ) Akira Yudono -, Ha1, Indication of the case 1986 Patent Application No. 63386, Title of invention: Sintered body for high-hardness tools, Relationship with the person making the amendment Case Patent application Person Place
5-15 Kitahama, Higashi-ku, Osaka Name (213)
Tetsube Yojo, President of Sumitomo Electric Industries, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)立方晶型窒化硼素を体積%で80〜30%含有し
残部が、Al_2O_3、AlN、Si_3N_4また
はそれらの混合物、あるいはそれらの相互化合物を主体
としたものからなり、この残部が焼結体組織中で連続し
た結合相をなすことを特徴とする高硬度工具用焼結体。
(1) Contains cubic boron nitride in an amount of 80 to 30% by volume, with the remainder mainly consisting of Al_2O_3, AlN, Si_3N_4, a mixture thereof, or a mutual compound thereof, and the remainder is a sintered body. A sintered body for use in high-hardness tools that is characterized by a continuous binder phase in its structure.
(2)焼結体中の連続した結合相中に上記化合物以外に
Ni、Fe、Co等の金属相を含むことを特徴とする特
許請求の範囲第(1)項記載の高硬度工具用焼結体。
(2) Sintering for a high hardness tool according to claim (1), characterized in that the continuous binder phase in the sintered body contains a metal phase such as Ni, Fe, Co, etc. in addition to the above compound. Concretion.
(3)焼結体中にアルカリ金属、アルカリ土類金属また
はPb、Sn、Sb、Al、Cd、Siを上記化合物以
外に含むことを特徴とする特許請求の範囲第(1)項記
載の高硬度工具用焼結体。
(3) The sintered body contains an alkali metal, an alkaline earth metal, or Pb, Sn, Sb, Al, Cd, or Si in addition to the above-mentioned compounds. Sintered body for hardness tools.
JP61063386A 1986-03-19 1986-03-19 Sintered body for high hardness tool Pending JPS6270268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063386A JPS6270268A (en) 1986-03-19 1986-03-19 Sintered body for high hardness tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063386A JPS6270268A (en) 1986-03-19 1986-03-19 Sintered body for high hardness tool

Publications (1)

Publication Number Publication Date
JPS6270268A true JPS6270268A (en) 1987-03-31

Family

ID=13227806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063386A Pending JPS6270268A (en) 1986-03-19 1986-03-19 Sintered body for high hardness tool

Country Status (1)

Country Link
JP (1) JPS6270268A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294148A (en) * 1986-06-13 1987-12-21 Tatsuro Kuratomi Cubic boron nitride composite sintered compact and its production
JPH01145368A (en) * 1987-12-02 1989-06-07 Riken Corp Ceramic draw die
JPH05301776A (en) * 1992-04-28 1993-11-16 Kyocera Corp Cubic boron nitride-based sintered compact

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922925A (en) * 1972-06-19 1974-02-28
JPS5082689A (en) * 1973-08-10 1975-07-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922925A (en) * 1972-06-19 1974-02-28
JPS5082689A (en) * 1973-08-10 1975-07-04

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62294148A (en) * 1986-06-13 1987-12-21 Tatsuro Kuratomi Cubic boron nitride composite sintered compact and its production
JPH01145368A (en) * 1987-12-02 1989-06-07 Riken Corp Ceramic draw die
JPH05301776A (en) * 1992-04-28 1993-11-16 Kyocera Corp Cubic boron nitride-based sintered compact

Similar Documents

Publication Publication Date Title
JP3309897B2 (en) Ultra-hard composite member and method of manufacturing the same
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JP2017165637A (en) Composite sintered body for cutting tool and cutting tool using the same
JP4065666B2 (en) High crater resistance High strength sintered body
US4217113A (en) Aluminum oxide-containing metal compositions and cutting tool made therefrom
JPS61201751A (en) High hardness sintered body and its manufacture
EP0816304B1 (en) Ceramic bonded cubic boron nitride compact
JPH0530897B2 (en)
JPS6132275B2 (en)
JP2007084382A (en) Cubic boron nitride sintered compact, coated cubic boron nitride sintered compact, and cutting tool for quench-hardened steel comprising the same
JPS6355161A (en) Manufacture of industrial diamond sintered body
JPS5860679A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS6270268A (en) Sintered body for high hardness tool
JP2003095743A (en) Diamond sintered compact and method of manufacturing the same
JPH0292868A (en) High-strength sintered material of boron nitride-base of cubic system
JPH10310838A (en) Superhard composite member and its production
JPS5861254A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear-resistant tool
JPS5860678A (en) High tenacity boron nitride base super high pressure sintering material for cutting and abrasion-resistant tool
JPS6319585B2 (en)
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPS6369760A (en) Sintered body for high hardness tools and manufacture
JPS6137221B2 (en)
JPH01122971A (en) Cubic boron nitride sintered product
JPS5861256A (en) High-toughness boron nitride-base material sintered under superhigh pressure for cutting tool and wear resistant tool
JPS639009B2 (en)