JP4781934B2 - Method for producing aluminum alloy matrix composite - Google Patents

Method for producing aluminum alloy matrix composite Download PDF

Info

Publication number
JP4781934B2
JP4781934B2 JP2006211610A JP2006211610A JP4781934B2 JP 4781934 B2 JP4781934 B2 JP 4781934B2 JP 2006211610 A JP2006211610 A JP 2006211610A JP 2006211610 A JP2006211610 A JP 2006211610A JP 4781934 B2 JP4781934 B2 JP 4781934B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
composite material
aluminum
matrix composite
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006211610A
Other languages
Japanese (ja)
Other versions
JP2008038172A (en
Inventor
平四郎 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2006211610A priority Critical patent/JP4781934B2/en
Publication of JP2008038172A publication Critical patent/JP2008038172A/en
Application granted granted Critical
Publication of JP4781934B2 publication Critical patent/JP4781934B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、アルミニウム合金基複合材料の製造方法に関するもので、さらに詳しくは、加圧浸透法(高圧鋳造法とも呼ぶ。)により得られ、かつ、従来よりも加工性を向上させたアルミニウム合金基複合材料の製造方法に関するものである。 The present invention relates to a method for producing an aluminum alloy matrix composite material. More specifically, the present invention relates to an aluminum alloy matrix obtained by a pressure infiltration method (also referred to as a high pressure casting method) and having improved workability than before. The present invention relates to a method for manufacturing a composite material.

金属マトリックスとセラミックスの強化相からなる金属基複合材料は、強化相が有する剛性及び耐磨耗性と金属マトリックスが有する延性及び靭性を併せ持つので、種々の用途に使用されるようになってきている。
また、このような複合材料は、ヤング率を密度で除した値である比ヤング率を大きくすることが可能なことから、大きな固有音速を有し、優れた振動減衰特性を備えている。従って、このような優れた制震性を有する複合材料を、例えば、ロボットの高速移動アームに応用することが可能である。
Metal matrix composites composed of a metal matrix and a ceramic reinforcing phase have both the rigidity and wear resistance of the reinforcing phase and the ductility and toughness of the metal matrix, and are thus being used in various applications. .
Further, such a composite material can increase the specific Young's modulus, which is a value obtained by dividing the Young's modulus by the density, and thus has a large natural sound speed and has excellent vibration damping characteristics. Therefore, it is possible to apply such a composite material having excellent vibration control properties to, for example, a high-speed moving arm of a robot.

しかしながら、従来の金属基複合材料は、加工性が不十分であった。これは強化材であるセラミックスとして硬度の高いアルミナ、SiC等が用いられることが多く、このため加工性が悪かった。したがって、金属基複合材料を加工するには、加工工具としてダイヤモンド砥石を用いた湿式研削加工が必要であった。 However, the conventional metal matrix composite has insufficient workability. This is because alumina, SiC, or the like having high hardness is often used as a ceramic material as a reinforcing material, and therefore workability is poor. Therefore, in order to process the metal matrix composite material, wet grinding using a diamond grindstone as a processing tool is required.

これに対し強化材であるセラミックスとして硬度の低いホウ酸アルミ粒子を用いたアルミニウム基複合材料が提案されている(例えば、特許文献1を参照)。 On the other hand, an aluminum-based composite material using aluminum borate particles having low hardness has been proposed as ceramic as a reinforcing material (see, for example, Patent Document 1).

しかしながら、上記した方法によっても、溶融金属の浸透不良による欠陥が生じる場合があった。さらには、得られた複合材料を加工するに際しても加工に用いる工具の寿命は決して長いとは言えず、更なる加工性の向上が望まれていた。
特開2004-353049号公報
However, even with the above-described method, defects due to poor penetration of molten metal may occur. Furthermore, when processing the obtained composite material, it cannot be said that the tool used for processing has a long service life, and further improvement in workability has been desired.
JP 2004-353049 A

本発明は、前記した金属基複合材料が有する課題に鑑みなされたものであって、その目的は、従来よりも、浸透不良が発生せず、かつ、加工性を向上させた金属基複合材料の製造方法を提供することにある。 The present invention has been made in view of the problems of the above-described metal matrix composite material, and the object thereof is that of a metal matrix composite material that does not cause poor penetration and has improved workability as compared with the prior art. It is to provide a manufacturing method.

本発明者らは、上記課題に鑑み鋭意研究した結果、アルミニウム合金基複合材料の製造方法において、粒径100μm以上の粒子の占める割合が0〜20体積%のホウ酸アルミニウム粉末原料を用いて充填体を成形し、加圧浸透法によりアルミニウム合金基複合材料となすことで、複合材料の加工性を従来よりも向上できることを見出して本発明を完成した。すなわち、本発明者らは、上記課題を解決するための手段として以下を提供する。 As a result of intensive studies in view of the above problems, the present inventors have filled an aluminum borate powder raw material in which the proportion of particles having a particle size of 100 μm or more is 0 to 20% by volume in the method for producing an aluminum alloy matrix composite material The present invention has been completed by finding that the workability of the composite material can be improved as compared with the prior art by forming the body and forming the aluminum alloy matrix composite material by the pressure infiltration method. That is, the present inventors provide the following as means for solving the above problems.

(1)アルミニウム合金中にホウ酸アルミニウム粉末が複合されたアルミニウム合金基複合材料の製造方法であって、粒径100μm以上の粒子の占める割合が0〜20体積%のホウ酸アルミニウム粉末原料を充填して充填体を得る工程と、前記充填体を予熱する工程と、1〜5質量%のCuを含んでなるアルミニウム合金を700〜900℃で加熱して溶融アルミニウム合金を得る工程と、前記予熱した充填体に前記溶融アルミニウム合金を50〜200MPaの圧力で加圧浸透させる工程と、を含むことを特徴とするアルミニウム合金基複合材料の製造方法。 (1) A method for producing an aluminum alloy-based composite material in which aluminum borate powder is composited in an aluminum alloy, which is filled with an aluminum borate powder raw material in which the proportion of particles having a particle size of 100 μm or more is 0 to 20% by volume A step of obtaining a filler, a step of preheating the filler, a step of heating an aluminum alloy containing 1 to 5% by mass of Cu at 700 to 900 ° C. to obtain a molten aluminum alloy, and the preheating And a step of pressurizing and infiltrating the molten aluminum alloy with a pressure of 50 to 200 MPa into the filled body.

本発明によれば、溶融アルミニウム合金の浸透性を良くすることができる。かつ、粒径100μm以上の粒子の占める割合が0〜20体積%のホウ酸アルミニウム粉末原料を用いることで、加工性を向上することができる。
したがって、浸透不良を低減でき、欠陥の少ない易加工性アルミニウム合金基複合材料を歩留まり良く製造できるという効果を有する。
According to the present invention, the permeability of the molten aluminum alloy can be improved. And workability can be improved by using the aluminum borate powder raw material whose ratio for which the particle diameter is 100 micrometers or more accounts for 0-20 volume%.
Therefore, it is possible to reduce penetration defects and to produce an easily processable aluminum alloy matrix composite material with few defects with a high yield.

以下、本発明について、更に詳しく説明する。
本発明では、アルミニウム合金中にホウ酸アルミニウム粉末が複合されたアルミニウム合金基複合材料の製造方法であって、粒径100μm以上の粒子の占める割合が0〜20体積%のホウ酸アルミニウム粉末原料を容器に充填して充填体を得る工程と、前記充填体を予熱する工程と、1〜5質量%のCuを含んでなるアルミニウム合金を700〜900℃で加熱して溶融アルミニウム合金を得る工程と、前記予熱した充填体に前記溶融アルミニウム合金を50〜200MPaの圧力で加圧浸透させる工程と、を含むことを特徴とするアルミニウム合金基複合材料の製造方法を提案している。
Hereinafter, the present invention will be described in more detail.
In the present invention, a method for producing an aluminum alloy-based composite material in which aluminum borate powder is composited in an aluminum alloy, wherein the proportion of particles having a particle size of 100 μm or more is 0-20 vol% A step of filling a container to obtain a filler, a step of preheating the filler, a step of heating an aluminum alloy containing 1 to 5% by mass of Cu at 700 to 900 ° C. to obtain a molten aluminum alloy, and And a step of pressure infiltrating the molten aluminum alloy into the preheated filler at a pressure of 50 to 200 MPa, and a method for producing an aluminum alloy matrix composite material is proposed.

ここで、本発明に係る金属マトリックスとしてのアルミニウム合金の原料素材としては、アルミニウムまたは公知のアルミニウム合金のインゴットまたは粉末を用いることができる。 Here, as a raw material of the aluminum alloy as the metal matrix according to the present invention, aluminum or a known aluminum alloy ingot or powder can be used.

次に、本発明に係る強化材としてのセラミックス粉末原料としては、硬度の低いホウ酸アルミニウム粉末を用いている。ここで、ホウ酸アルミニウム粉末の形状としては、粒子状が好ましい。
また、粒径100μm以上の粒子の占める割合が0〜20体積%のホウ酸アルミニウム粉末原料を用いることが、加工性を向上させるために好ましい。
その理由は、粒径100μm以上の粒子の占める割合が20体積%を超えて多い粗いホウ酸アルミニウム粉末を用いると、細かいホウ酸アルミニウム粉末を用いた場合と比較して、加工工具面と被加工面との接触面積に占めるホウ酸アルミニウム粉末の割合が大きくなるため加工が困難となると推察される。
Next, as the ceramic powder raw material as the reinforcing material according to the present invention, aluminum borate powder having low hardness is used. Here, the shape of the aluminum borate powder is preferably particulate.
Moreover, it is preferable to use an aluminum borate powder raw material in which the proportion of particles having a particle size of 100 μm or more is 0 to 20% by volume in order to improve workability.
The reason for this is that when using a coarse aluminum borate powder in which the proportion of particles having a particle size of 100 μm or more exceeds 20% by volume, the machining tool surface and the work piece are compared with the case of using a fine aluminum borate powder. It is presumed that the processing becomes difficult because the proportion of the aluminum borate powder in the contact area with the surface increases.

次に、本発明に係る複合材料中のホウ酸アルミニウム粉末の充填率は、40〜60体積%であることが好ましい。その理由は、ホウ酸アルミニウム粉末の充填率が、40体積%より小さいと剛性が小さくなるため好ましくないからである。
また、ホウ酸アルミニウム粉末の充填率が60体積%より大きいと、加工性が低下するため好ましくないからである。
Next, it is preferable that the filling rate of the aluminum borate powder in the composite material according to the present invention is 40 to 60% by volume. The reason is that if the filling rate of the aluminum borate powder is smaller than 40% by volume, the rigidity becomes unfavorable.
Moreover, it is because a workability will fall when the filling rate of an aluminum borate powder is larger than 60 volume%, and is unpreferable.

次に、本発明に係るホウ酸アルミニウム粉末原料を充填して充填体を得る工程における粉末原料を充填する方法としては、粉末原料を容器に充填しながら振動を与える方法が好適に挙げられる。ここで、充填体におけるホウ酸アルミニウムの充填率としては、上記した理由により、40〜60体積%となることが好ましい。
また、充填体を得る工程としては、ホウ酸アルミニウム粉末原料に有機バインダー、無機バインダーを添加し、プレスにより充填体を形成する方法、水などの溶媒と粉末原料、無機バインダーを添加しフィルタープレスなどの方法により充填体を形成する方法を用いても良い。
Next, as a method of filling the powder raw material in the step of filling the aluminum borate powder raw material according to the present invention to obtain a filler, a method of giving vibration while filling the powder raw material into a container is preferably mentioned. Here, it is preferable that it is 40-60 volume% as a filling rate of the aluminum borate in a filler for the reason mentioned above.
Moreover, as a process of obtaining a filler, a method of adding an organic binder and an inorganic binder to an aluminum borate powder raw material and forming a filler by pressing, a solvent such as water and a powder raw material, an inorganic binder, a filter press, etc. You may use the method of forming a filler by this method.

次に、前記充填体を加熱する工程としては、充填体の加熱温度は、500〜1000℃、好ましくは700〜800℃とすることが望ましい。 Next, as the step of heating the filling body, the heating temperature of the filling body is 500 to 1000 ° C., preferably 700 to 800 ° C.

次に、アルミニウム合金を加熱して溶融アルミニウム合金を得る工程における、加熱温度を700〜900℃とする理由は、アルミニウム合金の溶融温度が700℃より低いと溶融アルミニウム合金の粘性が高く、浸透し難くなり、浸透不良を起こし好ましくなく、また、900℃より高いとアルミニウム合金が酸化されやすくなり、複合材料中にアルミナが混入して加工性が低下するため好ましくないからである。 Next, in the step of heating the aluminum alloy to obtain a molten aluminum alloy, the reason for setting the heating temperature to 700 to 900 ° C. is that if the melting temperature of the aluminum alloy is lower than 700 ° C., the viscosity of the molten aluminum alloy is high and penetrates. This is because it becomes difficult to cause penetration failure and is not preferable. When the temperature is higher than 900 ° C., the aluminum alloy is easily oxidized, and alumina is mixed into the composite material, so that the workability is lowered.

ここで、1〜5質量%のCuを含んでなるアルミニウム合金を用いる理由は、アルミニウム合金中のCuの含有量が1質量%未満では加工性が悪くなるため好ましくなく、また、Cuの含有量が5質量%を超えて多いと複合材料としての延性が小さくなるため脆くなるので好ましくないからである。 Here, the reason for using an aluminum alloy containing 1 to 5% by mass of Cu is not preferable because the workability deteriorates when the content of Cu in the aluminum alloy is less than 1% by mass, and the content of Cu is not preferable. This is because if it exceeds 5% by mass, the ductility of the composite material becomes small and it becomes brittle, which is not preferable.

次に、前記充填体に前記溶融アルミニウム合金を加圧浸透させる工程における加圧力は、好ましくは50MPa〜200MPaとすることが望ましい。その理由は、加圧力が50MPa未満であると、浸透不良を起こし好ましくないからである。また、加圧力を200MPaを超えて大きくすることは装置設計上において好ましくない。 Next, the applied pressure in the step of pressure infiltrating the molten aluminum alloy into the filler is preferably 50 MPa to 200 MPa. The reason for this is that if the applied pressure is less than 50 MPa, penetration failure occurs, which is not preferable. In addition, it is not preferable in designing the apparatus to increase the applied pressure beyond 200 MPa.

次に、このようにして得られた複合材料の周りに付着した余分なアルミニウム合金の部分を加工により除去し、所望の形状のアルミニウム合金基複合材料を得る。 Next, the excess aluminum alloy part adhering around the composite material thus obtained is removed by processing to obtain an aluminum alloy matrix composite material having a desired shape.

以下、本発明の実施例と比較例を具体的に挙げ、本発明をより詳細に説明する。
(1) アルミニウム合金基複合材料の作製
強化材としてのホウ酸アルミニウム粉末原料は、市販品で種々の粒度分布の粉末原料を用いた。(ホウ酸アルミニウム粉末原料における粒径100μm以上の粒子の占める割合は、公知の粒度分析計により評価した。)各々の粉末原料を100×150×50mmの大きさの鉄製容器に振動をかけながら充填して、ホウ酸アルミニウム粉末の充填率が50体積%となる充填体を得た。次に、得られた充填体を700℃で予熱した。
次に、種々の含有率のCuを含んでなるアルミニウム合金を種々の温度で加熱して溶融アルミニウム合金を得た。次に、前記予熱した充填体を加圧浸透装置内の金型に設置して、前記溶融アルミニウム合金を60MPaの圧力で10min加圧浸透させて、複合化させ、冷却して複合材料を作製した。その後、周囲に付着した余剰のアルミニウム合金を切断除去し、アルミニウム合金基複合材料を得た。
Hereinafter, the present invention will be described in more detail with specific examples and comparative examples of the present invention.
(1) Production of aluminum alloy matrix composite The aluminum borate powder raw material as a reinforcing material was a commercial product and powder raw materials having various particle size distributions were used. (The proportion of particles having a particle size of 100 μm or more in the aluminum borate powder raw material was evaluated by a known particle size analyzer.) Each powder raw material was filled in a 100 × 150 × 50 mm iron container with vibration. And the filling body from which the filling rate of aluminum borate powder will be 50 volume% was obtained. Next, the obtained packing was preheated at 700 ° C.
Next, aluminum alloys containing Cu having various contents were heated at various temperatures to obtain molten aluminum alloys. Next, the preheated filler was placed in a mold in a pressure infiltration apparatus, and the molten aluminum alloy was infiltrated under pressure at a pressure of 60 MPa for 10 minutes, combined, and cooled to produce a composite material. . Then, the excess aluminum alloy adhering to the circumference was cut and removed to obtain an aluminum alloy matrix composite material.

(2) 評価方法
得られた複合材料の浸透不良の発生の有無は、切断面の外観を目視観察することにより行い、浸透不良の発生が認められないものを良と、浸透不良が発生したものを不良と判定した。
次に、加工性の評価は、得られた複合材料の100×150mmの面をフライス盤(大隈豊和社製 MILLAC 415V)で面出し加工することにより行った。この際、加工工具としては、サンドビック社製の超硬工具(R245-12T3E)を4個1組で使用して、所望の面出し加工が超硬工具を交換しなくてもできる最大個数を調べた。
また、得られた複合材料の延性を評価する目的で、伸びをJIS Z 2241に準拠する方法により評価して伸びを測定した。得られた評価結果を表1にまとめて示した。
(2) Evaluation method The resulting composite material was checked for the presence or absence of penetration failure by visually observing the appearance of the cut surface. Was determined to be defective.
Next, the evaluation of workability was performed by chamfering a 100 × 150 mm surface of the obtained composite material with a milling machine (MILLAC 415V, manufactured by Toyokazu Okuma). At this time, as a machining tool, use a set of 4 carbide tools (R245-12T3E) made by Sandvik, and set the maximum number that can be obtained without changing the carbide tool. Examined.
Further, for the purpose of evaluating the ductility of the obtained composite material, the elongation was evaluated by evaluating the elongation according to a method according to JIS Z 2241. The obtained evaluation results are summarized in Table 1.

Figure 0004781934
Figure 0004781934

(3)評価結果
表1から明らかなように、実施例1〜3においては、ホウ酸アルミニウムの粒径、アルミニウム合金の組成、溶融温度がいずれも本発明の範囲内であるので、良好な加工性を有していた。
これに対し、比較例1では100μm以上のホウ酸アルミニウムが30体積%と多いため、また、比較例2ではアルミニウム合金がCuを含有していないため、いずれも加工性が低下した。
また、比較例3ではアルミニウム合金のCuの含有量が6質量%と多いため、伸びが低下した。また、比較例4ではアルミニウム合金の溶融温度を600℃と低くしため、浸透不良が発生していた。また、比較例5ではアルミニウム合金の溶融温度が950℃と高くしため、加工性が低下した。また、比較例6では浸透圧力を30MPaと低くしため、浸透不良が発生した。
(3) Evaluation results As is clear from Table 1, in Examples 1 to 3, since the particle size of aluminum borate, the composition of the aluminum alloy, and the melting temperature are all within the scope of the present invention, good processing is achieved. Had sex.
On the other hand, since the aluminum borate of 100 μm or more is as large as 30% by volume in Comparative Example 1, and since the aluminum alloy does not contain Cu in Comparative Example 2, all of the workability deteriorated.
Further, in Comparative Example 3, since the Cu content of the aluminum alloy was as large as 6% by mass, the elongation was lowered. Further, in Comparative Example 4, since the melting temperature of the aluminum alloy was lowered to 600 ° C., a penetration failure occurred. Further, in Comparative Example 5, the melting temperature of the aluminum alloy was increased to 950 ° C., so that the workability was lowered. Moreover, in the comparative example 6, since the osmotic pressure was lowered to 30 MPa, a penetration failure occurred.

以上より、本発明によれば、浸透不良が発生せず、かつ、加工性を向上させた金属基複合材料の製造できることが分かった。   From the above, it was found that according to the present invention, it is possible to produce a metal matrix composite material that does not cause poor penetration and has improved workability.

Claims (1)

アルミニウム合金中にホウ酸アルミニウム粉末が複合されたアルミニウム合金基複合材料の製造方法であって、粒径100μm以上の粒子の占める割合が0〜20体積%のホウ酸アルミニウム粉末原料を充填して充填体を得る工程と、前記充填体を予熱する工程と、1〜5質量%のCuを含んでなるアルミニウム合金を700〜900℃で加熱して溶融アルミニウム合金を得る工程と、前記予熱した充填体に前記溶融アルミニウム合金を50〜200MPaの圧力で加圧浸透させる工程と、を含むことを特徴とするアルミニウム合金基複合材料の製造方法。 A method for producing an aluminum alloy-based composite material in which aluminum borate powder is composited in an aluminum alloy, in which an aluminum borate powder raw material in which the proportion of particles having a particle size of 100 μm or more is 0 to 20% by volume is filled A step of preheating the filler, a step of heating an aluminum alloy containing 1 to 5% by mass of Cu at 700 to 900 ° C. to obtain a molten aluminum alloy, and the preheated filler And a step of pressure infiltrating the molten aluminum alloy at a pressure of 50 to 200 MPa.
JP2006211610A 2006-08-03 2006-08-03 Method for producing aluminum alloy matrix composite Expired - Fee Related JP4781934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211610A JP4781934B2 (en) 2006-08-03 2006-08-03 Method for producing aluminum alloy matrix composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211610A JP4781934B2 (en) 2006-08-03 2006-08-03 Method for producing aluminum alloy matrix composite

Publications (2)

Publication Number Publication Date
JP2008038172A JP2008038172A (en) 2008-02-21
JP4781934B2 true JP4781934B2 (en) 2011-09-28

Family

ID=39173549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211610A Expired - Fee Related JP4781934B2 (en) 2006-08-03 2006-08-03 Method for producing aluminum alloy matrix composite

Country Status (1)

Country Link
JP (1) JP4781934B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103924128B (en) * 2014-03-26 2016-05-11 南昌大学 A kind of preparation method of nano aluminium oxide reinforced aluminum matrix composites
JP6681079B2 (en) * 2017-11-30 2020-04-15 アドバンスコンポジット株式会社 Method for producing aluminum alloy-based composite material and aluminum alloy-based composite material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635630B2 (en) * 1989-09-18 1994-05-11 四国化成工業株式会社 Method for producing aluminum borate whisker reinforced metal matrix composite material
JPH07216480A (en) * 1994-01-26 1995-08-15 Suzuki Motor Corp Fiber reinforced al alloy
JP3873311B2 (en) * 1995-02-28 2007-01-24 住友化学株式会社 Metal matrix composite and manufacturing method thereof
JP4838973B2 (en) * 2003-05-30 2011-12-14 株式会社エー・エム・テクノロジー Easy-to-process composite materials
JP2005042136A (en) * 2003-07-23 2005-02-17 Toyota Industries Corp Aluminum-matrix composite material and its manufacturing method

Also Published As

Publication number Publication date
JP2008038172A (en) 2008-02-21

Similar Documents

Publication Publication Date Title
Artini et al. Diamond–metal interfaces in cutting tools: a review
US7879129B2 (en) Wear part formed of a diamond-containing composite material, and production method
Heath Developments in applications of PCD tooling
EP2024524B1 (en) Infiltrant matrix powder and product using such powder
KR101426184B1 (en) Copper based binder for the fabrication of diamond tools
SE532992C2 (en) Process for making a diamond composite, green body, diamond composite and use of the diamond composite
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
Rao et al. Machining behavior of Al6061-fly ash composites
CN108161781A (en) A kind of preparation method of novel multi-layer Study on Brazed Superabrasive Tools
JP4781934B2 (en) Method for producing aluminum alloy matrix composite
RU2594923C2 (en) Grinding tool for processing fragile materials and method of its manufacturing
JPS60187603A (en) Sintered diamond tool and its production
KR102254299B1 (en) Method of forming abrasive particles
JP5379059B2 (en) Method for producing SiC / Si composite material
US20120217436A1 (en) Boron suboxide composite material
JPH06198504A (en) Cutting tool for high hardness sintered body
JP7425872B2 (en) Polycrystalline diamond with iron-containing binder
RU2487005C1 (en) Copper-based binder for making cutting tool with superhard material
Zhou et al. Brazing of diamond grits with Ag-Cu-Zn alloy activated by Cr or Ti powder under different environments
RU2588928C1 (en) Composite solder for soldering abrasive tools from superhard materials
CS204605B1 (en) Material for making the grinding instrument
JPS6143307B2 (en)
JPH05194032A (en) Production of diamond-based ultra-high pressure sintered material for highly heat-resistant machining tool
JPS6143306B2 (en)
JPH10212533A (en) Metal-ceramics composite material and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081126

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees