JPH03193668A - Production of cubic boron nitride ceramic material having high toughness - Google Patents

Production of cubic boron nitride ceramic material having high toughness

Info

Publication number
JPH03193668A
JPH03193668A JP1330767A JP33076789A JPH03193668A JP H03193668 A JPH03193668 A JP H03193668A JP 1330767 A JP1330767 A JP 1330767A JP 33076789 A JP33076789 A JP 33076789A JP H03193668 A JPH03193668 A JP H03193668A
Authority
JP
Japan
Prior art keywords
powder
boron nitride
cubic boron
ceramic material
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1330767A
Other languages
Japanese (ja)
Other versions
JP2643503B2 (en
Inventor
Fumihiro Ueda
植田 文洋
Hiroyuki Eto
浩之 江藤
Masami Miyake
政美 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1330767A priority Critical patent/JP2643503B2/en
Publication of JPH03193668A publication Critical patent/JPH03193668A/en
Application granted granted Critical
Publication of JP2643503B2 publication Critical patent/JP2643503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain cubic boron nitride ceramic material having high toughness by heating the green compact of the mixture of titanium hydride and cubic boron nitride powder in vacuum and allowing both to react with each other and treating a porous sintered body wherein titanium nitride and titanium boride are strongly bonded to cubic boron nitride at ultrahigh pressure and high temp. CONSTITUTION:The mixture of 0.5-20wt.% titanium hydride powder (TiHx, mean particle diameter is less than 1mum) and the balance cubic boron nitride powder (c-BN, mean particle diameter is 1-10mum) is molded into a green compact. Thereafter, this green compact is heated and held at 1200-500 deg.C in vacuum. TiHx is allowed to react with c-BN to produce TiN and TiB2. A porous c-BN- based ceramic sintered body having a structure is obtained wherein TiN and TiB2 are strongly bonded to c-BN. This sintered body is treated at the ultrahigh pressure and high temp. to make it dense at theoretical density ratio of at least 98%. Thereby the c-BN-based ceramic material having high toughness is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、高靭性を有し、かつ耐摩耗性にもすぐれ、
通常の条件での連続切削は勿論のこと、特に靭性が要求
される鋳鉄の連続高速切削や、ダイス鋼および高速度鋼
などの高硬度鋼などの断続切削に切削工具として用いた
場合にすぐれた切削性能を長期に亘って発揮する立方晶
窒化ほう素(以下c−BNで示す)基セラミック材の製
造法に関するものである。
[Detailed description of the invention] [Industrial application field] The present invention has high toughness and excellent wear resistance.
It is excellent when used as a cutting tool, not only for continuous cutting under normal conditions, but also for continuous high-speed cutting of cast iron where toughness is required, and interrupted cutting of high-hardness steel such as die steel and high-speed steel. The present invention relates to a method for manufacturing a cubic boron nitride (hereinafter referred to as c-BN)-based ceramic material that exhibits cutting performance over a long period of time.

〔従来の技術〕[Conventional technology]

一般に、c−BN基セラミック材は、高硬度を有するの
で、切削工具などとして用いられ、また、このc−BN
基セラミック材が、例えば特公昭57−3811号公報
に記載されるように、原料粉末として、c−BN粉末、
並びに周期律表の4 a、 5 a。
In general, c-BN-based ceramic materials have high hardness and are used as cutting tools.
For example, as described in Japanese Patent Publication No. 57-3811, the base ceramic material contains c-BN powder, c-BN powder,
as well as 4a and 5a of the periodic table.

および6a族金属の炭化物粉末、窒化物粉末、ほう化物
粉末、およびけい化物粉末を用い、これら原料粉末を所
定の配合組成に配合し、通常の条件で混合し、混合粉末
の状態、あるいは圧粉体に成形した状態で、これに通常
の条件、すなわち圧カニ1万気圧以上、温度: 100
0℃以上の条件で超高圧高温処理を施して理論密度比:
98%以上の緻密な焼結体とすることにより製造される
ことも良く知られるところである。
Using carbide powder, nitride powder, boride powder, and silicide powder of group 6a metals, these raw material powders are blended into a predetermined composition and mixed under normal conditions to form a mixed powder state or a compacted powder. After being molded into a body, it is subjected to normal conditions, i.e. pressure of 10,000 atmospheres or more, temperature: 100
Theoretical density ratio:
It is also well known that it can be manufactured by forming a 98% or more dense sintered body.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来方法で製造されたc−BN基セラミ
ック材は、これを例えば鋳鉄の連続高速切削や、上記高
硬度鋼の断続切削などに用いた場合、靭性不足が原因で
切刃に欠けやチッピングが発生し易く、十分満足する切
削寿命を示さないのが現状である。
However, when the c-BN-based ceramic material manufactured by the above-mentioned conventional method is used for continuous high-speed cutting of cast iron or interrupted cutting of the above-mentioned high-hardness steel, the cutting edge cracks due to lack of toughness. At present, cutting and chipping are likely to occur, and the cutting life is not sufficiently satisfactory.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明者等は、上述のような観点から、靭性の
すぐれたc−BN基セラミック材を製造すべく研究を行
なった結果、 使用する原料粉末を、水素化チタン(以下T i Hx
で示す)粉末とc−BN粉末に特定し、かつT i H
xの粒径を平均粒径でlllla未満と微細にする一方
、相対的にc−BN粉末の粒径を平均粒径で1〜10m
と大きくし、望ましくはc−BN粉末の表面にT i 
Hx粉末が一様に分布するようにするために、T i 
Hx粉末の粒径をc−BN粉末の粒径の1/2以下にす
るのがよく、これらの原料粉末を、 T i Hx : 0.5〜20重量%、c−BN:残
り、 の割合に配合し、通常の条件で混合し、圧粉体に成形し
た後、この圧粉体を真空中、1200〜1500℃の温
度に加熱すると、c−BN粉末の表面部でTiHx粉末
との間で反応が起ってT i Hxの全てが反応し、そ
の結果窒化チタン(以下TiNで示す)とほう化チタン
(以下T i B 2で示す)が生成し、この生成Ti
NとT iB 2は皆しく高い活性を有するので、分散
相形成成分でc−BNと強固に結合し、この結果形成さ
れたc−BN基セラミック焼結体は多孔質ではあるが、
きわめて高い靭性をもつものであり、 したがって、この多孔質c −BN、lセラミック焼結
体に、通常の条件、すなわち圧カニ1万気圧以上、温度
: 1000℃以上の条件で超高圧高温処理を施して9
8%以上の理論密度比としたc−BN基セラミック材は
、すぐれた靭性をもつようになり、かつ従来方法で製造
されたC−BNMセラミック材と同等の高硬度を有し、 これを特に靭性が要求される鋳鉄の連続高速切削や、高
硬度鋼の断続切削などに切削工具として用いた場合にも
切刃に欠けやチッピングなどの発生がなく、すぐれた切
削性能を長期に亘って発揮するという研究結果を得たの
である。
Therefore, from the above-mentioned viewpoint, the present inventors conducted research to produce a c-BN-based ceramic material with excellent toughness. As a result, the raw material powder used was titanium hydride (hereinafter referred to as TiHx).
) powder and c-BN powder, and T i H
While making the particle size of
and desirably Ti on the surface of the c-BN powder.
To ensure uniform distribution of Hx powder, T i
The particle size of the Hx powder is preferably 1/2 or less of the particle size of the c-BN powder, and these raw material powders are composed of the following proportions: TiHx: 0.5 to 20% by weight, c-BN: the remainder. After mixing under normal conditions and forming into a green compact, when this green compact is heated to a temperature of 1200 to 1500°C in a vacuum, the surface of the c-BN powder forms a gap between the TiHx powder and the TiHx powder. A reaction occurs and all of the T i Hx reacts, resulting in the production of titanium nitride (hereinafter referred to as TiN) and titanium boride (hereinafter referred to as T i B 2).
Since both N and T iB 2 have high activity, they are strongly bonded to c-BN as dispersed phase forming components, and the c-BN-based ceramic sintered body formed as a result is porous, but
It has extremely high toughness, and therefore, this porous c-BN, l ceramic sintered body is subjected to ultra-high pressure and high temperature treatment under normal conditions, that is, at a pressure of over 10,000 atmospheres and a temperature of over 1000°C. Give 9
The c-BN-based ceramic material with a theoretical density ratio of 8% or more has excellent toughness and high hardness equivalent to that of the C-BNM ceramic material manufactured by conventional methods. Even when used as a cutting tool for continuous high-speed cutting of cast iron, which requires toughness, or interrupted cutting of high-hardness steel, the cutting edge does not chip or chip, and exhibits excellent cutting performance over a long period of time. The research results showed that.

この発明は、上記の研究結果にもとづいてなされたもの
であって、 原料粉末として、平均粒径:1如未満のTtHx粉末と
、同1〜10IIAのc−BN粉末を用い、これらの原
料粉末を、 T i Hx : 0.5〜20重量%、c−BN:残
り、 からなる配合組成に配合し、通常の条件で混合し、圧粉
体に成形した後、 この圧粉体を、真空中、1200〜1500℃の温度に
加熱保持し、c−BNとT i Hxとを反応させてT
iNとT iB 2を生成せしめ、c−BNが前記生成
TiNとT iB 2とで強固に結合された組織を有す
る多孔質c−BN基セラミック焼結体を形成し、 ついで、上記多孔質c−BN基セラミック焼結体に、通
常の条件で超高圧高温処理を施して、98%以上の理論
密度比に緻密化することにより高靭性を有するc−BN
基セラミック材を製造する方法に特徴を有するものであ
る。
This invention was made based on the above research results, and uses TtHx powder with an average particle size of less than 1 and c-BN powder with an average particle size of 1 to 10 IIA as raw material powders. are blended into a composition consisting of T i Hx: 0.5 to 20% by weight, c-BN: the remainder, mixed under normal conditions, and formed into a green compact. While heating and maintaining the temperature at 1200-1500°C, c-BN and TiHx are reacted to form T
iN and TiB 2 are generated to form a porous c-BN-based ceramic sintered body having a structure in which c-BN is strongly bonded with the generated TiN and TiB 2; - c-BN which has high toughness by subjecting the BN-based ceramic sintered body to ultra-high pressure and high temperature treatment under normal conditions to densify it to a theoretical density ratio of 98% or more.
This method is characterized by a method of manufacturing a base ceramic material.

つぎに、この発明の方法において、製造条件を上記の通
りに限定した理由を説明する。
Next, the reason why the manufacturing conditions are limited as described above in the method of this invention will be explained.

A、配合組成および粉末平均粒径 (a)TiHx粉末 T i Hx粒粉末は、上記の通りc−BN粉末と反応
して活性なTiNとT iB 2を形成し、これが結合
相形成成分として作用して構成成分相互が強固に結合し
た焼結体を形成する作用があるが、その割合が0.5%
未満では前記作用に所望の効果が得られず、一方その割
合が20%を越えると、これと反応するc−BN粉末の
割合が多くなり、セラミック材中のc−BNの割合が相
対的に減少して硬さが低下し、切削工具として用いた場
合に耐摩耗性の低下を招くようになることから、その割
合を0.5〜20%と定めた。
A. Blend composition and powder average particle size (a) TiHx powder T i Hx powder reacts with c-BN powder to form active TiN and T iB 2, which act as a binder phase forming component. It has the effect of forming a sintered body in which the constituent components are strongly bonded to each other, but the proportion is 0.5%.
If the ratio is less than 20%, the desired effect cannot be obtained, and on the other hand, if the ratio exceeds 20%, the ratio of c-BN powder that reacts with the c-BN powder increases, and the ratio of c-BN in the ceramic material becomes relatively low. The ratio is determined to be 0.5 to 20% because the hardness decreases and the wear resistance decreases when used as a cutting tool.

また、T i Hx粒粉末、c−BN粉末との反応を均
一に行なわしめて高靭性を確保するためには、そのまわ
りに−様に分布させるのが望ましく、したがってその平
均粒径が1伽以上になるとC−BN粉末の粒径との関係
で均一分布が困難になることから、その平均粒径を1血
未満とした。
In addition, in order to ensure high toughness by uniformly reacting with the T i Hx grain powder and c-BN powder, it is desirable to distribute the particles in a -like manner around them, and therefore the average grain size is 1 to 1 or more. Since uniform distribution becomes difficult due to the particle size of the C-BN powder, the average particle size was set to less than one particle.

さらに、この場合TiHx粉末の粒径をC−BN粉末の
粒径の1/2以下にして、T i Hx粒粉末c−BN
粉末の周囲に均一に分布するようにしてやるとよい。
Furthermore, in this case, the particle size of the TiHx powder is set to 1/2 or less of the particle size of the C-BN powder, so that the TiHx powder c-BN
It is best to distribute it evenly around the powder.

(b)c−BN粉末 c−BN粉末の平均粒径が11IJa未満になると、セ
ラミック材の硬さが低下するようになって所望の耐摩耗
性を確保することができないばかりでなく、TLHX粉
末と粒径的に近似し、相対的にc−BN粉末の配合割合
が高く、T i Hx粒粉末それは低いので、c−BN
粉末同志が隣接する部分が生じ、この部分ではc −B
N十TiHx反応が起らず、したがって前記反応は局部
的反応にとどまるようになり、この結果強固な粒子間結
合を全体に亘ってはかることができなくなり、このため
セラミック材に高靭性を確保することができず、一方そ
の平均粒径が10IIjaを越えると、セラミック材に
局部的に硬さむらが生じるようになることから、その平
均粒径を1〜1O1tI@と定めた。
(b) c-BN powder When the average particle size of the c-BN powder is less than 11IJa, not only the hardness of the ceramic material decreases and the desired wear resistance cannot be secured, but also the TLHX powder The particle size is similar to that of c-BN powder, and the blending ratio of c-BN powder is relatively high, and that of T i Hx grain powder is low.
There is a part where the powders are adjacent to each other, and in this part c - B
The N+TiHx reaction does not occur, so the reaction remains localized, and as a result, strong interparticle bonding cannot be achieved throughout the ceramic material, thus ensuring high toughness in the ceramic material. On the other hand, if the average particle size exceeds 10IIja, local hardness unevenness will occur in the ceramic material, so the average particle size was determined to be 1 to 1O1tI@.

B、焼結温度 その温度が1200℃未満では、c−B N +TiH
x反応を適当な速さで、すなわち生成したTiNとT 
iB 2に高い活性を付与せしめた状態で十分に行なう
ことができず、一方その温度が1500℃を越えるとc
−BNが不安定となり、材質的にバラツキのないセラミ
ック材を製造することができなくなることから、その温
度を1200〜1500℃と定めた。
B, sintering temperature If the temperature is less than 1200 °C, c-B N +TiH
x reaction at an appropriate rate, i.e., the produced TiN and T
It is not possible to perform the reaction sufficiently with iB2 highly active, and on the other hand, if the temperature exceeds 1500℃, c
-BN becomes unstable and it becomes impossible to manufacture a ceramic material with no material variations, so the temperature was set at 1200 to 1500°C.

〔実 施 例〕〔Example〕

つぎに、この発明の方法を実施例により具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、それぞれ第1表に示される平均粒径を
有するT i Hx粒粉末c−BN粉末を用意し、これ
ら原料粉末を、同じく第1表に示される配合組成に配合
し、溶媒としてアセトンを用いて湿式混合し、乾燥した
後、1.5ton/c−の圧力で直径:12mmX厚さ
:2mmの寸法をもった圧粉体に成形し、この圧粉体を
、0.005torrの真空中、同じく第1表に示され
る温度に30分間保持の条件で焼結して多孔質c−BN
基セラミ・ツク焼結体を形成し、ついで、この多孔質c
−BNaセラミ・ツク焼結体に、通常のベルト型超高圧
高温装置を用い、圧力=3万気圧、温度: 1200℃
、保持時間:30分の条件で超高圧高温処理を施すこと
により本発明法1〜6をそれぞれ実施し、c−BN、l
セラミック材を製造した。
As raw material powders, T i Hx grain powders and c-BN powders each having an average particle diameter shown in Table 1 were prepared, and these raw material powders were blended into the formulation composition also shown in Table 1, and acetone was used as a solvent. After wet mixing using Porous c-BN was produced by sintering at the temperature shown in Table 1 for 30 minutes.
A base ceramic sintered body is formed, and then this porous c
- BNa ceramic sintered body using a normal belt-type ultra-high pressure and high temperature device, pressure = 30,000 atm, temperature: 1200°C
, holding time: 30 minutes, ultra-high pressure and high temperature treatment was carried out according to methods 1 to 6 of the present invention, and c-BN, l
Manufactured ceramic material.

また、比較の目的で、T i Hx粉末の代りに、原料
粉末として同じく第1表に示される平均粒径を有するT
iN粉末およびT r B 2粉末を用い、同じく第1
表に示される配合組成に配合し、かつ圧粉体を直接6万
気圧、1600℃で超高圧高温処理する以外は同一の条
件で比較法1〜6を行ない、c−BN基セラミック材を
製造した。
Also, for the purpose of comparison, instead of T i Hx powder, T
Using iN powder and T r B 2 powder, the first
Comparative methods 1 to 6 were carried out under the same conditions except that the composition shown in the table was used and the green compact was directly treated at 60,000 atm and 1600°C to produce a c-BN-based ceramic material. did.

つぎに、この結果得られた各種のc−BN基セラミック
材について、理論密度比、マイクロビッカース硬さ、お
よび破壊靭性値をApj定し、このlpj定結果を第1
表に示した。また、これらのc−BN基セラミック材を
X線回折により観察したところ、いずれもc−BN、T
iN、およびT I B 2からなり、T i Hxや
金属TIの含有は皆無であることが確認された。
Next, the theoretical density ratio, micro-Vickers hardness, and fracture toughness values of the various c-BN-based ceramic materials obtained as a result are determined by Apj, and this lpj determination result is used as the first
Shown in the table. Furthermore, when these c-BN-based ceramic materials were observed by X-ray diffraction, both c-BN and T
It was confirmed that it was composed of iN and T I B 2 and contained no T i Hx or metal TI.

さらに、これらの各種のc −BNIセラミック材を、
切断および研磨により切削工具切刃に仕上げ、 被削材:5KD57(ロックウェル硬さCスケール二6
5)からなり、外周部に1800間隔で2本の長さ方向
溝のある丸棒材、 切削速度: 60m/rain、 切込み:0.2mm、 送   リ:0.1鰭/rev、、 の条件で高速度鋼(高硬度鋼)の旋削断続切削試験を行
ない、切刃にチッピングが発生するまでの切削時間を測
定した。これらの測定結果を試験切刃:5本の平均値と
して示した。
Furthermore, these various c-BNI ceramic materials,
The cutting tool cutting edge is finished by cutting and polishing. Work material: 5KD57 (Rockwell hardness C scale 26)
5), a round bar material with two longitudinal grooves at 1800 pitches on the outer periphery, cutting speed: 60 m/rain, depth of cut: 0.2 mm, feed rate: 0.1 fin/rev, conditions. An interrupted turning test was conducted on high speed steel (high hardness steel) and the cutting time until chipping occurred on the cutting edge was measured. These measurement results are shown as the average value of five test cutting edges.

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜6で製造され
たc−BN基セラミック材は、いずれも高靭性および高
硬度を有し、TjHxおよびTiの含有もなく、これを
高硬度鋼の断続切削に使用した場合に、すぐれた靭性を
発揮し、著しく長い使用寿命を示すのに対して、比較法
1〜6で製造されたc−BN基セラミック材に見られる
ように、原料粉末としてTiHx粉末を使用しない場合
には、十分な靭性が得られず、高硬度鋼の断続切削では
短かい使用寿命しか示さないことが明らかである。
From the results shown in Table 1, the c-BN-based ceramic materials produced by methods 1 to 6 of the present invention all have high toughness and high hardness, do not contain TjHx and Ti, and have high hardness. When used for interrupted cutting of steel, it exhibits excellent toughness and a significantly long service life, whereas as seen in the c-BN-based ceramic materials produced by Comparative Methods 1 to 6, the raw material It is clear that if TiHx powder is not used as the powder, sufficient toughness cannot be obtained and only a short service life is exhibited in interrupted cutting of hardened steel.

上述のように、この発明の方法によれば、−従来c−B
N基セラミック材では得ることのできない高靭性を有し
、かつこれと同等の高硬度を有するc−BN基セラミッ
ク材を製造することができ、したがって、これをこれら
の特性が要求される鋳鉄の高速連続切削や、高硬度鋼の
断続切削などに切削工具として用いた場合に切刃に欠け
やチッピングの発生なく、すぐれた切削性能を著しく長
期に亘って発揮するなど工業上有用な効果がもたらされ
るのである。
As mentioned above, according to the method of the invention - conventional c-B
It is possible to produce a c-BN-based ceramic material that has high toughness that cannot be obtained with N-based ceramic materials and also has high hardness equivalent to that of N-based ceramic materials. When used as a cutting tool for high-speed continuous cutting or interrupted cutting of high-hardness steel, it provides industrially useful effects such as excellent cutting performance over a long period of time without chipping or chipping of the cutting edge. It is possible.

Claims (1)

【特許請求の範囲】[Claims] (1)原料粉末として、平均粒径が1μm未満の水素化
チタン粉末と、同1〜10μmの立方晶窒化ほう素粉末
を用い、これら原料粉末を、 水素化チタン:0.5〜20重量%、 立方晶窒化ほう素:残り、 からなる配合組成に配合し、通常の条件で混合し、圧粉
体に成形した後、 この圧粉体を、真空中、1200〜1500℃の温度に
加熱保持し、立方晶窒化ほう素と水素化チタンを反応せ
しめて窒化チタンとほう化チタンを生成させ、この生成
窒化チタンとほう化チタンが立方晶窒化ほう素と強固に
結合した組織を有する多孔質立方晶窒化ほう素基セラミ
ック焼結体を形成し、ついで、上記多孔質立方晶窒化ほ
う素基セラミック焼結体に、通常の条件で超高圧高温処
理を施して、98%以上の理論密度比とすることを特徴
とする高靭性を有する立方晶窒化ほう素基セラミック材
の製造法。
(1) As raw material powders, titanium hydride powder with an average particle size of less than 1 μm and cubic boron nitride powder with an average particle size of 1 to 10 μm are used, and these raw material powders are: Titanium hydride: 0.5 to 20% by weight , cubic boron nitride: the remainder, after mixing under normal conditions and forming into a green compact, this green compact is heated and held at a temperature of 1200 to 1500°C in vacuum. Then, cubic boron nitride and titanium hydride are reacted to produce titanium nitride and titanium boride. A cubic boron nitride-based ceramic sintered body is formed, and then the porous cubic boron nitride-based ceramic sintered body is subjected to ultra-high pressure and high temperature treatment under normal conditions to achieve a theoretical density ratio of 98% or more. A method for producing a cubic boron nitride-based ceramic material having high toughness.
JP1330767A 1989-12-20 1989-12-20 Manufacturing method of cubic boron nitride ceramic material with high toughness Expired - Lifetime JP2643503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1330767A JP2643503B2 (en) 1989-12-20 1989-12-20 Manufacturing method of cubic boron nitride ceramic material with high toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1330767A JP2643503B2 (en) 1989-12-20 1989-12-20 Manufacturing method of cubic boron nitride ceramic material with high toughness

Publications (2)

Publication Number Publication Date
JPH03193668A true JPH03193668A (en) 1991-08-23
JP2643503B2 JP2643503B2 (en) 1997-08-20

Family

ID=18236311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1330767A Expired - Lifetime JP2643503B2 (en) 1989-12-20 1989-12-20 Manufacturing method of cubic boron nitride ceramic material with high toughness

Country Status (1)

Country Link
JP (1) JP2643503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7336063B2 (en) 2021-08-24 2023-08-31 株式会社タンガロイ Cubic boron nitride sintered body and coated cubic boron nitride sintered body

Also Published As

Publication number Publication date
JP2643503B2 (en) 1997-08-20

Similar Documents

Publication Publication Date Title
EP0598140B1 (en) Cubic boron nitride-base sintered ceramics for cutting tool
JP2020514235A (en) Sintered polycrystalline cubic boron nitride material
JPH0621312B2 (en) Sintered body for high hardness tool and manufacturing method thereof
JP2523452B2 (en) High strength cubic boron nitride sintered body
JPS63145726A (en) Production of cubic boron nitride-base ultra-high pressure sintereo material for cutting tool
JPS61141672A (en) Manufacture of cubic boron nitride base sintered body for cutting tool
JPH03193668A (en) Production of cubic boron nitride ceramic material having high toughness
JP3146803B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JP3257255B2 (en) Cutting tools made of cubic boron nitride based ultra-high pressure sintered material with excellent wear resistance
JPH03215363A (en) Production of ceramic material based on cubic boron nitride having high toughness
JP4887588B2 (en) Dispersion strengthened CBN-based sintered body and method for producing the same
JPH01122971A (en) Cubic boron nitride sintered product
JPH0911006A (en) Cutting tool made of cubic nitride boron group sintered material which provides excellent wear resistance in high-speed cutting
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JP3132849B2 (en) High toughness high pressure phase boron nitride sintered body
JPH0681071A (en) Titanium carbonitride base cermet excellent in toughness
JP2932738B2 (en) Method for producing cubic boron nitride based ultra-high pressure sintered material having high toughness
JPS6157382B2 (en)
JPH08197307A (en) Cutting tool made of cubic system boron nitride base superhigh pressure sintered material having high strength and high toughness
JP4244108B2 (en) CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance
JPS6232151B2 (en)
JPS644987B2 (en)
JPS647141B2 (en)
JPH07172906A (en) Ceramic sintered compact
JPH0488103A (en) Complex sintered cutting tool material having excellent chipping resistance and manufacture thereof