JPS60183739A - Formation of multilayer interconnection - Google Patents

Formation of multilayer interconnection

Info

Publication number
JPS60183739A
JPS60183739A JP3943284A JP3943284A JPS60183739A JP S60183739 A JPS60183739 A JP S60183739A JP 3943284 A JP3943284 A JP 3943284A JP 3943284 A JP3943284 A JP 3943284A JP S60183739 A JPS60183739 A JP S60183739A
Authority
JP
Japan
Prior art keywords
film
wiring
thin film
forming
interlayer insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3943284A
Other languages
Japanese (ja)
Inventor
Masahiro Kameda
昌宏 亀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP3943284A priority Critical patent/JPS60183739A/en
Publication of JPS60183739A publication Critical patent/JPS60183739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To enhance evenness of a multilayer interconnection by a method wherein after ions such as As, P, B, Ar, etc. are introduced into the surface of a thin film for wiring formed on a substrate, heat treatment is performed, and after patterning is performed, an interlayer insulating film is formed according to the CVD method, and a thin film for wiring is formed thereon. CONSTITUTION:After a film for wiring of Al-Si(1%) is evaporated wholly on the surface of an Si substrate, boron ions are implanted. The ion implanted Al(1%) film is etched using the etching liquid of phosphoric acid:nitric acid: acetic acid=3:0.17:0.6 to form the prescribed wiring pattern. After then, heat treatment is performed in a nitrogen atmosphere at 450 deg.C for 30min. Then, a silicon oxide interlayer insulating film is formed on the whole surface covering the Al-Si(1%) film, an OCD film is provided thereon at about 1,200Angstrom film thickness, and heat-treated in a nitrogen atmosphere at 400 deg.C. After then, etching is performed to provide a through hole, Al is evaporated wholly on the surface of the OCD film, and etched in the prescribed pattern to form a second layer wiring. Accordingly, a favorable multilayer interconnection can be formed, and reliability can be enhanced.

Description

【発明の詳細な説明】 抜開公私 本発明は、薄膜を多層に形成する方法に関し、より詳細
には、LSI、好ましくはMO8FET集積回路の多層
配線の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming multilayer thin films, and more particularly to a method for forming multilayer wiring for LSI, preferably MO8FET integrated circuits.

鞄米五艦 従来、LSI等の配線は、蒸着やスパッタリング等によ
りAQやAQ、−8i等の導電体材料を薄膜形成し、パ
ターン形成した後、400℃〜500℃の熱処理を施し
て行なわれるが、熱処理時にヒロック(hilLock
)と呼はれる突起物が形成されて表面の平滑性が失われ
るという現象が発生することが知られている。なお、ヒ
ロックはAIに限らずポリシリコンやMOにも生ずるこ
ともケ[1られでいる。このヒロックが生ずると、エレ
クトロマイグレーションによる断線、特に多層配線に於
ける第1導体層と第2導体層の電気的短絡等の根本原因
となり、さらには層間絶縁膜のカバーレジの不良の原因
による段切れ等のため短絡が生じ、こ1しらが多層配線
実現の為の大きな障害ともなっている。また、ヒロック
の原因に加えて従来の方法では層間絶縁膜の平坦性が悪
いため良好な多層配線を形成することができなかった。
Conventionally, wiring for LSI, etc. is done by forming a thin film of conductive material such as AQ, AQ, -8i, etc. by vapor deposition or sputtering, forming a pattern, and then subjecting it to heat treatment at 400°C to 500°C. However, during heat treatment, hillock
It is known that a phenomenon in which protrusions called ) are formed and the surface smoothness is lost occurs. It has been reported that hillocks occur not only in AI but also in polysilicon and MO. When this hillock occurs, it becomes the root cause of disconnections due to electromigration, electrical short circuits between the first conductor layer and the second conductor layer in multilayer wiring, and further disconnections due to poor cover registration of the interlayer insulating film. Short circuits occur due to such problems, and this is a major obstacle to realizing multilayer wiring. In addition to the cause of hillocks, conventional methods have been unable to form good multilayer interconnections due to the poor flatness of the interlayer insulating film.

堕 本発明は以上の点に鑑みてなされたものであって、薄膜
形成材料の種類によらず簡単な工程でもって、良好な多
層配線を形成でき、その信頼性を向上でき、かつ平坦な
層間絶録層を形成でき、よってWJ、細な多層配線パタ
ーンを形成することを目的とする。
The present invention has been made in view of the above points, and it is possible to form a good multilayer wiring with a simple process regardless of the type of thin film forming material, improve its reliability, and create flat interlayer wiring. The purpose of this method is to be able to form a recording layer, thereby forming a WJ and a fine multilayer wiring pattern.

貞或 本発明の構成について、以下多層配線を形成する具体的
な実施例に基づいて説明する。
The structure of the present invention will be described below based on a specific example in which multilayer wiring is formed.

マグネトロン型スパッタ法を用いて81基板」二にAf
l−8i1%の配線用膜を膜厚約600 OAに全面に
黒石する。この後、このAQ−3i1%11にボロンイ
オンをイオン注入法により注入する。
81 substrates using magnetron sputtering method
A 1% l-8i wiring film is coated on the entire surface with a thickness of approximately 600 OA. Thereafter, boron ions are implanted into this AQ-3i1%11 by an ion implantation method.

イオン注入の条件としては、加速を50 KeV、単位
面積当たりの打込み量を1. X l O”doseと
し、また表面イ]近、特に表面から2000A以内にお
けるイオン濃度は、5 X 10”イオン数/ Ca以
」二とする。特に好適には5×10 イオン数/ cn
?以−1−とする。イオン濃度の最大値は、表面から1
000A付近のところにある。イオン注入したAQ−8
j 1%膜をリン酸:硝酸:酢酸=3:0.17:0.
6のエツチング液を用いて42度Cの温度で約2.5分
エツチングして所定の配線パターンを形成する。その後
、窒素雰囲気中で450℃、30分間の熱処理を行なう
The ion implantation conditions were an acceleration of 50 KeV and an implantation amount per unit area of 1. The ion concentration near the surface, especially within 2000 A from the surface, is 5 x 10 ions/Ca. Particularly preferably 5×10 ion number/cn
? The following is -1-. The maximum value of ion concentration is 1 from the surface.
It is located near 000A. AQ-8 with ion implantation
j 1% membrane in phosphoric acid: nitric acid: acetic acid = 3:0.17:0.
A predetermined wiring pattern is formed by etching using No. 6 etching solution at a temperature of 42 degrees Celsius for about 2.5 minutes. Thereafter, heat treatment is performed at 450° C. for 30 minutes in a nitrogen atmosphere.

次に、所定のパターンに形成されたへQ−8j1%膜を
おおって全面に層間絶縁膜、酸化シリコンを減圧CVD
法を用いて膜厚約8000Aに形成する。この時の減圧
は、0 、 I Torr とする。
Next, cover the Q-8J 1% film formed in a predetermined pattern and apply an interlayer insulating film, silicon oxide, on the entire surface by low pressure CVD.
The film is formed to a thickness of about 8000 Å using the method. The reduced pressure at this time is 0, I Torr.

次にこの層間絶縁1莫上に0CD(東京応化製品名)を
約120OAの膜厚に設ける。そして、窒素雰囲気中で
400℃で熱処理を行なう。
Next, 0CD (Tokyo Ohka product name) is provided to a thickness of about 120 OA on top of this interlayer insulation. Then, heat treatment is performed at 400° C. in a nitrogen atmosphere.

この後、スルホールを設(づるためのエツチングを行な
う。次にOC: D上にPut−e、な八Qを全面に蒸
着して所定のパターンにエツチングして、二層[−1の
配線、膜厚約800OAを形成する、本実施例における
効果を確a、2するため、本発明の方法に形成した配線
層のSF:M(Scダinninge1.ecjron
 m1croscope)で観察した結果を添付図面に
示す。第1図(a)では、ΔQ−8j、1%1漠中にイ
オン注入を行なわなかった場合、 (b)では、1ら 50KeV、]Xl0doseでI3をイオン注入した
場合のそれぞれの金属組織41W造を示した顕微鏡写真
であり、第2図は、第1層配線」二に減圧CVD法によ
り層間絶縁膜をデボジン1−シた場合の多層配線の金属
組織構造を示した顕微鏡写真であり、配線パターンの幅
は3Pm、第3図は、層間絶縁膜」二にOCDをコー1
へした場合の金属組織構造を示した顕微鏡写真であり、
第4図(a)は、従来の方法で作成した多層配線、(b
)は、本発明の方法により多層配線を形成した場合のそ
れぞれの金属組織構造を示した顕微鏡写真である。第1
図におけるAQ−3i1%配線表面のヒロックが(b)
では全く発生していない。第2図及び第3図では、第1
層の配線膜上の層間絶縁膜のカバーレジが良好に得られ
、かつ段切れが生じていなく、しかも層間絶縁膜表面が
平担に形成されている。又、第4図(b)では、欠陥が
なく、カバーレジが良い、きれいな微細パターンの多層
配線が形成されている。このように、本実施例では、イ
オン注入、ウエツ1−エツチング、層間絶縁膜の形成及
びその表面平担化の処理を組合せて記載した条件で行な
うことなより、きわめて良好多層配線を達成することが
できる。
After this, etching is performed to create through holes.Next, Put-e and NahaQ are deposited on the entire surface of the OC:D and etched into a predetermined pattern to form two-layer [-1 wiring, In order to confirm the effect in this example of forming a film thickness of about 800 OA, SF:M (Sc dinninge1.ecjron
The results observed using a m1 microscope are shown in the attached drawings. Fig. 1(a) shows the metal structure of 41W when ion implantation is not performed at ΔQ-8j, 1%1, and Fig. 1(b) shows the case when I3 is ion-implanted at 1~50KeV, ]Xl0dose. FIG. 2 is a microphotograph showing the metallographic structure of the multilayer wiring when the interlayer insulating film is debossed by low-pressure CVD method. The width of the wiring pattern is 3Pm.
This is a micrograph showing the metallographic structure when
Figure 4 (a) shows the multilayer wiring created by the conventional method, and (b)
) are micrographs showing the respective metallographic structures when multilayer wiring is formed by the method of the present invention. 1st
The hillock on the AQ-3i 1% wiring surface in the figure is (b)
It hasn't happened at all. In Figures 2 and 3, the first
Good coverage of the interlayer insulating film on the interconnection film of the layer is obtained, no breakage occurs, and the surface of the interlayer insulating film is formed evenly. In addition, in FIG. 4(b), a multilayer wiring with a fine pattern without defects and good coverage is formed. As described above, in this example, extremely good multilayer wiring can be achieved by combining ion implantation, wet etching, forming an interlayer insulating film, and flattening the surface under the conditions described. I can do it.

なお、本実施例で11、配に&、材料として、AQ−3
i 1%を用いたが、この材料に限られず、ポリシリコ
ン、MOなどの高融点金属、もしくはこれら金属のシリ
サイドなどにも適用できる。この場合のイオン注入の条
件としては本実施例のそれとほぼ゛同じでよいと考える
。さらに、■3イオン以外にもAs、■)、Arなどの
イオンを用いることもできる。なお、As、ArをA〕
配線にイオン注入した場合をSEMで観察した結果を第
5図(a)、(ト)に示す。(d)では、50KeV、
]、 X 10 ” doseてAsをイオン注入した
場合、0.)では、50KeV、6 1 X ]、 OdoseでA rをイオン注入し、た
場合を示す。また、第一層のAQ−8l’Xl膜の膜g
を約6に形成したが、この膜厚に限定されることはない
In addition, in this example, AQ-3 was used as the material.
Although i 1% is used, the present invention is not limited to this material, and can also be applied to polysilicon, high melting point metals such as MO, or silicides of these metals. It is considered that the ion implantation conditions in this case may be approximately the same as those in this embodiment. Furthermore, in addition to the 3 ions, ions such as As, 2), and Ar can also be used. In addition, As and Ar are A]
Figures 5(a) and 5(g) show the results of SEM observation of the case where ions were implanted into the wiring. In (d), 50KeV,
], X 10 '' dose and 0.) shows the case where Ar is ion-implanted at 50 KeV, 6 1 Xl membrane g
Although the film thickness is about 6, the film thickness is not limited to this.

また減圧C,V l)法を用いて層間絶縁1t9Jを形
成したが、常圧CVD法を用いても形成できる。また、
イオン注入法を用いたが、逆スパツタリング法やブラス
マ処理等を用いることも可能である。また、i12坦化
処理は、行うことが好ましいが、必ず必要な」二程では
ない。
Furthermore, although the interlayer insulation 1t9J was formed using the reduced pressure C, V l) method, it can also be formed using the atmospheric pressure CVD method. Also,
Although the ion implantation method was used, it is also possible to use a reverse sputtering method, a plasma treatment, or the like. In addition, although it is preferable to perform the i12 flattening process, it is not absolutely necessary.

刺來 以上の如く、本発明によって半導体装置の良好な多層配
線を形成でき、またその信頼性を向上でき、かつ、実現
が容易になるという効果がある。
As described above, the present invention has the advantage that it is possible to form a good multilayer interconnection of a semiconductor device, improve its reliability, and facilitate implementation.

又、多層配線に於ける層間層として、極めて平坦性が得
られ、又、多・胛配線の微細パターン形成を行なうこと
ができる。
Further, as an interlayer in multilayer wiring, extremely flatness can be obtained, and fine patterns of multilayer wiring can be formed.

尚、本発明方法は上述した半導体装置の製造のみならず
、任意の構成体の上に平滑性の優れた薄IVAを形成す
る場合に使用可能であることは勿論である。
It goes without saying that the method of the present invention can be used not only for manufacturing the semiconductor device described above, but also for forming a thin IVA with excellent smoothness on any structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は、 イオン注入を行なわなかった場合の
アルニウム配線の金属組織構造を示した顕微鏡写真図で
あり、第1図(b)は、本発明に基づきボロンイオンの
イオン注入を行なった場合のアルミニュウム配線の金属
組織構造を示した″M微鏡写真図である。第2図は、第
1層配線上に減圧CVD法により層間絶縁1県をデポジ
ッl−Lノリ烏合の多層配線の金属組織構造を示した顕
微鏡写真図であり、第3図は、層間絶縁膜」二にQ C
1mをコートした場合の全屈組織41′lj造を示した
顕微鏡写真図であり、第4図(a)は、従来方法で作成
した多層配線、(b)は、本発明の方法を用いて多層配
線を形成した場合のそれぞれの金属組織構造を示した顕
微鏡写f(図であり、第5図(a)、(1))は、As
、A1−をイオン注入した場合のアルミニウム配線の金
属組織構造を示した顕微鏡写真図である。 特許出願人 株式会社 リコー (α) 4−:。 (−b) (α) s121 (9) 手続補正書 昭和59年71月/60 特許庁長官 志 賀 学 殿 ■、事件の表示 昭和59年特許願第39432号 2、発明の名称 多層配線形成法 3、補正をする者 事(’Iとの関係 特許出願人 住所 〒143 東京1111人111区中馬込−=1
″1143番6叶名称 (674,) 株式会社 リコ
ー別紙 2、特許請求の範囲 イi3成体上に選択した材料からなる第1のイzq膜を
形成するコニ程と、該薄膜の表面に不本乞1ソ\又ΔS
、P、−13、Δr等のイオンを導入する工程と、該薄
膜を;)i、処理する工程と、該シ1す膜をパ怪−二三
スダする工程と、該薄膜−ににCVD法により層間絶れ
()換を形成工程と、選択した利料からなる第2のンi
!i II;’iを形成する工程とを含む多Bり配線形
成法。
FIG. 1(a) is a micrograph showing the metallographic structure of an aluminum wiring without ion implantation, and FIG. 1(b) is a micrograph showing the metallographic structure of an aluminum wiring without ion implantation. FIG. 2 is a microphotograph showing the metallographic structure of aluminum wiring in the case of a multi-layer wiring with L-L glue bonding. FIG. 3 is a micrograph showing the metallographic structure of the interlayer insulating film.
FIG. 4 is a microscopic photograph showing the fully bent structure 41'lj structure when 1 m is coated, and FIG. The micrograph f (Fig. 5(a) and (1)) showing the respective metallographic structures when multilayer wiring is formed is an As
, A1- is a microscopic photograph showing the metallographic structure of aluminum wiring when ion-implanted. Patent applicant Ricoh (α) 4-:. (-b) (α) s121 (9) Procedural amendment dated 1987/71/60 Mr. Manabu Shiga, Director General of the Japan Patent Office■, Indication of the case 1982 Patent Application No. 39432 2, Name of the invention Multilayer wiring formation method 3. Person making the amendment (relationship with 'I) Patent applicant address 143 Tokyo 1111 people 111 ward Nakamagome - = 1
``No. 1143 6 Name (674,) Ricoh Co., Ltd. Attachment 2, Claims ii3 A process for forming a first Izz film made of a selected material on a composite body, and a process for forming a first Izz film made of a selected material on the surface of the thin film. Beg 1 so\also ΔS
, P, -13, Δr, etc., a step of treating the thin film, a step of drying the thin film, and a CVD process on the thin film. A step of forming an interlayer break () by a method, and a second layer consisting of a selected interest.
! i II; 'i;

Claims (1)

【特許請求の範囲】[Claims] 構成体上に選択した材料からなる第1の薄膜を形成する
工程と、該薄膜の表面にエネルギーを与えてAs−P、
B、Ar等のイオンを導入するコニ程゛ と、該薄膜を
熱処理する工程と、該薄膜をウェットエツチングするコ
ニ程と、該薄膜上にCVD法により層間絶縁膜を形成工
程と、選択した材料からなる第2の薄膜を形成する工程
とを含む多層配線形成法。
forming a first thin film of the selected material on the structure; applying energy to the surface of the thin film to form As-P;
A step of introducing ions such as B, Ar, etc., a step of heat treating the thin film, a step of wet etching the thin film, a step of forming an interlayer insulating film on the thin film by CVD method, and a step of forming the selected material. A method for forming a multilayer wiring including a step of forming a second thin film comprising:
JP3943284A 1984-03-01 1984-03-01 Formation of multilayer interconnection Pending JPS60183739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3943284A JPS60183739A (en) 1984-03-01 1984-03-01 Formation of multilayer interconnection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3943284A JPS60183739A (en) 1984-03-01 1984-03-01 Formation of multilayer interconnection

Publications (1)

Publication Number Publication Date
JPS60183739A true JPS60183739A (en) 1985-09-19

Family

ID=12552833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3943284A Pending JPS60183739A (en) 1984-03-01 1984-03-01 Formation of multilayer interconnection

Country Status (1)

Country Link
JP (1) JPS60183739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857484A (en) * 1987-02-21 1989-08-15 Ricoh Company, Ltd. Method of making an ion-implanted bonding connection of a semiconductor integrated circuit device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664450A (en) * 1979-10-31 1981-06-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor device
JPS5673451A (en) * 1979-11-21 1981-06-18 Toshiba Corp Manufacture of semiconductor device
JPS57199240A (en) * 1981-06-01 1982-12-07 Mitsubishi Electric Corp Wiring material for semiconductor device
JPS59123260A (en) * 1982-12-28 1984-07-17 Toshiba Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5664450A (en) * 1979-10-31 1981-06-01 Chiyou Lsi Gijutsu Kenkyu Kumiai Semiconductor device
JPS5673451A (en) * 1979-11-21 1981-06-18 Toshiba Corp Manufacture of semiconductor device
JPS57199240A (en) * 1981-06-01 1982-12-07 Mitsubishi Electric Corp Wiring material for semiconductor device
JPS59123260A (en) * 1982-12-28 1984-07-17 Toshiba Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857484A (en) * 1987-02-21 1989-08-15 Ricoh Company, Ltd. Method of making an ion-implanted bonding connection of a semiconductor integrated circuit device

Similar Documents

Publication Publication Date Title
JPS63301548A (en) Manufacture of semiconductor device
JPH10125782A (en) Manufacturing method of semiconductor device
JPH0936228A (en) Formation of wiring
JP3911643B2 (en) Method for forming buried conductive layer
JPH0226055A (en) Manufacture of semiconductor device
JPH08330427A (en) Wiring formation of semiconductor element
JPS60183739A (en) Formation of multilayer interconnection
JPH10256372A (en) Manufacture of semiconductor device
JPH0822967A (en) Manufacture of semiconductor device
JPH04196122A (en) Manufacture of semiconductor device
JP2981366B2 (en) Method for manufacturing semiconductor device
JPH10106972A (en) Manufacture of electrode wiring structure
JPH0740587B2 (en) Method for manufacturing semiconductor device
JP3149169B2 (en) Method for manufacturing semiconductor device
JPH10209155A (en) Method for forming wiring of semiconductor device
JP2565292B2 (en) Semiconductor device
JPS63262856A (en) Manufacture of semiconductor device
JPH11297818A (en) Manufacture of semiconductor device
JPH118304A (en) Manufacture of semiconductor device
JPH0797583B2 (en) Method for forming interlayer insulating film
JPH03208336A (en) Manufacture of semiconductor device
JPH0260128A (en) Semiconductor device
JPH0878518A (en) Fabrication of semiconductor device
JPH0494541A (en) Formation of wiring
JPS58222538A (en) Formation of aluminium wiring