JPS6018040B2 - Boiling water reactor water supply control system - Google Patents

Boiling water reactor water supply control system

Info

Publication number
JPS6018040B2
JPS6018040B2 JP56127554A JP12755481A JPS6018040B2 JP S6018040 B2 JPS6018040 B2 JP S6018040B2 JP 56127554 A JP56127554 A JP 56127554A JP 12755481 A JP12755481 A JP 12755481A JP S6018040 B2 JPS6018040 B2 JP S6018040B2
Authority
JP
Japan
Prior art keywords
flow rate
water supply
water
signal
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56127554A
Other languages
Japanese (ja)
Other versions
JPS5828699A (en
Inventor
誠志郎 川上
真臣 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Genshiryoku Jigyo KK filed Critical Toshiba Corp
Priority to JP56127554A priority Critical patent/JPS6018040B2/en
Publication of JPS5828699A publication Critical patent/JPS5828699A/en
Publication of JPS6018040B2 publication Critical patent/JPS6018040B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は沸騰水形原子炉の給水制御装置に関する。 沸騰水形原子炉は原子炉水位を所定の値に維持して運転
する必要があり、原子炉水位〜主蒸気流量に対応して給
水流量を制御し、原子炉水位を所定の水位に維持するよ
うに機成されている。 そして、従来この給水流量を制御する給水制御装置は第
1図および第2図に示す如く構成されていた。すなわち
、1は原子炉圧力容器であって、この原子炉圧力容器1
内で発生した蒸気は4本の主蒸気管2・・・を介してタ
ービン3に送られ、このタービン3を駆動するように構
成されている。そして、このタービン3を駆動した蒸気
は復水器&で凝縮されて復水となり、給水ポンプ5,5
によって2本の給水管6,6を介して原子炉圧力容器1
内に給水される。そして、上記4本の主蒸気管2・・・
にはそれぞれ1個ずつ合計4個の主蒸気流量検出器T・
・・が設けられている。また、上記2本の給水管6,6
にはそれぞれ1個ずつ合計2個の給水流量検出器8,8
が設けられている。また、原子炉圧力容器1内の原子炉
水位は水位検出器9によって検出されるように構成され
ている。そして、上記主蒸気流量検出器7・・・、給水
流量検出器8,8および水位検出器9からの主蒸気流量
信号S,…、給水流量信号S2,S2「源子炉水位信号
S3はそれぞれ給水制御回路10に入力するりまた「
この給水制御回路奪0‘こは原子炉水位設定信号S4が
入力される。 そして〜 この給水制御回鞍亀川まこれらの信号にもと
づいて給水流量指令信号S5を出力し〜給水ポンプ5,
5を制御して給水流量を制御しト原子炉水位を所定水位
に維持する。そして「上記給水制御回賂亀肌ま第2図に
示す如く醸成されている。すなわち〜上記各主蒸気流量
検出器?…からの主蒸気流豊信号S,…は加算器角川こ
入力して加算され「 これらの総和すなわち総主蒸気流
量信号S6が求められる。またも給水流量検出器8,8
からの給水流量信号S2,S2も加算器翼2に入力して
加算され、これらの総和すなわち総給水流量信号S,が
求められる。 そして「 これらの総主蒸気流量信号S6および総給水
流量信号S7は減算器竃3尊こ入力し〜 これらの偏差
である給水偏差信号S8が求められる。 そしてこの給
水偏差信号S8は係数器亀母に入力されtこの給水偏差
によって生じると予想される原子炉水位の変化分に対応
した水位換算偏差信号S9に変換される。なおトこの場
合上記給水偏差信号S8と水位換算偏差信号S9との変
換率は通常運転時の総給水流量を100%としたとき、
上記給水偏差信号S8が100%変化した湯の水位換算
糠差信号S9の変化Lが120肌となるように設定され
ていいる。そして、この水位換算偏差信号Sa、原子炉
水位信号S3〜原子炉水位設定信号S4はそれぞれ加減
算器軍6に入力し、水位偏差信号S,。が求められる。
そしてこの水位偏差信号S,oは水位制御器16に送ら
れ、この水位制御器貴6からはこの水位偏差信号S,o
に対応した給水流量要求信号S5が出力されt上記給水
ポンプ59 5を制御して給水流量を制御し、原子炉水
位を所定水位に雛持するように機成されている。ところ
で、このようなものにおいて、たとえば給水流量検出器
8,函のうちの1個が故障して給水流量信号S2が得ら
れなくなると総給水流量信号S8が50%減少して50
%とする。 よって水位制御器畳6からこの総給水流量S7の50%
減少分を補償するような給水流量要求信号S5が出力さ
れ、実際の給水流量が50%増加して〜150%となる
。したがってこの50%の給水流量の増加により原子炉
水位は上昇する。そして「 この場合上記給水偏差信号
S8と水位換算偏差信号S9との変換率は12山ネ/1
00%であるので、給水流量の50%増加により60奴
上昇する。そして、第3図に示す如く通常運転時の原子
炉水位Loは原子炉水位の指標であるLとL6の中間に
設定され、また原子炉がスクラムする上限の原子炉水位
Lu‘まL8に設定されている。そして〜 このLuと
Loの差△Lは60蛾より小さい。よって第3図に示す
如くA時点で一方の給水流量検出器蟹が故障すると原子
炉水位が60地上昇して、1 u,Lを超え、原子炉が
スクラムしてしまう。よって従来のものは単に給水流量
検出器8,8が1個故障しただけで原子炉がスクラムし
、原子炉の稼動率が低下する不具合があった。本発明は
以上の事情にもとづいてなされたもので、その目的とす
るところは給水流量検出器の故障によって涼子炉がスタ
ラムしてしまうことがなく〜原子炉の稼動率を向上する
ことができる給水制御装置を得ることにある。 以下本発明を第4図ないし第6図に示す一実施例にした
がって説明する。図中畳QIは原子炉圧力容器であって
、この原子炉圧力容器貴01内には炉0(図示せず)が
収容されている。 そして、炉」Dで発生した蒸気は4本の主蒸気管182
…を介してタービン亀Q3に送られ、このタービン亀0
3を駆動するように構成されている。そして〜この夕‐
ビン竃03を駆動した蒸気は復水器角04で凝縮されて
復水となり、給水ポンプ105愚 106によって2本
の給水管IQ6? 106を介して原子炉圧力容器10
重内に給水される。そして、上記4本の主蒸気管亀02
…にはそれぞれ1個ずつ、合計4個の主蒸気流量検出器
101・・・が設けられている。また、上記2本の給水
管106,106にはそれぞれ2個ずつ合計4個の給水
流量検出器108・・・が設けられている。また「原子
炉圧力容器101内の原子炉水位は水位検出器富Q9に
よって検出されるように構成されている。そしても上記
給水流量検出器188…は第6図に示す如く取付けられ
ている。 すなわちト120は差圧発生用のりストリクタであって
給水管106内に設けられている。そして、給水がこの
リストリクタ120を通過する際に流速が変化し、流速
つまり給水流量に対応した差圧が発生するように構成さ
れている。そして、このリストリクタ120のスロート
部およびこの上流側には差圧取出用の圧力タップ121
,122が設けられている。そして、この一対の圧力タ
ップ121,122、1組につき2個の給水流量検出器
108,108が並列に接続されている。そして、これ
ら圧力タップ121.122から敬出された差圧は上記
の給水流量検出器108,108で縄気信号に変換され
るように構成されている。そして、前記の主蒸気流量検
出器101・・・、給水流量検出器108…および水位
検出器109からの主蒸気流量信号S.・・・、給水流
量信号S2…、原子炉水位信号S3はそれぞれ給水制御
回路
The present invention relates to a water supply control device for a boiling water nuclear reactor. Boiling water reactors must be operated while maintaining the reactor water level at a predetermined value, and the feed water flow rate is controlled in accordance with the reactor water level to main steam flow rate to maintain the reactor water level at a predetermined water level. It is structured like this. Conventionally, a water supply control device for controlling the water supply flow rate has been constructed as shown in FIGS. 1 and 2. That is, 1 is a reactor pressure vessel, and this reactor pressure vessel 1
The steam generated inside is sent to a turbine 3 via four main steam pipes 2, and is configured to drive this turbine 3. The steam that drove this turbine 3 is condensed in the condenser & becomes condensate, and the water pumps 5, 5
reactor pressure vessel 1 via two water supply pipes 6, 6.
water is supplied inside. And the above four main steam pipes 2...
There are a total of four main steam flow rate detectors, one for each T.
... is provided. In addition, the two water supply pipes 6, 6
A total of two water supply flow rate detectors 8, 8, one each
is provided. Further, the reactor water level in the reactor pressure vessel 1 is configured to be detected by a water level detector 9. Main steam flow rate signals S, ..., feed water flow rate signals S2, S2 and Genko reactor water level signal S3 from the main steam flow rate detector 7..., feed water flow rate detectors 8, 8 and water level detector 9 are respectively Input to the water supply control circuit 10 or "
The reactor water level setting signal S4 is input to this water supply control circuit 0'. Based on these signals, the water supply control circuit Kuramagawa outputs a water supply flow rate command signal S5, and the water supply pump 5,
5 to control the water supply flow rate and maintain the reactor water level at a predetermined water level. The water supply control circuit is generated as shown in Figure 2.In other words, the main steam flow signal S from each of the main steam flow rate detectors above is input to the adder Kadokawa. The sum of these signals, that is, the total main steam flow rate signal S6, is obtained.
The water supply flow rate signals S2, S2 from the 1000 to 2000 are also input to the adder blade 2 and added, and the sum of these signals, ie, the total water supply flow rate signal S, is obtained. Then, the total main steam flow rate signal S6 and the total feed water flow rate signal S7 are inputted into the subtractor column 3, and the feed water deviation signal S8, which is the deviation between them, is obtained. is input to t and converted into a water level conversion deviation signal S9 corresponding to the change in the reactor water level that is expected to occur due to this feed water deviation.In this case, the above-mentioned feed water deviation signal S8 and water level conversion deviation signal S9 are converted The rate is when the total water supply flow rate during normal operation is taken as 100%,
The change L in the water level conversion bran difference signal S9 of hot water when the water supply deviation signal S8 changes by 100% is set to be 120 degrees. Then, the water level conversion deviation signal Sa and the reactor water level signal S3 to the reactor water level setting signal S4 are respectively input to the adder/subtractor group 6, and water level deviation signals S, are input. is required.
This water level deviation signal S,o is sent to the water level controller 16, and from this water level controller 6, this water level deviation signal S,o
A water supply flow rate request signal S5 corresponding to the above is outputted to control the water supply pump 595 to control the water supply flow rate and maintain the reactor water level at a predetermined water level. By the way, in such a device, if one of the water supply flow rate detectors 8 and the box breaks down and the water supply flow rate signal S2 cannot be obtained, the total water supply flow rate signal S8 decreases by 50% and becomes 50%.
%. Therefore, 50% of this total water supply flow rate S7 from the water level controller Tatami 6
A water supply flow rate request signal S5 that compensates for the decrease is output, and the actual water supply flow rate increases by 50% to ~150%. Therefore, this 50% increase in feed water flow rate causes the reactor water level to rise. In this case, the conversion rate between the water supply deviation signal S8 and the water level conversion deviation signal S9 is 12 peaks/1.
00%, a 50% increase in water supply flow rate will increase the amount by 60%. As shown in Figure 3, the reactor water level Lo during normal operation is set between L and L6, which are indicators of the reactor water level, and is set at the upper limit reactor water level Lu' or L8 at which the reactor scrams. has been done. And ~ This difference △L between Lu and Lo is smaller than 60 moths. Therefore, as shown in FIG. 3, if one of the water supply flow rate detectors fails at time A, the reactor water level will rise by 60 degrees, exceeding 1 u,L, and the reactor will scram. Therefore, in the conventional system, a mere failure of one of the feed water flow rate detectors 8, 8 causes the reactor to scram, resulting in a reduction in the operating rate of the reactor. The present invention has been made based on the above circumstances, and its purpose is to prevent the Ryoko reactor from stalling due to failure of the feedwater flow rate detector, and to improve the operating rate of the reactor by providing water supply. The purpose is to obtain a control device. The present invention will be explained below according to an embodiment shown in FIGS. 4 to 6. Tatami QI in the figure is a nuclear reactor pressure vessel, and a reactor 0 (not shown) is accommodated in this reactor pressure vessel Q01. The steam generated in the furnace "D" is passed through four main steam pipes 182.
... is sent to the turbine turtle Q3, and this turbine turtle 0
3. And ~this evening~
The steam that drove the bin 03 is condensed in the condenser 04 and becomes condensate, which is then transferred to two water supply pipes IQ6 by the water supply pump 105 and 106. Reactor pressure vessel 10 via 106
Water is supplied inside the area. And the above four main steam pipe turtles 02
... are provided with a total of four main steam flow rate detectors 101, one for each. Further, the two water supply pipes 106, 106 are provided with a total of four water supply flow rate detectors 108, two each. Furthermore, the reactor water level in the reactor pressure vessel 101 is configured to be detected by a water level detector Q9.The water supply flow rate detectors 188 are also installed as shown in FIG. In other words, the gate 120 is a pressure restrictor for generating a differential pressure, and is provided in the water supply pipe 106.When the water supply passes through this restrictor 120, the flow rate changes, and a differential pressure corresponding to the flow rate, that is, the flow rate of the water supply, is generated. A pressure tap 121 for taking out the differential pressure is provided at the throat portion of the restrictor 120 and on the upstream side thereof.
, 122 are provided. Two water supply flow rate detectors 108, 108 are connected in parallel to each pair of pressure taps 121, 122. The differential pressure extracted from these pressure taps 121 and 122 is configured to be converted into a pressure signal by the water supply flow rate detectors 108, 108 described above. The main steam flow rate signals S. from the main steam flow rate detectors 101 . . . . . . , feed water flow rate signal S 2 .

【10‘こ入力するように構成されている。 また、この給水制御回路110には原子炉水位設定信号
S4が入力されるように構成されている。そしてこの給
水制御回路11川まこれらの信号にもとづいて給水流量
指令信号S5を出力しも給水ポンプ185,105の運
転を制御して給水流量を制御し、原子炉水位を所定水位
に制御するように礎成されている。そして、上記給水制
御回路110‘ま第5図に示,す如く構成されている。
すなわち、上記各主蒸気流量検出器107…からの主蒸
気流量信号S,…はそれぞれ加算器111に入力して加
算され「 これらの総和すなわち総主蒸気流量信号S6
が求められるように構成されている。またも上記給水流
量検出器亀08・・・からの給水流量信号S2・”は各
給水管106,106に取付けられている2個ずつの給
水流量検出器108…毎に加算器葺亀7,】貴7に入力
されて加算されるように構成されている。そして、これ
ら加算器117,117から出力される加算流量信号S
,.,S,.はそれぞれ係数器l 量8,118に送ら
れ、各給水管亀Q6,106毎の給水流量検出器108
・・・の個数分の1すなわち1/2の係数が乗算され、
各給水瞥日06,106毎に平均給水流量信号S,2,
S,2が求められる。そして、これらの平均給水流量信
号S肌 S,2はそれぞれ加算器112に送られて加算
され、総給水流量信号S7が求められる。そして、これ
ら総主蒸気流量信号S6および総総水流重信号S7は減
算器113に入力し「 これらの偏差である給水偏差信
号S8が求められる。そしてこの給水偏差信号S8は係
数器114に入力され、この給水偏差によって生じると
予想される原子炉水位の変化分に対応した水位換算偏差
信号S9に変換される。なお、この場合上記給水偏差信
号S8と水位換算偏差信号S9の変換率は通常運転時の
総給水流量を100%としたとき、上記給水偏差信号S
8が100%変化した場合の水位換算偏差信号S9の変
化Lが120のとなるように設定されている。そして、
この水位換算偏差信号S8、原子炉水位信号S3、原子
炉水位設定信号S4はそれぞれ加減算器115に入力し
、給水偏差信号S,。が求められる。そしてこの給水偏
差信号S,oは水位制御器116に送られ、この水位制
御器116からはこの水位偏差信号S,oに対応した給
水流量要求宿号ミが出力され〜上記給水ポンプ185,
905を制御して給水流量を制御し「原子炉水位を所定
水位に維持するように構成されている。以上の如く機成
された本発明の一実施例は総主蒸気流量と総給水流量に
差が生じると減算器1亀3からこの差に対応した給水偏
差信号S8が出力され、この給水偏差信号S8は係数器
量14で水位換算偏差信号S9に換算される。 そして、この水位換算偏差信号S9は加減算器115に
送られて原子炉水位信号S3「原子炉水位設定信号S4
と加減算され水位偏差信号S,oが求められる。そして
この水位偏差信号S,oにもとづいて水位制御器i 1
6から給水流量要求信号S5が出力され、給水ポンプ軍
囚5, SQ5を制御して給水流量を制御し、原子炉水
位を所定水位に維持する。そしても万一給水流量検出器
IQ8…のうちのひとつが故障した場合にはこの故障に
より総給水流量信号S7が変化する。 この場合給水流量検出器108・・・は4個あるのでそ
のうちの一個が故障した場合の総給水流量信号S7の変
化は25%となる。そしてこの総給水流量信号S7の2
5%の変化を補償するように給水制御装鷹が作動し、給
水流量が変更され、原子炉水位が変化する。この場合、
上記係数器114での給水偏差信号S8と水位換算偏差
信号S9との変換率は給水偏差信号S8の100%の変
化に対して水位換算偏差信号S9が12比淋変化するの
で「総給水流量信号S7の25%の変化すなわち給水偏
差信号S8の25%の変化に対する水位換算偏差信号S
9の変化は30仇となる。よって第T図に示す如くこの
給水流量検出器108・・・の一個の故障によって原子
炉水位は3瓜松変化する。しかし、この場合、この原子
炉水位の30伽の変化はLuといの差ALより小である
ので、この原子炉水位がLuを超えることはなく、給水
流量検出器量08・・・の1個の故障により嫁子炉がス
クラムすることは防止される。もちろん原子力発鰭設碗
には原子炉水位の監視装置や警報装置が備えられている
のでtこのような原子炉水位の異常な変化はただちに検
知され、適切な措置が講じられる。なお、この一実施例
は給水偏差信号S8の100%変化に対する水位換算偏
差信号S9の変化Lが120弧の場合のものであるが、
一般的には給水流量検出器の数Nは△L>声とすればよ
い。 また、この−実施例のものは差圧取り出し用の一組の圧
力タップ121,122に複数たとえば2個の給水流量
検出器108,IQ8を接続したので、給水流量検出器
108…を増設するに当って圧力タップ121,122
を増設する必要はなくト既存の設備に実施する場合に改
造箇所が少なくてすみ、容易に実施できる。 なおL本発明は上記の一実施例には限定されない。 たとえば給水制御回路の具体的構成は必らずしも上記の
ものには限定されない。 また、給水流量検出器は必らずしも一組の圧力タップに
複数個接続しなくてもよい。 さらに給水流量検出器は必らずしも蓋圧から給水流量を
求めるものに限らずトその他の原理を用いて給水流量を
求めるものでもよい。 上述の如く本発明は、総給水流量信号と総主蒸気流量信
号との偏差から給水偏差信号を求め、この給水偏差信号
を原子炉水位に換算して水位換算偏差信号を求め「 こ
の水位換算偏差信号と原子炉水位信号との偏差から給水
流量要求信号を求め、この給水流量要求信号によって給
水流量を制御して原子炉水位を所定の水位に制御するも
のにおいて、上記給水偏差信号と水位換算偏差信号との
変換率を通常運転時の総給水流量を100%としたとき
上記給水偏差信号の100%変動に対する上記水位換算
偏差信号の出力をLとし、かつ通常運転時の原子炉水位
をLo、原子炉停止に至る原子炉水位の上限をLu、△
L=Lu−Loとし、また給水流量信号を出力する給水
流量検出器の数をNとしたとき、△L>LノN としたものである。 したがって、給水流量検出器が1個故障しても原子炉
水位の変化が△Lを超すことはなく、給水流量検出器1
個の故障により原子炉がスクラムするようなことはない
。よって原子炉の稼動率を向上することができる等、そ
の効果は大である。
10'. The water supply control circuit 110 is also configured to receive a reactor water level setting signal S4. The water supply control circuit 11 then outputs a water supply flow rate command signal S5 based on these signals, controls the operation of the water supply pumps 185 and 105, controls the water supply flow rate, and controls the reactor water level to a predetermined water level. It is based on The water supply control circuit 110' is constructed as shown in FIG.
That is, the main steam flow rate signals S, . . . from the main steam flow rate detectors 107, .
is structured in such a way that it is required. Again, the water supply flow rate signal S2.'' from the water supply flow rate detector turtle 08... is determined by the adder 7, ] The addition flow rate signal S output from these adders 117, 117 is configured to be input to the adder 7 and added.
、. ,S,. are sent to the coefficient unit 8,118, respectively, and the water supply flow rate detector 108 for each water supply pipe Q6,106.
It is multiplied by a coefficient of 1/2, that is, 1/2 of the number of...
Average water supply flow rate signal S,2, for each water supply date 06,106
S,2 is obtained. These average water supply flow rate signals S,2 are each sent to an adder 112 and added together to obtain a total water supply flow rate signal S7. These total main steam flow rate signal S6 and total water flow weight signal S7 are input to the subtracter 113 to obtain a feed water deviation signal S8 which is the deviation between them.Then, this feed water deviation signal S8 is input to the coefficient unit 114. , is converted into a water level conversion deviation signal S9 corresponding to the change in the reactor water level that is expected to occur due to this feed water deviation.In this case, the conversion rate of the above water supply deviation signal S8 and water level conversion deviation signal S9 is normal operation. When the total water supply flow rate at the time is 100%, the above water supply deviation signal S
It is set so that the change L of the water level conversion deviation signal S9 when the value 8 changes by 100% is 120. and,
The converted water level deviation signal S8, the reactor water level signal S3, and the reactor water level setting signal S4 are input to an adder/subtractor 115, respectively, to produce a feed water deviation signal S,. is required. The water supply deviation signals S, o are sent to the water level controller 116, which outputs the water supply flow rate request code corresponding to the water level deviation signals S, o.
905 to control the feed water flow rate and maintain the reactor water level at a predetermined water level.One embodiment of the present invention configured as described above is configured to control the total main steam flow rate and the total feed water flow rate. When a difference occurs, a water supply deviation signal S8 corresponding to this difference is output from the subtractor 1 turtle 3, and this water supply deviation signal S8 is converted into a water level conversion deviation signal S9 by a coefficient 14. Then, this water level conversion deviation signal S9 is sent to the adder/subtractor 115 and outputs the reactor water level signal S3 and the reactor water level setting signal S4.
are added and subtracted to obtain water level deviation signals S and o. Based on the water level deviation signals S and o, the water level controller i1
A water supply flow rate request signal S5 is output from 6, which controls the water supply pumps 5 and SQ5 to control the water supply flow rate and maintain the reactor water level at a predetermined water level. If one of the water supply flow rate detectors IQ8... should fail, the total water supply flow rate signal S7 will change due to this failure. In this case, since there are four water supply flow rate detectors 108..., the change in the total water supply flow rate signal S7 will be 25% if one of them fails. 2 of this total water supply flow rate signal S7
The feedwater control system is activated to compensate for the 5% change, changing the feedwater flow rate and changing the reactor water level. in this case,
The conversion rate between the water supply deviation signal S8 and the water level conversion deviation signal S9 in the coefficient unit 114 is that the water level conversion deviation signal S9 changes by 12% for a 100% change in the water supply deviation signal S8. Water level conversion deviation signal S for a 25% change in S7, that is, a 25% change in water supply deviation signal S8
The change of 9 becomes 30 enemies. Therefore, as shown in Figure T, the reactor water level changes by 3 degrees due to a failure of one of the feed water flow rate detectors 108.... However, in this case, the change in the reactor water level by 30 degrees is smaller than the difference AL between Lu and I, so the reactor water level will not exceed Lu, and one of the feed water flow rate detectors 08... This prevents the daughter-in-law furnace from scramming due to a failure. Of course, the nuclear reactor fin bowl is equipped with a reactor water level monitoring device and alarm device, so any abnormal changes in the reactor water level can be detected immediately and appropriate measures can be taken. Note that this embodiment is for a case where the change L in the water level conversion deviation signal S9 with respect to a 100% change in the water supply deviation signal S8 is 120 arcs.
Generally, the number N of water supply flow rate detectors may be such that ΔL>Voice. In addition, in this embodiment, a plurality of, for example, two water supply flow rate detectors 108, IQ8 are connected to a set of pressure taps 121, 122 for taking out the differential pressure, so it is possible to add more water supply flow rate detectors 108... Pressure taps 121, 122
There is no need to add more equipment, and when implementing it on existing equipment, fewer modifications are required and it can be implemented easily. Note that the present invention is not limited to the above embodiment. For example, the specific configuration of the water supply control circuit is not necessarily limited to the above. Further, a plurality of water supply flow rate detectors do not necessarily need to be connected to one set of pressure taps. Further, the water supply flow rate detector is not necessarily limited to one that determines the water supply flow rate from the lid pressure, but may also be one that determines the water supply flow rate using other principles. As described above, the present invention obtains a feed water deviation signal from the deviation between the total feed water flow rate signal and the total main steam flow rate signal, converts this feed water deviation signal to the reactor water level to obtain a water level conversion deviation signal, and calculates the water level conversion deviation. A water supply flow rate request signal is obtained from the deviation between the signal and the reactor water level signal, and the water supply flow rate is controlled using this water supply flow rate request signal to control the reactor water level to a predetermined water level. When the total water supply flow rate during normal operation is set as 100%, the output of the water level conversion deviation signal for a 100% fluctuation of the water supply deviation signal is L, and the reactor water level during normal operation is Lo, The upper limit of the reactor water level leading to reactor shutdown is Lu, △
When L=Lu-Lo and the number of water supply flow rate detectors outputting water supply flow rate signals is N, ΔL>L<N. Therefore, even if one feedwater flow rate detector fails, the change in the reactor water level will not exceed △L, and the feedwater flow rate detector 1
The reactor will not scram due to individual failure. Therefore, the effects are great, such as being able to improve the operating rate of the nuclear reactor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来例を示し、第1図は全体の牛
概略構成図、第2図は給水制御回礎のブロック図である
。 また第3図は従来例において給水流量検出器1個が故障
した場合の康子炉水位の変化の特性を示す線図、第亀図
ないし第6図は本発明の一実施例を示し、第4図は全体
の概略構成図、第5図は給水制御回路のブロック図、第
6図は給水流量検出器の配置を示す概略図である。また
第7図はこの一実施例において給水流量検出器1個が故
障した場合における原子炉水位の変化の特性を示す線図
である。10貴……原子炉圧力容器、102・・…・主
蒸気管、105・・…・給水ポンプ、106……給水管
、IQ7……主蒸気流量検出器、108・・・・・’給
水流量検出器、109…・・・水位検出器、110……
給水制御回路「 114・・・…係数器、116・・…
・給水制御器、121,122……圧力タップ。 第1図 第2図 第3図 第4図 第辱図 第6図 第?図
FIG. 1 and FIG. 2 show a conventional example, with FIG. 1 being a schematic diagram of the overall structure of the cow, and FIG. 2 being a block diagram of the water supply control circuit. Furthermore, FIG. 3 is a diagram showing the characteristics of the change in the Yasuko reactor water level when one feed water flow rate detector fails in the conventional example, and FIGS. 5 is a block diagram of the water supply control circuit, and FIG. 6 is a schematic diagram showing the arrangement of the water supply flow rate detector. Further, FIG. 7 is a diagram showing characteristics of changes in reactor water level when one feed water flow rate detector fails in this embodiment. 10 Noble... Reactor pressure vessel, 102... Main steam pipe, 105... Water supply pump, 106... Water supply pipe, IQ7... Main steam flow rate detector, 108...' Water supply flow rate Detector, 109...Water level detector, 110...
Water supply control circuit "114... Coefficient unit, 116...
・Water supply controller, 121, 122...pressure tap. Figure 1 Figure 2 Figure 3 Figure 4 Shame figure Figure 6? figure

Claims (1)

【特許請求の範囲】 1 総給水流量信号と総主蒸気流量信号との偏差から給
水偏差信号を求め、この給水偏差信号を原子炉水位に換
算して水位換算偏差信号を求め、この水位換算偏差信号
と原子炉水位信号との偏差から給水流量要求信号を求め
、この給水流量要求信号によつて給水流量を制御して原
子炉水位を所定の水位に制御するものにおいて、上記給
水偏差信号と水位換算偏差信号との変換率を通常運転時
の総合水流量を100%としたとき上記給水偏差信号の
100%変動に対する上記水位換算偏差信号の出力をL
とし、かつ通常運転時の原子炉水位をLo、原子炉停止
に至る原子炉水位の上限をLu、ΔL=Lu−Loとし
、また給水流量信号を出力する給水流量検出器の数をN
としたとき、ΔL>L/N であることを特徴とする沸謄水形原子炉の給水制御装置
。 2 前記給水流量検出器は給水配管内の給水流量に対応
した差圧を取り出す一対の圧力タツプ一組につき複数個
を接続したものであることを特徴とする前記特許請求の
範囲第1項記載の沸謄水形原子炉の給水制御装置。
[Scope of Claims] 1. Obtain a feed water deviation signal from the deviation between the total feed water flow rate signal and the total main steam flow rate signal, convert this feed water deviation signal to the reactor water level to obtain a water level conversion deviation signal, and calculate this water level conversion deviation. A water supply flow rate request signal is obtained from the deviation between the signal and the reactor water level signal, and the water supply flow rate is controlled using this water supply flow rate request signal to control the reactor water level to a predetermined water level. When the conversion rate with the converted deviation signal is set to 100% of the total water flow rate during normal operation, the output of the water level conversion deviation signal for a 100% fluctuation of the water supply deviation signal is L.
In addition, the reactor water level during normal operation is Lo, the upper limit of the reactor water level that reaches reactor shutdown is Lu, ΔL = Lu - Lo, and the number of feedwater flow rate detectors that output the feedwater flow rate signal is N.
A water supply control device for a boiling water reactor, characterized in that ΔL>L/N. 2. The water supply flow rate detector according to claim 1, characterized in that a plurality of said water supply flow rate detectors are connected to each pair of pressure taps for extracting the differential pressure corresponding to the water supply flow rate in the water supply piping. Boiling water reactor water supply control system.
JP56127554A 1981-08-14 1981-08-14 Boiling water reactor water supply control system Expired JPS6018040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56127554A JPS6018040B2 (en) 1981-08-14 1981-08-14 Boiling water reactor water supply control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56127554A JPS6018040B2 (en) 1981-08-14 1981-08-14 Boiling water reactor water supply control system

Publications (2)

Publication Number Publication Date
JPS5828699A JPS5828699A (en) 1983-02-19
JPS6018040B2 true JPS6018040B2 (en) 1985-05-08

Family

ID=14962878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56127554A Expired JPS6018040B2 (en) 1981-08-14 1981-08-14 Boiling water reactor water supply control system

Country Status (1)

Country Link
JP (1) JPS6018040B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179143U (en) * 1985-04-30 1986-11-08

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693771B2 (en) * 1984-10-29 1994-11-16 ソニー株式会社 Beam current control circuit for electronic beam recorder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61179143U (en) * 1985-04-30 1986-11-08

Also Published As

Publication number Publication date
JPS5828699A (en) 1983-02-19

Similar Documents

Publication Publication Date Title
JP2809977B2 (en) Control device
EP0067497B1 (en) Feedwater control system
JPH0236961B2 (en)
JPS6253797B2 (en)
JPS6018040B2 (en) Boiling water reactor water supply control system
JP2923040B2 (en) Power plant and water level control method and apparatus
JP2594984B2 (en) Moisture separator drain tank water level controller
JP2523511B2 (en) Steam generator output controller
KR101216887B1 (en) Method and apparatus for control equipment of steam generator of nuclear power plant with invaded process measurement accuracy compensation
JPS6217121B2 (en)
JPS6298102A (en) Feedwater controller for steam generating plant
JPH0539901A (en) Method and device for automatically controlling boiler
JP2001004790A (en) Water level controller of steam generating plant
JPH05119189A (en) Nuclear reactor injection water flow automatic controller
JP3119884B2 (en) Instrument interlock circuit for reactor water level
JP2677789B2 (en) Control method for multiple boilers
JPS62116804A (en) Feedwater controller for nuclear reactor
JPH0113080B2 (en)
JPH04113298A (en) Controlling of nuclear reactor pressure
JPS59116099A (en) Reactor water level control device
JPS59231104A (en) Controlling system of feed water pump in power plant
JPS62148895A (en) Emergency stop device for nuclear reactor
JPS622278B2 (en)
JPH03225298A (en) Nuclear reactor pressure controller
JPH0143123B2 (en)