JPS60180067A - Molten carbonate type fuel cell and its manufacturing method - Google Patents

Molten carbonate type fuel cell and its manufacturing method

Info

Publication number
JPS60180067A
JPS60180067A JP59035493A JP3549384A JPS60180067A JP S60180067 A JPS60180067 A JP S60180067A JP 59035493 A JP59035493 A JP 59035493A JP 3549384 A JP3549384 A JP 3549384A JP S60180067 A JPS60180067 A JP S60180067A
Authority
JP
Japan
Prior art keywords
fine powder
layer
organic binder
fuel cell
carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59035493A
Other languages
Japanese (ja)
Other versions
JPH0624123B2 (en
Inventor
Atsuo Muneuchi
篤夫 宗内
Kenji Murata
謙二 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59035493A priority Critical patent/JPH0624123B2/en
Publication of JPS60180067A publication Critical patent/JPS60180067A/en
Publication of JPH0624123B2 publication Critical patent/JPH0624123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M8/141Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers
    • H01M8/142Fuel cells with fused electrolytes the anode and the cathode being gas-permeable electrodes or electrode layers with matrix-supported or semi-solid matrix-reinforced electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce internal resistance caused by the thinness of an electrolytic layer by inserting a fine powder layer obtained from fine powder material and organic binder between a pair of porous electrode plates and the electrolytic layer that comprise a unit battery. CONSTITUTION:A unit battery 1 for a molten carbonate type fuel cell is formed as the five-layer structure by coating a fuel electrode 3 made of a porous sintering body such as an Ni-Cr alloy and an oxidizing electrode 4 made of the porous sintering body such as Ni with fine powder layers 5 and 6 in which ceramic fine powder such as LiAlO2, organic binder, and nonaqueous solvent are kneaded and applying an electrolytic layer 7 in which mixed carbonate, carbonate holding material such as LiAlO2, organic binder, and nonaqueous solvent are kneaded to the fine powder layers 5 and 6. Then a battery main body X is formed by laminating the unit battery together with connectors 2. As a result, the intersected mixture of gas can be prevented by improving mechanical strength even if the electrolytic layer 7 is made thin.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、特性に優れ、大出力化を図れるようにした溶
融炭酸塩型燃料電池とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a molten carbonate fuel cell that has excellent characteristics and can achieve high output, and a method for manufacturing the same.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、高能率のエネルギー変換装置として燃料電池が広
く知られている。燃料電池は、使用する電解質によって
、リン酸型、溶融炭酸塩型、固体電解質型に分類される
。なかでも、溶融炭酸塩型燃料電池は、動作温度が高い
ため、電極反応が起シ易く、高価な貴金属触媒を必要と
しないこと、また、発電熱効率が高いことなどの大きな
特徴を有している◎ 溶融炭酸塩型燃料電池は、対向配置された一対の多孔質
電極板、すなわち、酸化剤極および燃料極と、これら電
極間に介在させたアルカリ炭酸塩を電解質とする電解質
層とからなる単位電池を、通常、インクコネクタを介し
て複数積層して構成されている。そして、運転時におい
ては、上記アルカリ炭酸塩を500〜750℃の高温下
で溶融状態にし、この炭酸塩と、各電極板に拡散された
酸化剤ガスおよび燃料ガスとを反応させて、電気化学的
プロセスによって、直流出力を得るようにしている。
Conventionally, fuel cells have been widely known as a highly efficient energy conversion device. Fuel cells are classified into phosphoric acid type, molten carbonate type, and solid electrolyte type depending on the electrolyte used. Among these, molten carbonate fuel cells have major characteristics such as high operating temperature, which facilitates electrode reactions, no need for expensive precious metal catalysts, and high heat generation efficiency. ◎ A molten carbonate fuel cell is a unit consisting of a pair of porous electrode plates placed opposite each other, that is, an oxidizer electrode and a fuel electrode, and an electrolyte layer interposed between these electrodes that uses an alkali carbonate as the electrolyte. Usually, a plurality of batteries are stacked together via ink connectors. During operation, the alkali carbonate is molten at a high temperature of 500 to 750°C, and this carbonate is reacted with the oxidant gas and fuel gas diffused in each electrode plate, resulting in an electrochemical reaction. DC output is obtained through a process of

このような溶融炭酸塩型燃料電池の上記電解質層は、以
下の条件を満たしていることが必要である。すなわち、 ■ 溶融炭酸塩の保持能力が十分であることはもちろん
のこと、作動温度で十分な機械的強度、特に圧縮強度を
有し、燃料電池内で電解質層の割れによるガスの交差混
合が発生しないこと1 ■ 単位電池当シの内部抵抗を少なくするため、可能な
限り薄く、しかも各電極との接触が十分にとれること、 ■ 単位電池当シの出力を大きくするために大型化でき
、かつ燃料電池発電所の大規模化に対応できるように高
い生産性を有すること、などである。
The electrolyte layer of such a molten carbonate fuel cell needs to satisfy the following conditions. That is, ■ It not only has sufficient holding capacity for molten carbonate, but also has sufficient mechanical strength, especially compressive strength, at operating temperatures to prevent cross-mixing of gases from occurring due to cracks in the electrolyte layer within the fuel cell. Things not to do 1 ■ In order to reduce the internal resistance of the unit battery, it must be as thin as possible and have sufficient contact with each electrode; ■ It must be large enough to increase the output of the unit battery, and The goal is to have high productivity so that fuel cell power plants can scale up.

ところで、従来の溶融炭酸塩型燃料電池は、電解質層と
して専ら、電解質の保持材シ、炭酸塩とを混合し、40
0〜500℃、200〜500 kglα2の条件でホ
ットプレスして裂だ、いわゆる電解質タイルと称される
板状体を用いるようにしている。
By the way, in conventional molten carbonate fuel cells, the electrolyte layer consists of a mixture of an electrolyte holding material and a carbonate.
A plate-shaped body called an electrolyte tile, which is hot-pressed and torn under conditions of 0 to 500°C and 200 to 500 kglα2, is used.

しかしながら、上記のようにして形成された電解質J@
は、溶融炭酸塩の保務機能は十分にあるものの、機械的
強度に劣シ、電解質タイルの大きさを50crn角以上
にすると、通常の取扱いで容易に破損してしまい、電池
内への組込みに注意を要するうえ、組込み後においても
電池の熱サイクルに起因した電解質層の割れによるガス
の交差混合が発生し易いという問題があった。
However, the electrolyte J@ formed as above
Although it has a sufficient maintenance function for molten carbonate, it has poor mechanical strength, and if the electrolyte tile is larger than 50 crn square, it will easily break due to normal handling, making it difficult to incorporate it into the battery. In addition, even after assembly, gas cross-mixing is likely to occur due to cracks in the electrolyte layer caused by thermal cycling of the battery.

このため、電解質層の薄形化、大型化にも限界があシ、
その厚みIil am程度が限度であった。
For this reason, there are limits to making the electrolyte layer thinner and larger.
The thickness was limited to about 100 yen.

また、電解質層をなんらかの方法によって薄形化できた
としても、従来の構造の燃料電池では、次のような問題
があった。すなわち、燃料電池運転時の酸化剤ガスと燃
料ガスとは、通常、溶融炭酸塩の層で分離されている。
Further, even if the electrolyte layer could be made thinner by some method, fuel cells with conventional structures still have the following problems. That is, during fuel cell operation, oxidant gas and fuel gas are usually separated by a layer of molten carbonate.

したがって、この層を薄形にすればする程、ガス圧に抗
する能力が低下し、溶融炭酸塩がガス下流側に押し出さ
れ、結局、ガスの交差混合を生じてしまうという問題が
あった。
Therefore, the thinner this layer is, the lower its ability to withstand gas pressure is, causing the problem that molten carbonate is forced downstream of the gas, resulting in gas cross-mixing.

さらには、上記の如くホットプレスによって電解質層全
成形する場合には、単位面積当りの付与圧力を高くとる
必要があるため、大型のプレス装置を使用しなければな
らず、多大な設備費がかかるという問題があった。しか
も、この様な製造方法では、保持材と炭酸塩との混合体
?高温下で加圧する必要があるため、上記混合体の加熱
に時間がかかシ、シかも、プレス加工時に急激な機械的
衝撃を与えられないので、1枚当りの生産速度を10分
以内にすることが困難で、極めて生産性が悪いという不
具合があった。したがって、この様な製造方法で大型の
燃料電池を製造するには、多大なコス)k要してしまう
という問題があった。
Furthermore, when forming the entire electrolyte layer by hot pressing as described above, it is necessary to apply a high pressure per unit area, which requires the use of large press equipment, which incurs large equipment costs. There was a problem. Moreover, with this manufacturing method, is it a mixture of retaining material and carbonate? Since it is necessary to pressurize at high temperature, it may take some time to heat the above mixture, but since sudden mechanical shock cannot be applied during press processing, the production speed per sheet can be reduced to within 10 minutes. There were problems in that it was difficult to do so, and productivity was extremely low. Therefore, there is a problem in that a large amount of cost is required to manufacture a large-sized fuel cell using such a manufacturing method.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情を考慮してなされたもので、そ
の目的とするところは、エネルギ効率の向上化および大
出力化を図れるようにした溶融炭酸塩型燃料電池および
その生産性の高いふ゛J造方法を提供することにある。
The present invention has been made in consideration of these circumstances, and its purpose is to provide a molten carbonate fuel cell that can improve energy efficiency and increase output, and a highly productive fuel cell thereof. Our objective is to provide a J-building method.

〔発明の概要〕[Summary of the invention]

本発明に係る溶融炭酸塩型燃料′電池は、一対の多孔質
電極板間に混合炭酸塩、炭酸塩保持材および有機バイン
ダの混合体で電解質層を形成し、この電解質層と前記各
多孔質電極板との間に微粉末材料および有機バインダの
混合体からなる薄肉の微粉末層を介在させたものである
ことを特徴としている。
In the molten carbonate fuel cell according to the present invention, an electrolyte layer is formed between a pair of porous electrode plates with a mixture of a mixed carbonate, a carbonate retaining material, and an organic binder, and this electrolyte layer and each of the above-mentioned porous It is characterized in that a thin fine powder layer made of a mixture of a fine powder material and an organic binder is interposed between the electrode plate and the electrode plate.

また、本発明に係る溶融炭酸塩型燃料電池の製造方法は
、第1の多孔質電極板の一方の面に微粉末材料と有機バ
インダとの混合体で薄肉の微粉末層を形成し、この微粉
末層の上面に混合炭酸塩と炭酸塩保持材と有機バインダ
との混合体を塗布して電解質層を形成した後、上記電解
質層上に微粉末材料と有機バインダとからなる薄肉の微
粉末層を介して第2の多孔質電極板を積層するようにし
たことを特徴としている。
Further, the method for manufacturing a molten carbonate fuel cell according to the present invention includes forming a thin fine powder layer on one surface of the first porous electrode plate using a mixture of a fine powder material and an organic binder; After forming an electrolyte layer by applying a mixture of a mixed carbonate, a carbonate retaining material, and an organic binder to the upper surface of the fine powder layer, a thin fine powder made of a fine powder material and an organic binder is deposited on the electrolyte layer. It is characterized in that the second porous electrode plate is laminated with layers interposed therebetween.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、各多孔質電極板と電解質層との間に微
粉末材料を含む薄肉の微粉末層が形成されているので、
電極と電解質層との間の流体力学的な抵抗が増し、ガス
圧で溶融炭酸塩が移動するのを食い止めることができる
。このため、電解質Nを薄型化することによシ、ガスの
交差混合が生じ易くなるという従来の欠点を解消させる
ことができる。この結果、電解質の薄形化による内部抵
抗の減少と、ガスの交差混合防止とを同時に図ることが
でき、エネルギ効率の高い溶融炭酸塩型燃料電池を提供
できる。
According to the present invention, since a thin fine powder layer containing a fine powder material is formed between each porous electrode plate and the electrolyte layer,
The hydrodynamic resistance between the electrode and the electrolyte layer increases and the gas pressure can stop the movement of molten carbonate. Therefore, by reducing the thickness of the electrolyte N, the conventional drawback that cross-mixing of gases tends to occur can be overcome. As a result, it is possible to reduce the internal resistance by making the electrolyte thinner and to prevent gas cross-mixing at the same time, and it is possible to provide a molten carbonate fuel cell with high energy efficiency.

また、本発明の製造方法によれば、機械的強度の高い多
孔質電極板上に、微粉末層と電解質層とを形成する方式
を採用している。したがって、電解質層を極めて薄く形
成しても、基体となる電極板の機械的強度が高いので、
製造時の取扱いで電解質層が割れるようなことがない。
Further, according to the manufacturing method of the present invention, a method is adopted in which a fine powder layer and an electrolyte layer are formed on a porous electrode plate having high mechanical strength. Therefore, even if the electrolyte layer is formed extremely thin, the mechanical strength of the electrode plate serving as the base is high.
The electrolyte layer will not crack during handling during manufacturing.

しかも、電解質層は有機バインダを含む極めて柔軟性に
富んだものとなっているので、これによっても破壊し難
い層になっている。このため、本発明の製造方法によれ
ば、電解質層の薄形化・大形化を図ることが可能であり
、結局、大出力の燃料電池を製造することができる。
Furthermore, since the electrolyte layer contains an organic binder and is extremely flexible, this layer also becomes difficult to break. Therefore, according to the manufacturing method of the present invention, it is possible to make the electrolyte layer thinner and larger, and as a result, a fuel cell with high output can be manufactured.

また、このような方法は、従来のホットプレス法とけ異
なシ、電解質層を常温下で形成することができるうえ、
スラリー状のものを単に電極板上に形成された微粉末層
上面へ塗布していくという方式を採用しているので、生
産性が非常に高いという効果を奏する。このため、大型
の燃料電池の大量生産が可能化できる。
In addition, this method is different from the conventional hot press method in that it is possible to form an electrolyte layer at room temperature, and
Since a method is adopted in which a slurry-like material is simply applied onto the upper surface of the fine powder layer formed on the electrode plate, productivity is extremely high. Therefore, mass production of large-sized fuel cells becomes possible.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照し、本発明の一実施例に係る溶融炭酸
塩型燃料電池について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A molten carbonate fuel cell according to an embodiment of the present invention will be described below with reference to the drawings.

第1図において、Xは図示しないマニホールド内に装着
された燃料電池本体である。この燃料電池本体Xは、単
位電池りと、インタコネクタ2とを交互に積層して構成
されている。
In FIG. 1, X is a fuel cell main body installed in a manifold (not shown). The fuel cell main body X is constructed by alternately stacking unit cells and interconnectors 2.

単位電池Jは、一対の多孔質電極板、すなわち燃料極3
と酸化剤極4との間に、微粉末層5゜6を介して電解質
層7を形成した、5層構造となっている。燃料極3は、
例えばNi−Cr合金、Co−Cr合金等の粉末を焼結
し、所望の空孔率とした多孔質焼結体で形成されている
。酸化剤極4ば、例えばN ir N s系合金の多孔
質焼結体で形成されている。微粉末層5,6は、LiA
t0□等のセラミック微粉末と有機バインダと非水溶媒
とを混練し、燃料極3および酸化剤極4上に塗布して形
成されている。また、電解質層は混合炭酸塩とL i 
A102等の炭酸塩保持材と、有機バインダと、非水溶
媒とを混練し、微粉末層5または6上に塗布して形成さ
れている。
The unit cell J includes a pair of porous electrode plates, that is, a fuel electrode 3
It has a five-layer structure in which an electrolyte layer 7 is formed between the electrode 4 and the oxidizer electrode 4 with a fine powder layer 56 interposed therebetween. The fuel electrode 3 is
For example, it is formed of a porous sintered body made by sintering powder of Ni-Cr alloy, Co-Cr alloy, etc. to have a desired porosity. The oxidizer electrode 4 is formed of, for example, a porous sintered body of a NirNs alloy. The fine powder layers 5 and 6 are made of LiA
It is formed by kneading ceramic fine powder such as t0□, an organic binder, and a non-aqueous solvent and applying the mixture onto the fuel electrode 3 and oxidizer electrode 4. In addition, the electrolyte layer contains mixed carbonate and Li
It is formed by kneading a carbonate retaining material such as A102, an organic binder, and a non-aqueous solvent and applying the mixture onto the fine powder layer 5 or 6.

インタコネクタ2は、例えばステンレス@裂の板状体の
両面に互いに直交する方向に延びる複数の溝を形成した
ものであシ、一方の面に形成された溝を酸化剤ガスのガ
ス通路8とし、他方の面に形成された溝を燃料ガスのガ
ス通路9としたものである。
The interconnector 2 is made of, for example, a stainless steel plate with a plurality of grooves extending perpendicularly to each other on both sides, and the grooves formed on one side are used as gas passages 8 for oxidizing gas. , the groove formed on the other surface serves as a gas passage 9 for fuel gas.

しかして、このように構成された燃料電池を運転する場
合には、燃料電池本体Xi500〜750℃に昇温させ
る。この昇温の過程で電解質層7および微粉末層5,6
内の有機バインダが揮散すると同時に微粉末の一部が融
着しだ状令態となる。この後、インタコネクタ2のガス
通路8に図中矢印Pで示す向きで酸化剤ガスを通流させ
るとともに、ガス通路9に矢印Qに示す向きで燃料ガス
を通流させる。これによって、電極反応が生起され、各
電極間に直流電圧が発生する。
Therefore, when operating the fuel cell configured in this way, the temperature of the fuel cell main body Xi is raised to 500 to 750°C. In the process of this temperature increase, the electrolyte layer 7 and the fine powder layers 5 and 6
At the same time as the organic binder inside is volatilized, a portion of the fine powder begins to fuse. Thereafter, the oxidizing gas is made to flow through the gas passage 8 of the interconnector 2 in the direction shown by the arrow P in the figure, and the fuel gas is made to flow through the gas passage 9 in the direction shown by the arrow Q. This causes an electrode reaction and generates a DC voltage between each electrode.

次に、このような燃料電池の製造方法の具体例と、その
実験結果について説明する。
Next, a specific example of a method for manufacturing such a fuel cell and its experimental results will be described.

空孔率75%のNi焼結体を酸化剤極4、空孔率65係
のNi−Cr焼結体を燃料極3とし、LiA102(リ
チウムアルミネート)の微粉末20m2/7と、ポリビ
ニルブチラール3重量%とを含むスラリーヲ上記各電極
上に吹き付は塗布するとともに、電極裏面から吸引して
第2図(、)K示すような0.05mmの厚みの微粉末
層5,6を形成した。この微粉末層を乾燥させた後、混
合炭酸塩60.9と、γ−LiAtO240、Pと、ポ
リビニルブチラール2gとをイソプロピルアルコール中
でよく混練したものを上記酸化剤極4に形成された微粉
末N6の上面に塗布して第2図(b)に示すような1調
厚の電解質層7を形成した。この電解質層7を乾燥させ
た後、100に9/cr++2で加圧して一体化させた
。さらに、上記電解質層7の上面に先に製作した微粉末
層5の形成された燃料極3を積層し、第2図(e)に示
すような5層構造の単位電池If構成した。
A Ni sintered body with a porosity of 75% was used as the oxidizer electrode 4, a Ni-Cr sintered body with a porosity of 65% was used as the fuel electrode 3, 20 m2/7 of fine powder of LiA102 (lithium aluminate), and polyvinyl butyral. A slurry containing 3 wt. . After drying this fine powder layer, 60.9 g of mixed carbonate, 240 γ-LiAtO, P, and 2 g of polyvinyl butyral were thoroughly kneaded in isopropyl alcohol, and then a fine powder formed on the oxidizing agent electrode 4 was added. The electrolyte layer 7 was coated on the upper surface of N6 to form an electrolyte layer 7 having a uniform thickness as shown in FIG. 2(b). After drying this electrolyte layer 7, it was pressurized at 9/cr++2 to integrate it. Furthermore, the fuel electrode 3 on which the fine powder layer 5 previously produced was formed was laminated on the upper surface of the electrolyte layer 7 to form a unit cell If with a five-layer structure as shown in FIG. 2(e).

この単位電池1 ’i 3.50〜550℃の間の温度
に昇温して炭酸塩の溶融と、有機バインダの揮散とを行
わせ、650℃に昇温させて起電反応を行わせた。
This unit cell 1'i was heated to a temperature between 3.50 and 550°C to melt the carbonate and volatilize the organic binder, and then raised to 650°C to cause an electromotive reaction. .

この単位電池1の電流−電圧特性を測定したところ第3
図Aに示す結果を得た。なお、比較のために従来のホッ
トプレス法によシ得られた厚さ2膿の電解質層を用いた
単位電池の電流−電圧特性を同図Bに示す。この図から
明らかなように、本実施例の方法によシ製造された単位
電池は、従来のものに較べ高い出力電圧を得ることがで
きた。これは、電解質層7の厚みを薄くすることができ
たことによる。
When the current-voltage characteristics of this unit battery 1 were measured, the third
The results shown in Figure A were obtained. For comparison, Figure B shows the current-voltage characteristics of a unit battery using an electrolyte layer with a thickness of 2 μm obtained by the conventional hot pressing method. As is clear from this figure, the unit battery manufactured by the method of this example was able to obtain a higher output voltage than the conventional one. This is because the thickness of the electrolyte layer 7 could be made thinner.

ぼた、本実施例の方法によって得られた単位電池1は、
電池作動温度における泡出圧力が従来に較べて50チ増
加し、ガスの交差混合が少ないことが確認できた。これ
は、電解質層7の両面に形成された微粉末層5.6がガ
ス圧による溶融炭酸塩の移動を防止していることによる
However, the unit battery 1 obtained by the method of this example is as follows:
It was confirmed that the bubbling pressure at the battery operating temperature increased by 50 inches compared to the conventional model, and that there was less cross-mixing of gases. This is because the fine powder layers 5.6 formed on both sides of the electrolyte layer 7 prevent the molten carbonate from moving due to gas pressure.

そして、この場合には、前記電解質層は1枚当91分以
内で形成することができ、その生産性が極めて良好なた
め、燃料電池の生産性も高いことが確認された。
In this case, it was confirmed that the electrolyte layer could be formed within 91 minutes per sheet, and the productivity was extremely good, so that the productivity of the fuel cell was also high.

このように、本実施例の燃料電池お(びそC製造方法に
よれば、前述した効果を十分に奏することが可能である
As described above, according to the fuel cell manufacturing method of this embodiment, it is possible to sufficiently achieve the above-mentioned effects.

なお、他の実施例として、1m角で厚さ0.6簡の電解
質層を微粉末N?:介して電極上に形成し、三層構造体
を構成した。この三層構造体の両端部を保持したところ
、自重で破壊するようなことがなかった。
In addition, as another example, an electrolyte layer of 1 m square and 0.6 mm thick was made of fine powder N? : was formed on the electrode through the layer to form a three-layer structure. When both ends of this three-layer structure were held, it did not break under its own weight.

また、この三層構造体にさらに微粉末層と電極とを付加
して単位電池を構成し、この単位電池を複数積層して全
体k1kg/α2の圧力で締め付けた。この結果、電解
質層は、その厚みの約10%に相当する分が一方の電極
に食い込み、電解質層と電極とのなじみが従来よシも向
上したことが確認できた。
Further, a fine powder layer and an electrode were further added to this three-layer structure to form a unit battery, and a plurality of unit batteries were stacked and tightened with a total pressure of k1 kg/α2. As a result, it was confirmed that approximately 10% of the thickness of the electrolyte layer bit into one of the electrodes, and the compatibility between the electrolyte layer and the electrode was improved compared to the conventional method.

さらに、従来のホットプレスによる電解質層を用いた2
0層の積層電池’e2kg/α2の圧力で締め付けたと
ころ、3層の電解質層に割れが発生したのに対し、本実
施例のものでは、割れが全く発生しなかった。
In addition, two methods using conventional hot-pressed electrolyte layers
When a 0-layer stacked battery was tightened with a pressure of e2 kg/α2, cracks occurred in the three electrolyte layers, whereas no cracks occurred in the case of this example.

このように本実施例によれば、前述した効果全十分に奏
することが確認できた。
Thus, according to this example, it was confirmed that all of the above-mentioned effects were fully achieved.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば炭酸塩保持材はりチウムアルミネー) (LiA
t0□)に限らず、ストロンチウムチタネー) (5r
TiOs )、酸化セリウム(CeO2)であっても良
い。また、微粉末層5,6に用いる微粉末としては、ニ
ッケル粉末、ニッケル合金粉末を用いても良い。そして
、この微粉末層は、双方ともに予め電極板上に形成して
おく必要はなく、例えば、電極板、微粉末層、電解質層
、微粉末層、電極板の順に積層するようにしてもよい。
For example, carbonate retaining material (lithium alumina) (LiA
Not limited to t0□), strontium titanium) (5r
TiOs) or cerium oxide (CeO2) may be used. Moreover, as the fine powder used for the fine powder layers 5 and 6, nickel powder or nickel alloy powder may be used. Both of these fine powder layers do not need to be formed on the electrode plate in advance; for example, the electrode plate, the fine powder layer, the electrolyte layer, the fine powder layer, and the electrode plate may be laminated in this order. .

また、有機バインダとしては、ポリテトラフルオロエチ
レン、ポリエチレングリコール、ポリメタクリル酸メチ
ル等でも良く、非水溶媒としては、02〜C6までのア
ルコール、トルエン、アセトンなどであっても良い。
Further, the organic binder may be polytetrafluoroethylene, polyethylene glycol, polymethyl methacrylate, etc., and the non-aqueous solvent may be alcohol of 02 to C6, toluene, acetone, etc.

また、前記実施例では、混合炭酸塩について特に詳述し
なかったが、以下の組合わせを採用することができる。
Further, although the mixed carbonate was not specifically described in the above embodiments, the following combinations may be employed.

Li2C03A2CO3、 Li2CO3/に2CO3Aa2C03、Na2CO3
/に2CO3、 Li2CO3/に2CO3/5rC03、L1□C03
A2CO3//CaCO3゜
Li2C03A2CO3, Li2CO3/2CO3Aa2C03, Na2CO3
/ to 2CO3, Li2CO3/ to 2CO3/5rC03, L1□C03
A2CO3//CaCO3゜

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る溶融炭酸塩型燃料電池
の主要部の構成を示す斜視図、第2図体)〜(c)は同
燃料電池の製造工程を説明するための図、第3図は同燃
料電池の電池特性を従来例と比較して説明するだめの図
である。 L・・・単位電池、2・・・インタコネクタ、3・・・
燃料極、4・・・酸化剤極、5,6・・・微粉末層、7
・・・電解質層、8,9・・・ガス通路、A・・・実施
例の特性、B・・・比較例の特性。 出願人代理人 弁理士 鈴 江 武 彦第1図
Figure 1 is a perspective view showing the configuration of the main parts of a molten carbonate fuel cell according to an embodiment of the present invention, Figures 2) to (c) are diagrams for explaining the manufacturing process of the fuel cell, FIG. 3 is a diagram for explaining the cell characteristics of the same fuel cell in comparison with a conventional example. L...unit battery, 2...interconnector, 3...
Fuel electrode, 4... Oxidizer electrode, 5, 6... Fine powder layer, 7
... Electrolyte layer, 8, 9... Gas passage, A... Characteristics of the example, B... Characteristics of the comparative example. Applicant's agent Patent attorney Takehiko Suzue Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)一対の多孔質電極板と、これら多孔質電極板の間
に形成され混合炭酸塩と炭酸塩保持材と有機バインダと
を混′合してなる電解質層と、この電解質層と前記各多
孔質電極板との間に形成され微粉末材料と有機バインダ
とを混合してなる微粉末層とを具備してなることを特徴
とする溶融炭酸塩型燃料電池。
(1) A pair of porous electrode plates, an electrolyte layer formed between these porous electrode plates and made of a mixture of a mixed carbonate, a carbonate holding material, and an organic binder; A molten carbonate fuel cell comprising: a fine powder layer formed between an electrode plate and made of a mixture of a fine powder material and an organic binder.
(2)前記微粉末材料ハ、リチウムアルミネート、ニッ
ケル粉末、ニッケル合金粉末またはこれらの混合体から
なるものであることを特徴とする特許請求の範囲第1項
記載の溶融炭酸塩型燃料電池。
(2) The molten carbonate fuel cell according to claim 1, wherein the fine powder material C is made of lithium aluminate, nickel powder, nickel alloy powder, or a mixture thereof.
(3)第1の多孔質電極板の、一方の面に微粉末材料と
有機バインダとを混合してなる薄肉の微粉末層を形成す
る工程と、この工程によシ得られた上記微粉末層上に混
合炭酸塩と炭酸塩保持材と有機バインダとの混合体を塗
布して電解質層を形成する工程と、この工程で得られた
電解質層上に微粉末材料と有機バインダとからなる薄肉
の微粉末層を介して第2の多孔質電極板を積層する工程
とを具備したことを特徴とする溶融炭酸塩型燃料電池の
製造方法。
(3) a step of forming a thin fine powder layer made by mixing a fine powder material and an organic binder on one side of the first porous electrode plate; and the above fine powder obtained by this step. A step of forming an electrolyte layer by applying a mixture of a mixed carbonate, a carbonate retaining material, and an organic binder on the layer, and forming a thin wall made of a fine powder material and an organic binder on the electrolyte layer obtained in this step. and laminating a second porous electrode plate through a fine powder layer.
JP59035493A 1984-02-27 1984-02-27 Method for manufacturing molten carbonate fuel cell Expired - Lifetime JPH0624123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59035493A JPH0624123B2 (en) 1984-02-27 1984-02-27 Method for manufacturing molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59035493A JPH0624123B2 (en) 1984-02-27 1984-02-27 Method for manufacturing molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPS60180067A true JPS60180067A (en) 1985-09-13
JPH0624123B2 JPH0624123B2 (en) 1994-03-30

Family

ID=12443267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59035493A Expired - Lifetime JPH0624123B2 (en) 1984-02-27 1984-02-27 Method for manufacturing molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0624123B2 (en)

Also Published As

Publication number Publication date
JPH0624123B2 (en) 1994-03-30

Similar Documents

Publication Publication Date Title
JP4927609B2 (en) Method for producing solid electrolyte structure for all solid state battery and method for producing all solid state battery
JP3064746B2 (en) Flat solid electrolyte fuel cell
JPH10172590A (en) Solid electrolyte type fuel cell
JPS60101876A (en) Manufacture method of fused carbonate salts type fuel cell
JP2841340B2 (en) Solid electrolyte fuel cell
JPH0793146B2 (en) Molten carbonate fuel cell stack
JP2936001B2 (en) High temperature fuel cell and method of manufacturing the same
JP3113347B2 (en) Solid oxide fuel cell
JPS60180067A (en) Molten carbonate type fuel cell and its manufacturing method
JPH10134828A (en) Current collecting method between fuel electrode and separator of flat solid electrolyte fuel cell
JP3244310B2 (en) Solid oxide fuel cell
JPH03116659A (en) Solid electrolyte type fuel battery
JP3230423B2 (en) Hollow flat electrode substrate and method of manufacturing the same
JP2980921B2 (en) Flat solid electrolyte fuel cell
JPH0479163A (en) Solid electrolyte type fuel cell
JP2704071B2 (en) Method for manufacturing single cell of solid oxide fuel cell
JPH0799695B2 (en) Method for manufacturing molten carbonate fuel cell
JP3358640B2 (en) Manufacturing method of electrode substrate
JPH0462757A (en) Solid electrolyte type fuel cell
JP2822457B2 (en) Fuel cell separator and method of manufacturing the same
JPS61225772A (en) Manufacture of molten carbonate fuel cell
JPS6276262A (en) Fused carbonate type fuel cell
JPH0449750B2 (en)
JPH06342664A (en) Method for reforming inside of flat solid electrolyte fuel cell having internal manifold structure using compound separator of heat resistant metal plate and oxide plate
JPS6124164A (en) Electrolyte supporter of fused carbonate type fuel cell